1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21 
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26 
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30 
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34 	void *ret = dst;
35 	short *d = dst;
36 	const short *s = src;
37 
38 	len >>= 1;
39 	while (len-- > 0)
40 		*d++ = *s++;
41 	return ret;
42 }
43 
44 /**
45  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46  *  For now, we expose only 64 out of 80 ecc bytes
47  */
48 static struct nand_ecclayout onenand_oob_128 = {
49 	.eccbytes	= 64,
50 	.eccpos		= {
51 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55 		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56 		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57 		102, 103, 104, 105
58 		},
59 	.oobfree	= {
60 		{2, 4}, {18, 4}, {34, 4}, {50, 4},
61 		{66, 4}, {82, 4}, {98, 4}, {114, 4}
62 	}
63 };
64 
65 /**
66  * onenand_oob_64 - oob info for large (2KB) page
67  */
68 static struct nand_ecclayout onenand_oob_64 = {
69 	.eccbytes	= 20,
70 	.eccpos		= {
71 		8, 9, 10, 11, 12,
72 		24, 25, 26, 27, 28,
73 		40, 41, 42, 43, 44,
74 		56, 57, 58, 59, 60,
75 		},
76 	.oobfree	= {
77 		{2, 3}, {14, 2}, {18, 3}, {30, 2},
78 		{34, 3}, {46, 2}, {50, 3}, {62, 2}
79 	}
80 };
81 
82 /**
83  * onenand_oob_32 - oob info for middle (1KB) page
84  */
85 static struct nand_ecclayout onenand_oob_32 = {
86 	.eccbytes	= 10,
87 	.eccpos		= {
88 		8, 9, 10, 11, 12,
89 		24, 25, 26, 27, 28,
90 		},
91 	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93 
94 static const unsigned char ffchars[] = {
95 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
96 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
97 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
99 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
101 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
103 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
105 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
107 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
109 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
111 };
112 
113 /**
114  * onenand_readw - [OneNAND Interface] Read OneNAND register
115  * @param addr		address to read
116  *
117  * Read OneNAND register
118  */
119 static unsigned short onenand_readw(void __iomem * addr)
120 {
121 	return readw(addr);
122 }
123 
124 /**
125  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
126  * @param value		value to write
127  * @param addr		address to write
128  *
129  * Write OneNAND register with value
130  */
131 static void onenand_writew(unsigned short value, void __iomem * addr)
132 {
133 	writew(value, addr);
134 }
135 
136 /**
137  * onenand_block_address - [DEFAULT] Get block address
138  * @param device	the device id
139  * @param block		the block
140  * @return		translated block address if DDP, otherwise same
141  *
142  * Setup Start Address 1 Register (F100h)
143  */
144 static int onenand_block_address(struct onenand_chip *this, int block)
145 {
146 	/* Device Flash Core select, NAND Flash Block Address */
147 	if (block & this->density_mask)
148 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
149 
150 	return block;
151 }
152 
153 /**
154  * onenand_bufferram_address - [DEFAULT] Get bufferram address
155  * @param device	the device id
156  * @param block		the block
157  * @return		set DBS value if DDP, otherwise 0
158  *
159  * Setup Start Address 2 Register (F101h) for DDP
160  */
161 static int onenand_bufferram_address(struct onenand_chip *this, int block)
162 {
163 	/* Device BufferRAM Select */
164 	if (block & this->density_mask)
165 		return ONENAND_DDP_CHIP1;
166 
167 	return ONENAND_DDP_CHIP0;
168 }
169 
170 /**
171  * onenand_page_address - [DEFAULT] Get page address
172  * @param page		the page address
173  * @param sector	the sector address
174  * @return		combined page and sector address
175  *
176  * Setup Start Address 8 Register (F107h)
177  */
178 static int onenand_page_address(int page, int sector)
179 {
180 	/* Flash Page Address, Flash Sector Address */
181 	int fpa, fsa;
182 
183 	fpa = page & ONENAND_FPA_MASK;
184 	fsa = sector & ONENAND_FSA_MASK;
185 
186 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
187 }
188 
189 /**
190  * onenand_buffer_address - [DEFAULT] Get buffer address
191  * @param dataram1	DataRAM index
192  * @param sectors	the sector address
193  * @param count		the number of sectors
194  * @return		the start buffer value
195  *
196  * Setup Start Buffer Register (F200h)
197  */
198 static int onenand_buffer_address(int dataram1, int sectors, int count)
199 {
200 	int bsa, bsc;
201 
202 	/* BufferRAM Sector Address */
203 	bsa = sectors & ONENAND_BSA_MASK;
204 
205 	if (dataram1)
206 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
207 	else
208 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
209 
210 	/* BufferRAM Sector Count */
211 	bsc = count & ONENAND_BSC_MASK;
212 
213 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
214 }
215 
216 /**
217  * flexonenand_block - Return block number for flash address
218  * @param this		- OneNAND device structure
219  * @param addr		- Address for which block number is needed
220  */
221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
222 {
223 	unsigned int boundary, blk, die = 0;
224 
225 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
226 		die = 1;
227 		addr -= this->diesize[0];
228 	}
229 
230 	boundary = this->boundary[die];
231 
232 	blk = addr >> (this->erase_shift - 1);
233 	if (blk > boundary)
234 		blk = (blk + boundary + 1) >> 1;
235 
236 	blk += die ? this->density_mask : 0;
237 	return blk;
238 }
239 
240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
241 {
242 	if (!FLEXONENAND(this))
243 		return addr >> this->erase_shift;
244 	return flexonenand_block(this, addr);
245 }
246 
247 /**
248  * flexonenand_addr - Return address of the block
249  * @this:		OneNAND device structure
250  * @block:		Block number on Flex-OneNAND
251  *
252  * Return address of the block
253  */
254 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
255 {
256 	loff_t ofs = 0;
257 	int die = 0, boundary;
258 
259 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
260 		block -= this->density_mask;
261 		die = 1;
262 		ofs = this->diesize[0];
263 	}
264 
265 	boundary = this->boundary[die];
266 	ofs += (loff_t) block << (this->erase_shift - 1);
267 	if (block > (boundary + 1))
268 		ofs += (loff_t) (block - boundary - 1)
269 			<< (this->erase_shift - 1);
270 	return ofs;
271 }
272 
273 loff_t onenand_addr(struct onenand_chip *this, int block)
274 {
275 	if (!FLEXONENAND(this))
276 		return (loff_t) block << this->erase_shift;
277 	return flexonenand_addr(this, block);
278 }
279 
280 /**
281  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
282  * @param mtd		MTD device structure
283  * @param addr		address whose erase region needs to be identified
284  */
285 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
286 {
287 	int i;
288 
289 	for (i = 0; i < mtd->numeraseregions; i++)
290 		if (addr < mtd->eraseregions[i].offset)
291 			break;
292 	return i - 1;
293 }
294 
295 /**
296  * onenand_get_density - [DEFAULT] Get OneNAND density
297  * @param dev_id        OneNAND device ID
298  *
299  * Get OneNAND density from device ID
300  */
301 static inline int onenand_get_density(int dev_id)
302 {
303 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
304 	return (density & ONENAND_DEVICE_DENSITY_MASK);
305 }
306 
307 /**
308  * onenand_command - [DEFAULT] Send command to OneNAND device
309  * @param mtd		MTD device structure
310  * @param cmd		the command to be sent
311  * @param addr		offset to read from or write to
312  * @param len		number of bytes to read or write
313  *
314  * Send command to OneNAND device. This function is used for middle/large page
315  * devices (1KB/2KB Bytes per page)
316  */
317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
318 			   size_t len)
319 {
320 	struct onenand_chip *this = mtd->priv;
321 	int value;
322 	int block, page;
323 
324 	/* Now we use page size operation */
325 	int sectors = 0, count = 0;
326 
327 	/* Address translation */
328 	switch (cmd) {
329 	case ONENAND_CMD_UNLOCK:
330 	case ONENAND_CMD_LOCK:
331 	case ONENAND_CMD_LOCK_TIGHT:
332 	case ONENAND_CMD_UNLOCK_ALL:
333 		block = -1;
334 		page = -1;
335 		break;
336 
337 	case FLEXONENAND_CMD_PI_ACCESS:
338 		/* addr contains die index */
339 		block = addr * this->density_mask;
340 		page = -1;
341 		break;
342 
343 	case ONENAND_CMD_ERASE:
344 	case ONENAND_CMD_BUFFERRAM:
345 		block = onenand_block(this, addr);
346 		page = -1;
347 		break;
348 
349 	case FLEXONENAND_CMD_READ_PI:
350 		cmd = ONENAND_CMD_READ;
351 		block = addr * this->density_mask;
352 		page = 0;
353 		break;
354 
355 	default:
356 		block = onenand_block(this, addr);
357 		page = (int) (addr
358 			- onenand_addr(this, block)) >> this->page_shift;
359 		page &= this->page_mask;
360 		break;
361 	}
362 
363 	/* NOTE: The setting order of the registers is very important! */
364 	if (cmd == ONENAND_CMD_BUFFERRAM) {
365 		/* Select DataRAM for DDP */
366 		value = onenand_bufferram_address(this, block);
367 		this->write_word(value,
368 				 this->base + ONENAND_REG_START_ADDRESS2);
369 
370 		if (ONENAND_IS_4KB_PAGE(this))
371 			ONENAND_SET_BUFFERRAM0(this);
372 		else
373 			/* Switch to the next data buffer */
374 			ONENAND_SET_NEXT_BUFFERRAM(this);
375 
376 		return 0;
377 	}
378 
379 	if (block != -1) {
380 		/* Write 'DFS, FBA' of Flash */
381 		value = onenand_block_address(this, block);
382 		this->write_word(value,
383 				 this->base + ONENAND_REG_START_ADDRESS1);
384 
385 		/* Select DataRAM for DDP */
386 		value = onenand_bufferram_address(this, block);
387 		this->write_word(value,
388 				 this->base + ONENAND_REG_START_ADDRESS2);
389 	}
390 
391 	if (page != -1) {
392 		int dataram;
393 
394 		switch (cmd) {
395 		case FLEXONENAND_CMD_RECOVER_LSB:
396 		case ONENAND_CMD_READ:
397 		case ONENAND_CMD_READOOB:
398 			if (ONENAND_IS_4KB_PAGE(this))
399 				dataram = ONENAND_SET_BUFFERRAM0(this);
400 			else
401 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
402 
403 			break;
404 
405 		default:
406 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
407 			break;
408 		}
409 
410 		/* Write 'FPA, FSA' of Flash */
411 		value = onenand_page_address(page, sectors);
412 		this->write_word(value,
413 				 this->base + ONENAND_REG_START_ADDRESS8);
414 
415 		/* Write 'BSA, BSC' of DataRAM */
416 		value = onenand_buffer_address(dataram, sectors, count);
417 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
418 	}
419 
420 	/* Interrupt clear */
421 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
422 	/* Write command */
423 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
424 
425 	return 0;
426 }
427 
428 /**
429  * onenand_read_ecc - return ecc status
430  * @param this		onenand chip structure
431  */
432 static int onenand_read_ecc(struct onenand_chip *this)
433 {
434 	int ecc, i;
435 
436 	if (!FLEXONENAND(this))
437 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438 
439 	for (i = 0; i < 4; i++) {
440 		ecc = this->read_word(this->base
441 				+ ((ONENAND_REG_ECC_STATUS + i) << 1));
442 		if (likely(!ecc))
443 			continue;
444 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
445 			return ONENAND_ECC_2BIT_ALL;
446 	}
447 
448 	return 0;
449 }
450 
451 /**
452  * onenand_wait - [DEFAULT] wait until the command is done
453  * @param mtd		MTD device structure
454  * @param state		state to select the max. timeout value
455  *
456  * Wait for command done. This applies to all OneNAND command
457  * Read can take up to 30us, erase up to 2ms and program up to 350us
458  * according to general OneNAND specs
459  */
460 static int onenand_wait(struct mtd_info *mtd, int state)
461 {
462 	struct onenand_chip *this = mtd->priv;
463 	unsigned int flags = ONENAND_INT_MASTER;
464 	unsigned int interrupt = 0;
465 	unsigned int ctrl;
466 
467 	while (1) {
468 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
469 		if (interrupt & flags)
470 			break;
471 	}
472 
473 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
474 
475 	if (interrupt & ONENAND_INT_READ) {
476 		int ecc = onenand_read_ecc(this);
477 		if (ecc & ONENAND_ECC_2BIT_ALL) {
478 			printk("onenand_wait: ECC error = 0x%04x\n", ecc);
479 			return -EBADMSG;
480 		}
481 	}
482 
483 	if (ctrl & ONENAND_CTRL_ERROR) {
484 		printk("onenand_wait: controller error = 0x%04x\n", ctrl);
485 		if (ctrl & ONENAND_CTRL_LOCK)
486 			printk("onenand_wait: it's locked error = 0x%04x\n",
487 				ctrl);
488 
489 		return -EIO;
490 	}
491 
492 
493 	return 0;
494 }
495 
496 /**
497  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
498  * @param mtd		MTD data structure
499  * @param area		BufferRAM area
500  * @return		offset given area
501  *
502  * Return BufferRAM offset given area
503  */
504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
505 {
506 	struct onenand_chip *this = mtd->priv;
507 
508 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
509 		if (area == ONENAND_DATARAM)
510 			return mtd->writesize;
511 		if (area == ONENAND_SPARERAM)
512 			return mtd->oobsize;
513 	}
514 
515 	return 0;
516 }
517 
518 /**
519  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
520  * @param mtd		MTD data structure
521  * @param area		BufferRAM area
522  * @param buffer	the databuffer to put/get data
523  * @param offset	offset to read from or write to
524  * @param count		number of bytes to read/write
525  *
526  * Read the BufferRAM area
527  */
528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
529 				  unsigned char *buffer, int offset,
530 				  size_t count)
531 {
532 	struct onenand_chip *this = mtd->priv;
533 	void __iomem *bufferram;
534 
535 	bufferram = this->base + area;
536 	bufferram += onenand_bufferram_offset(mtd, area);
537 
538 	memcpy_16(buffer, bufferram + offset, count);
539 
540 	return 0;
541 }
542 
543 /**
544  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
545  * @param mtd		MTD data structure
546  * @param area		BufferRAM area
547  * @param buffer	the databuffer to put/get data
548  * @param offset	offset to read from or write to
549  * @param count		number of bytes to read/write
550  *
551  * Read the BufferRAM area with Sync. Burst Mode
552  */
553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
554 				       unsigned char *buffer, int offset,
555 				       size_t count)
556 {
557 	struct onenand_chip *this = mtd->priv;
558 	void __iomem *bufferram;
559 
560 	bufferram = this->base + area;
561 	bufferram += onenand_bufferram_offset(mtd, area);
562 
563 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
564 
565 	memcpy_16(buffer, bufferram + offset, count);
566 
567 	this->mmcontrol(mtd, 0);
568 
569 	return 0;
570 }
571 
572 /**
573  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
574  * @param mtd		MTD data structure
575  * @param area		BufferRAM area
576  * @param buffer	the databuffer to put/get data
577  * @param offset	offset to read from or write to
578  * @param count		number of bytes to read/write
579  *
580  * Write the BufferRAM area
581  */
582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
583 				   const unsigned char *buffer, int offset,
584 				   size_t count)
585 {
586 	struct onenand_chip *this = mtd->priv;
587 	void __iomem *bufferram;
588 
589 	bufferram = this->base + area;
590 	bufferram += onenand_bufferram_offset(mtd, area);
591 
592 	memcpy_16(bufferram + offset, buffer, count);
593 
594 	return 0;
595 }
596 
597 /**
598  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
599  * @param mtd		MTD data structure
600  * @param addr		address to check
601  * @return		blockpage address
602  *
603  * Get blockpage address at 2x program mode
604  */
605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
606 {
607 	struct onenand_chip *this = mtd->priv;
608 	int blockpage, block, page;
609 
610 	/* Calculate the even block number */
611 	block = (int) (addr >> this->erase_shift) & ~1;
612 	/* Is it the odd plane? */
613 	if (addr & this->writesize)
614 		block++;
615 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
616 	blockpage = (block << 7) | page;
617 
618 	return blockpage;
619 }
620 
621 /**
622  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
623  * @param mtd		MTD data structure
624  * @param addr		address to check
625  * @return		1 if there are valid data, otherwise 0
626  *
627  * Check bufferram if there is data we required
628  */
629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
630 {
631 	struct onenand_chip *this = mtd->priv;
632 	int blockpage, found = 0;
633 	unsigned int i;
634 
635 	if (ONENAND_IS_2PLANE(this))
636 		blockpage = onenand_get_2x_blockpage(mtd, addr);
637 	else
638 		blockpage = (int) (addr >> this->page_shift);
639 
640 	/* Is there valid data? */
641 	i = ONENAND_CURRENT_BUFFERRAM(this);
642 	if (this->bufferram[i].blockpage == blockpage)
643 		found = 1;
644 	else {
645 		/* Check another BufferRAM */
646 		i = ONENAND_NEXT_BUFFERRAM(this);
647 		if (this->bufferram[i].blockpage == blockpage) {
648 			ONENAND_SET_NEXT_BUFFERRAM(this);
649 			found = 1;
650 		}
651 	}
652 
653 	if (found && ONENAND_IS_DDP(this)) {
654 		/* Select DataRAM for DDP */
655 		int block = onenand_block(this, addr);
656 		int value = onenand_bufferram_address(this, block);
657 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
658 	}
659 
660 	return found;
661 }
662 
663 /**
664  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
665  * @param mtd		MTD data structure
666  * @param addr		address to update
667  * @param valid		valid flag
668  *
669  * Update BufferRAM information
670  */
671 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
672 				    int valid)
673 {
674 	struct onenand_chip *this = mtd->priv;
675 	int blockpage;
676 	unsigned int i;
677 
678 	if (ONENAND_IS_2PLANE(this))
679 		blockpage = onenand_get_2x_blockpage(mtd, addr);
680 	else
681 		blockpage = (int)(addr >> this->page_shift);
682 
683 	/* Invalidate another BufferRAM */
684 	i = ONENAND_NEXT_BUFFERRAM(this);
685 	if (this->bufferram[i].blockpage == blockpage)
686 		this->bufferram[i].blockpage = -1;
687 
688 	/* Update BufferRAM */
689 	i = ONENAND_CURRENT_BUFFERRAM(this);
690 	if (valid)
691 		this->bufferram[i].blockpage = blockpage;
692 	else
693 		this->bufferram[i].blockpage = -1;
694 
695 	return 0;
696 }
697 
698 /**
699  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
700  * @param mtd           MTD data structure
701  * @param addr          start address to invalidate
702  * @param len           length to invalidate
703  *
704  * Invalidate BufferRAM information
705  */
706 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
707 					 unsigned int len)
708 {
709 	struct onenand_chip *this = mtd->priv;
710 	int i;
711 	loff_t end_addr = addr + len;
712 
713 	/* Invalidate BufferRAM */
714 	for (i = 0; i < MAX_BUFFERRAM; i++) {
715 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
716 
717 		if (buf_addr >= addr && buf_addr < end_addr)
718 			this->bufferram[i].blockpage = -1;
719 	}
720 }
721 
722 /**
723  * onenand_get_device - [GENERIC] Get chip for selected access
724  * @param mtd		MTD device structure
725  * @param new_state	the state which is requested
726  *
727  * Get the device and lock it for exclusive access
728  */
729 static void onenand_get_device(struct mtd_info *mtd, int new_state)
730 {
731 	/* Do nothing */
732 }
733 
734 /**
735  * onenand_release_device - [GENERIC] release chip
736  * @param mtd		MTD device structure
737  *
738  * Deselect, release chip lock and wake up anyone waiting on the device
739  */
740 static void onenand_release_device(struct mtd_info *mtd)
741 {
742 	/* Do nothing */
743 }
744 
745 /**
746  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
747  * @param mtd		MTD device structure
748  * @param buf		destination address
749  * @param column	oob offset to read from
750  * @param thislen	oob length to read
751  */
752 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
753 					int column, int thislen)
754 {
755 	struct onenand_chip *this = mtd->priv;
756 	struct nand_oobfree *free;
757 	int readcol = column;
758 	int readend = column + thislen;
759 	int lastgap = 0;
760 	unsigned int i;
761 	uint8_t *oob_buf = this->oob_buf;
762 
763 	free = this->ecclayout->oobfree;
764 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
765 		if (readcol >= lastgap)
766 			readcol += free->offset - lastgap;
767 		if (readend >= lastgap)
768 			readend += free->offset - lastgap;
769 		lastgap = free->offset + free->length;
770 	}
771 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
772 	free = this->ecclayout->oobfree;
773 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
774 		int free_end = free->offset + free->length;
775 		if (free->offset < readend && free_end > readcol) {
776 			int st = max_t(int,free->offset,readcol);
777 			int ed = min_t(int,free_end,readend);
778 			int n = ed - st;
779 			memcpy(buf, oob_buf + st, n);
780 			buf += n;
781 		} else if (column == 0)
782 			break;
783 	}
784 	return 0;
785 }
786 
787 /**
788  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
789  * @param mtd		MTD device structure
790  * @param addr		address to recover
791  * @param status	return value from onenand_wait
792  *
793  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
794  * lower page address and MSB page has higher page address in paired pages.
795  * If power off occurs during MSB page program, the paired LSB page data can
796  * become corrupt. LSB page recovery read is a way to read LSB page though page
797  * data are corrupted. When uncorrectable error occurs as a result of LSB page
798  * read after power up, issue LSB page recovery read.
799  */
800 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
801 {
802 	struct onenand_chip *this = mtd->priv;
803 	int i;
804 
805 	/* Recovery is only for Flex-OneNAND */
806 	if (!FLEXONENAND(this))
807 		return status;
808 
809 	/* check if we failed due to uncorrectable error */
810 	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
811 		return status;
812 
813 	/* check if address lies in MLC region */
814 	i = flexonenand_region(mtd, addr);
815 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
816 		return status;
817 
818 	printk("onenand_recover_lsb:"
819 		"Attempting to recover from uncorrectable read\n");
820 
821 	/* Issue the LSB page recovery command */
822 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
823 	return this->wait(mtd, FL_READING);
824 }
825 
826 /**
827  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
828  * @param mtd		MTD device structure
829  * @param from		offset to read from
830  * @param ops		oob operation description structure
831  *
832  * OneNAND read main and/or out-of-band data
833  */
834 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
835 		struct mtd_oob_ops *ops)
836 {
837 	struct onenand_chip *this = mtd->priv;
838 	struct mtd_ecc_stats stats;
839 	size_t len = ops->len;
840 	size_t ooblen = ops->ooblen;
841 	u_char *buf = ops->datbuf;
842 	u_char *oobbuf = ops->oobbuf;
843 	int read = 0, column, thislen;
844 	int oobread = 0, oobcolumn, thisooblen, oobsize;
845 	int ret = 0, boundary = 0;
846 	int writesize = this->writesize;
847 
848 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
849 
850 	if (ops->mode == MTD_OPS_AUTO_OOB)
851 		oobsize = this->ecclayout->oobavail;
852 	else
853 		oobsize = mtd->oobsize;
854 
855 	oobcolumn = from & (mtd->oobsize - 1);
856 
857 	/* Do not allow reads past end of device */
858 	if ((from + len) > mtd->size) {
859 		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
860 		ops->retlen = 0;
861 		ops->oobretlen = 0;
862 		return -EINVAL;
863 	}
864 
865 	stats = mtd->ecc_stats;
866 
867 	/* Read-while-load method */
868 	/* Note: We can't use this feature in MLC */
869 
870 	/* Do first load to bufferRAM */
871 	if (read < len) {
872 		if (!onenand_check_bufferram(mtd, from)) {
873 			this->main_buf = buf;
874 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
875 			ret = this->wait(mtd, FL_READING);
876 			if (unlikely(ret))
877 				ret = onenand_recover_lsb(mtd, from, ret);
878 			onenand_update_bufferram(mtd, from, !ret);
879 			if (ret == -EBADMSG)
880 				ret = 0;
881 		}
882 	}
883 
884 	thislen = min_t(int, writesize, len - read);
885 	column = from & (writesize - 1);
886 	if (column + thislen > writesize)
887 		thislen = writesize - column;
888 
889 	while (!ret) {
890 		/* If there is more to load then start next load */
891 		from += thislen;
892 		if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
893 			this->main_buf = buf + thislen;
894 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
895 			/*
896 			 * Chip boundary handling in DDP
897 			 * Now we issued chip 1 read and pointed chip 1
898 			 * bufferam so we have to point chip 0 bufferam.
899 			 */
900 			if (ONENAND_IS_DDP(this) &&
901 					unlikely(from == (this->chipsize >> 1))) {
902 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
903 				boundary = 1;
904 			} else
905 				boundary = 0;
906 			ONENAND_SET_PREV_BUFFERRAM(this);
907 		}
908 
909 		/* While load is going, read from last bufferRAM */
910 		this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
911 
912 		/* Read oob area if needed */
913 		if (oobbuf) {
914 			thisooblen = oobsize - oobcolumn;
915 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
916 
917 			if (ops->mode == MTD_OPS_AUTO_OOB)
918 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
919 			else
920 				this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
921 			oobread += thisooblen;
922 			oobbuf += thisooblen;
923 			oobcolumn = 0;
924 		}
925 
926 		if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
927 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
928 			ret = this->wait(mtd, FL_READING);
929 			if (unlikely(ret))
930 				ret = onenand_recover_lsb(mtd, from, ret);
931 			onenand_update_bufferram(mtd, from, !ret);
932 			if (mtd_is_eccerr(ret))
933 				ret = 0;
934 		}
935 
936 		/* See if we are done */
937 		read += thislen;
938 		if (read == len)
939 			break;
940 		/* Set up for next read from bufferRAM */
941 		if (unlikely(boundary))
942 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
943 		if (!ONENAND_IS_4KB_PAGE(this))
944 			ONENAND_SET_NEXT_BUFFERRAM(this);
945 		buf += thislen;
946 		thislen = min_t(int, writesize, len - read);
947 		column = 0;
948 
949 		if (!ONENAND_IS_4KB_PAGE(this)) {
950 			/* Now wait for load */
951 			ret = this->wait(mtd, FL_READING);
952 			onenand_update_bufferram(mtd, from, !ret);
953 			if (mtd_is_eccerr(ret))
954 				ret = 0;
955 		}
956 	}
957 
958 	/*
959 	 * Return success, if no ECC failures, else -EBADMSG
960 	 * fs driver will take care of that, because
961 	 * retlen == desired len and result == -EBADMSG
962 	 */
963 	ops->retlen = read;
964 	ops->oobretlen = oobread;
965 
966 	if (ret)
967 		return ret;
968 
969 	if (mtd->ecc_stats.failed - stats.failed)
970 		return -EBADMSG;
971 
972 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
973 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
974 }
975 
976 /**
977  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
978  * @param mtd		MTD device structure
979  * @param from		offset to read from
980  * @param ops		oob operation description structure
981  *
982  * OneNAND read out-of-band data from the spare area
983  */
984 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
985 		struct mtd_oob_ops *ops)
986 {
987 	struct onenand_chip *this = mtd->priv;
988 	struct mtd_ecc_stats stats;
989 	int read = 0, thislen, column, oobsize;
990 	size_t len = ops->ooblen;
991 	unsigned int mode = ops->mode;
992 	u_char *buf = ops->oobbuf;
993 	int ret = 0, readcmd;
994 
995 	from += ops->ooboffs;
996 
997 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
998 
999 	/* Initialize return length value */
1000 	ops->oobretlen = 0;
1001 
1002 	if (mode == MTD_OPS_AUTO_OOB)
1003 		oobsize = this->ecclayout->oobavail;
1004 	else
1005 		oobsize = mtd->oobsize;
1006 
1007 	column = from & (mtd->oobsize - 1);
1008 
1009 	if (unlikely(column >= oobsize)) {
1010 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1011 		return -EINVAL;
1012 	}
1013 
1014 	/* Do not allow reads past end of device */
1015 	if (unlikely(from >= mtd->size ||
1016 		column + len > ((mtd->size >> this->page_shift) -
1017 				(from >> this->page_shift)) * oobsize)) {
1018 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1019 		return -EINVAL;
1020 	}
1021 
1022 	stats = mtd->ecc_stats;
1023 
1024 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1025 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1026 
1027 	while (read < len) {
1028 		thislen = oobsize - column;
1029 		thislen = min_t(int, thislen, len);
1030 
1031 		this->spare_buf = buf;
1032 		this->command(mtd, readcmd, from, mtd->oobsize);
1033 
1034 		onenand_update_bufferram(mtd, from, 0);
1035 
1036 		ret = this->wait(mtd, FL_READING);
1037 		if (unlikely(ret))
1038 			ret = onenand_recover_lsb(mtd, from, ret);
1039 
1040 		if (ret && ret != -EBADMSG) {
1041 			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1042 			break;
1043 		}
1044 
1045 		if (mode == MTD_OPS_AUTO_OOB)
1046 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1047 		else
1048 			this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1049 
1050 		read += thislen;
1051 
1052 		if (read == len)
1053 			break;
1054 
1055 		buf += thislen;
1056 
1057 		/* Read more? */
1058 		if (read < len) {
1059 			/* Page size */
1060 			from += mtd->writesize;
1061 			column = 0;
1062 		}
1063 	}
1064 
1065 	ops->oobretlen = read;
1066 
1067 	if (ret)
1068 		return ret;
1069 
1070 	if (mtd->ecc_stats.failed - stats.failed)
1071 		return -EBADMSG;
1072 
1073 	return 0;
1074 }
1075 
1076 /**
1077  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1078  * @param mtd		MTD device structure
1079  * @param from		offset to read from
1080  * @param len		number of bytes to read
1081  * @param retlen	pointer to variable to store the number of read bytes
1082  * @param buf		the databuffer to put data
1083  *
1084  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1085 */
1086 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1087 		 size_t * retlen, u_char * buf)
1088 {
1089 	struct mtd_oob_ops ops = {
1090 		.len    = len,
1091 		.ooblen = 0,
1092 		.datbuf = buf,
1093 		.oobbuf = NULL,
1094 	};
1095 	int ret;
1096 
1097 	onenand_get_device(mtd, FL_READING);
1098 	ret = onenand_read_ops_nolock(mtd, from, &ops);
1099 	onenand_release_device(mtd);
1100 
1101 	*retlen = ops.retlen;
1102 	return ret;
1103 }
1104 
1105 /**
1106  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1107  * @param mtd		MTD device structure
1108  * @param from		offset to read from
1109  * @param ops		oob operations description structure
1110  *
1111  * OneNAND main and/or out-of-band
1112  */
1113 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1114 			struct mtd_oob_ops *ops)
1115 {
1116 	int ret;
1117 
1118 	switch (ops->mode) {
1119 	case MTD_OPS_PLACE_OOB:
1120 	case MTD_OPS_AUTO_OOB:
1121 		break;
1122 	case MTD_OPS_RAW:
1123 		/* Not implemented yet */
1124 	default:
1125 		return -EINVAL;
1126 	}
1127 
1128 	onenand_get_device(mtd, FL_READING);
1129 	if (ops->datbuf)
1130 		ret = onenand_read_ops_nolock(mtd, from, ops);
1131 	else
1132 		ret = onenand_read_oob_nolock(mtd, from, ops);
1133 	onenand_release_device(mtd);
1134 
1135 	return ret;
1136 }
1137 
1138 /**
1139  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1140  * @param mtd		MTD device structure
1141  * @param state		state to select the max. timeout value
1142  *
1143  * Wait for command done.
1144  */
1145 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1146 {
1147 	struct onenand_chip *this = mtd->priv;
1148 	unsigned int flags = ONENAND_INT_MASTER;
1149 	unsigned int interrupt;
1150 	unsigned int ctrl;
1151 
1152 	while (1) {
1153 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1154 		if (interrupt & flags)
1155 			break;
1156 	}
1157 
1158 	/* To get correct interrupt status in timeout case */
1159 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1160 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1161 
1162 	if (interrupt & ONENAND_INT_READ) {
1163 		int ecc = onenand_read_ecc(this);
1164 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1165 			printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1166 				", controller = 0x%04x\n", ecc, ctrl);
1167 			return ONENAND_BBT_READ_ERROR;
1168 		}
1169 	} else {
1170 		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1171 				"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1172 		return ONENAND_BBT_READ_FATAL_ERROR;
1173 	}
1174 
1175 	/* Initial bad block case: 0x2400 or 0x0400 */
1176 	if (ctrl & ONENAND_CTRL_ERROR) {
1177 		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1178 		return ONENAND_BBT_READ_ERROR;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 /**
1185  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1186  * @param mtd		MTD device structure
1187  * @param from		offset to read from
1188  * @param ops		oob operation description structure
1189  *
1190  * OneNAND read out-of-band data from the spare area for bbt scan
1191  */
1192 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1193 		struct mtd_oob_ops *ops)
1194 {
1195 	struct onenand_chip *this = mtd->priv;
1196 	int read = 0, thislen, column;
1197 	int ret = 0, readcmd;
1198 	size_t len = ops->ooblen;
1199 	u_char *buf = ops->oobbuf;
1200 
1201 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1202 
1203 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1204 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1205 
1206 	/* Initialize return value */
1207 	ops->oobretlen = 0;
1208 
1209 	/* Do not allow reads past end of device */
1210 	if (unlikely((from + len) > mtd->size)) {
1211 		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1212 		return ONENAND_BBT_READ_FATAL_ERROR;
1213 	}
1214 
1215 	/* Grab the lock and see if the device is available */
1216 	onenand_get_device(mtd, FL_READING);
1217 
1218 	column = from & (mtd->oobsize - 1);
1219 
1220 	while (read < len) {
1221 
1222 		thislen = mtd->oobsize - column;
1223 		thislen = min_t(int, thislen, len);
1224 
1225 		this->spare_buf = buf;
1226 		this->command(mtd, readcmd, from, mtd->oobsize);
1227 
1228 		onenand_update_bufferram(mtd, from, 0);
1229 
1230 		ret = this->bbt_wait(mtd, FL_READING);
1231 		if (unlikely(ret))
1232 			ret = onenand_recover_lsb(mtd, from, ret);
1233 
1234 		if (ret)
1235 			break;
1236 
1237 		this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1238 		read += thislen;
1239 		if (read == len)
1240 			break;
1241 
1242 		buf += thislen;
1243 
1244 		/* Read more? */
1245 		if (read < len) {
1246 			/* Update Page size */
1247 			from += this->writesize;
1248 			column = 0;
1249 		}
1250 	}
1251 
1252 	/* Deselect and wake up anyone waiting on the device */
1253 	onenand_release_device(mtd);
1254 
1255 	ops->oobretlen = read;
1256 	return ret;
1257 }
1258 
1259 
1260 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1261 /**
1262  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1263  * @param mtd           MTD device structure
1264  * @param buf           the databuffer to verify
1265  * @param to            offset to read from
1266  */
1267 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1268 {
1269 	struct onenand_chip *this = mtd->priv;
1270 	u_char *oob_buf = this->oob_buf;
1271 	int status, i, readcmd;
1272 
1273 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1274 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1275 
1276 	this->command(mtd, readcmd, to, mtd->oobsize);
1277 	onenand_update_bufferram(mtd, to, 0);
1278 	status = this->wait(mtd, FL_READING);
1279 	if (status)
1280 		return status;
1281 
1282 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1283 	for (i = 0; i < mtd->oobsize; i++)
1284 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1285 			return -EBADMSG;
1286 
1287 	return 0;
1288 }
1289 
1290 /**
1291  * onenand_verify - [GENERIC] verify the chip contents after a write
1292  * @param mtd          MTD device structure
1293  * @param buf          the databuffer to verify
1294  * @param addr         offset to read from
1295  * @param len          number of bytes to read and compare
1296  */
1297 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1298 {
1299 	struct onenand_chip *this = mtd->priv;
1300 	void __iomem *dataram;
1301 	int ret = 0;
1302 	int thislen, column;
1303 
1304 	while (len != 0) {
1305 		thislen = min_t(int, this->writesize, len);
1306 		column = addr & (this->writesize - 1);
1307 		if (column + thislen > this->writesize)
1308 			thislen = this->writesize - column;
1309 
1310 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1311 
1312 		onenand_update_bufferram(mtd, addr, 0);
1313 
1314 		ret = this->wait(mtd, FL_READING);
1315 		if (ret)
1316 			return ret;
1317 
1318 		onenand_update_bufferram(mtd, addr, 1);
1319 
1320 		dataram = this->base + ONENAND_DATARAM;
1321 		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1322 
1323 		if (memcmp(buf, dataram + column, thislen))
1324 			return -EBADMSG;
1325 
1326 		len -= thislen;
1327 		buf += thislen;
1328 		addr += thislen;
1329 	}
1330 
1331 	return 0;
1332 }
1333 #else
1334 #define onenand_verify(...)             (0)
1335 #define onenand_verify_oob(...)         (0)
1336 #endif
1337 
1338 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1339 
1340 /**
1341  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1342  * @param mtd           MTD device structure
1343  * @param oob_buf       oob buffer
1344  * @param buf           source address
1345  * @param column        oob offset to write to
1346  * @param thislen       oob length to write
1347  */
1348 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1349 		const u_char *buf, int column, int thislen)
1350 {
1351 	struct onenand_chip *this = mtd->priv;
1352 	struct nand_oobfree *free;
1353 	int writecol = column;
1354 	int writeend = column + thislen;
1355 	int lastgap = 0;
1356 	unsigned int i;
1357 
1358 	free = this->ecclayout->oobfree;
1359 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1360 		if (writecol >= lastgap)
1361 			writecol += free->offset - lastgap;
1362 		if (writeend >= lastgap)
1363 			writeend += free->offset - lastgap;
1364 		lastgap = free->offset + free->length;
1365 	}
1366 	free = this->ecclayout->oobfree;
1367 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1368 		int free_end = free->offset + free->length;
1369 		if (free->offset < writeend && free_end > writecol) {
1370 			int st = max_t(int,free->offset,writecol);
1371 			int ed = min_t(int,free_end,writeend);
1372 			int n = ed - st;
1373 			memcpy(oob_buf + st, buf, n);
1374 			buf += n;
1375 		} else if (column == 0)
1376 			break;
1377 	}
1378 	return 0;
1379 }
1380 
1381 /**
1382  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1383  * @param mtd           MTD device structure
1384  * @param to            offset to write to
1385  * @param ops           oob operation description structure
1386  *
1387  * Write main and/or oob with ECC
1388  */
1389 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1390 		struct mtd_oob_ops *ops)
1391 {
1392 	struct onenand_chip *this = mtd->priv;
1393 	int written = 0, column, thislen, subpage;
1394 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1395 	size_t len = ops->len;
1396 	size_t ooblen = ops->ooblen;
1397 	const u_char *buf = ops->datbuf;
1398 	const u_char *oob = ops->oobbuf;
1399 	u_char *oobbuf;
1400 	int ret = 0;
1401 
1402 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1403 
1404 	/* Initialize retlen, in case of early exit */
1405 	ops->retlen = 0;
1406 	ops->oobretlen = 0;
1407 
1408 	/* Reject writes, which are not page aligned */
1409 	if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1410 		printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1411 		return -EINVAL;
1412 	}
1413 
1414 	if (ops->mode == MTD_OPS_AUTO_OOB)
1415 		oobsize = this->ecclayout->oobavail;
1416 	else
1417 		oobsize = mtd->oobsize;
1418 
1419 	oobcolumn = to & (mtd->oobsize - 1);
1420 
1421 	column = to & (mtd->writesize - 1);
1422 
1423 	/* Loop until all data write */
1424 	while (written < len) {
1425 		u_char *wbuf = (u_char *) buf;
1426 
1427 		thislen = min_t(int, mtd->writesize - column, len - written);
1428 		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1429 
1430 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1431 
1432 		/* Partial page write */
1433 		subpage = thislen < mtd->writesize;
1434 		if (subpage) {
1435 			memset(this->page_buf, 0xff, mtd->writesize);
1436 			memcpy(this->page_buf + column, buf, thislen);
1437 			wbuf = this->page_buf;
1438 		}
1439 
1440 		this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1441 
1442 		if (oob) {
1443 			oobbuf = this->oob_buf;
1444 
1445 			/* We send data to spare ram with oobsize
1446 			 *                          * to prevent byte access */
1447 			memset(oobbuf, 0xff, mtd->oobsize);
1448 			if (ops->mode == MTD_OPS_AUTO_OOB)
1449 				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1450 			else
1451 				memcpy(oobbuf + oobcolumn, oob, thisooblen);
1452 
1453 			oobwritten += thisooblen;
1454 			oob += thisooblen;
1455 			oobcolumn = 0;
1456 		} else
1457 			oobbuf = (u_char *) ffchars;
1458 
1459 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1460 
1461 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1462 
1463 		ret = this->wait(mtd, FL_WRITING);
1464 
1465 		/* In partial page write we don't update bufferram */
1466 		onenand_update_bufferram(mtd, to, !ret && !subpage);
1467 		if (ONENAND_IS_2PLANE(this)) {
1468 			ONENAND_SET_BUFFERRAM1(this);
1469 			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1470 		}
1471 
1472 		if (ret) {
1473 			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1474 			break;
1475 		}
1476 
1477 		/* Only check verify write turn on */
1478 		ret = onenand_verify(mtd, buf, to, thislen);
1479 		if (ret) {
1480 			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1481 			break;
1482 		}
1483 
1484 		written += thislen;
1485 
1486 		if (written == len)
1487 			break;
1488 
1489 		column = 0;
1490 		to += thislen;
1491 		buf += thislen;
1492 	}
1493 
1494 	ops->retlen = written;
1495 
1496 	return ret;
1497 }
1498 
1499 /**
1500  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1501  * @param mtd           MTD device structure
1502  * @param to            offset to write to
1503  * @param len           number of bytes to write
1504  * @param retlen        pointer to variable to store the number of written bytes
1505  * @param buf           the data to write
1506  * @param mode          operation mode
1507  *
1508  * OneNAND write out-of-band
1509  */
1510 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1511 		struct mtd_oob_ops *ops)
1512 {
1513 	struct onenand_chip *this = mtd->priv;
1514 	int column, ret = 0, oobsize;
1515 	int written = 0, oobcmd;
1516 	u_char *oobbuf;
1517 	size_t len = ops->ooblen;
1518 	const u_char *buf = ops->oobbuf;
1519 	unsigned int mode = ops->mode;
1520 
1521 	to += ops->ooboffs;
1522 
1523 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1524 
1525 	/* Initialize retlen, in case of early exit */
1526 	ops->oobretlen = 0;
1527 
1528 	if (mode == MTD_OPS_AUTO_OOB)
1529 		oobsize = this->ecclayout->oobavail;
1530 	else
1531 		oobsize = mtd->oobsize;
1532 
1533 	column = to & (mtd->oobsize - 1);
1534 
1535 	if (unlikely(column >= oobsize)) {
1536 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1537 		return -EINVAL;
1538 	}
1539 
1540 	/* For compatibility with NAND: Do not allow write past end of page */
1541 	if (unlikely(column + len > oobsize)) {
1542 		printk(KERN_ERR "onenand_write_oob_nolock: "
1543 				"Attempt to write past end of page\n");
1544 		return -EINVAL;
1545 	}
1546 
1547 	/* Do not allow reads past end of device */
1548 	if (unlikely(to >= mtd->size ||
1549 				column + len > ((mtd->size >> this->page_shift) -
1550 					(to >> this->page_shift)) * oobsize)) {
1551 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1552 		return -EINVAL;
1553 	}
1554 
1555 	oobbuf = this->oob_buf;
1556 
1557 	oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1558 		ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1559 
1560 	/* Loop until all data write */
1561 	while (written < len) {
1562 		int thislen = min_t(int, oobsize, len - written);
1563 
1564 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1565 
1566 		/* We send data to spare ram with oobsize
1567 		 * to prevent byte access */
1568 		memset(oobbuf, 0xff, mtd->oobsize);
1569 		if (mode == MTD_OPS_AUTO_OOB)
1570 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1571 		else
1572 			memcpy(oobbuf + column, buf, thislen);
1573 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1574 
1575 		if (ONENAND_IS_4KB_PAGE(this)) {
1576 			/* Set main area of DataRAM to 0xff*/
1577 			memset(this->page_buf, 0xff, mtd->writesize);
1578 			this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1579 				this->page_buf,	0, mtd->writesize);
1580 		}
1581 
1582 		this->command(mtd, oobcmd, to, mtd->oobsize);
1583 
1584 		onenand_update_bufferram(mtd, to, 0);
1585 		if (ONENAND_IS_2PLANE(this)) {
1586 			ONENAND_SET_BUFFERRAM1(this);
1587 			onenand_update_bufferram(mtd, to + this->writesize, 0);
1588 		}
1589 
1590 		ret = this->wait(mtd, FL_WRITING);
1591 		if (ret) {
1592 			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1593 			break;
1594 		}
1595 
1596 		ret = onenand_verify_oob(mtd, oobbuf, to);
1597 		if (ret) {
1598 			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1599 			break;
1600 		}
1601 
1602 		written += thislen;
1603 		if (written == len)
1604 			break;
1605 
1606 		to += mtd->writesize;
1607 		buf += thislen;
1608 		column = 0;
1609 	}
1610 
1611 	ops->oobretlen = written;
1612 
1613 	return ret;
1614 }
1615 
1616 /**
1617  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1618  * @param mtd		MTD device structure
1619  * @param to		offset to write to
1620  * @param len		number of bytes to write
1621  * @param retlen	pointer to variable to store the number of written bytes
1622  * @param buf		the data to write
1623  *
1624  * Write with ECC
1625  */
1626 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1627 		  size_t * retlen, const u_char * buf)
1628 {
1629 	struct mtd_oob_ops ops = {
1630 		.len    = len,
1631 		.ooblen = 0,
1632 		.datbuf = (u_char *) buf,
1633 		.oobbuf = NULL,
1634 	};
1635 	int ret;
1636 
1637 	onenand_get_device(mtd, FL_WRITING);
1638 	ret = onenand_write_ops_nolock(mtd, to, &ops);
1639 	onenand_release_device(mtd);
1640 
1641 	*retlen = ops.retlen;
1642 	return ret;
1643 }
1644 
1645 /**
1646  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1647  * @param mtd		MTD device structure
1648  * @param to		offset to write to
1649  * @param ops		oob operation description structure
1650  *
1651  * OneNAND write main and/or out-of-band
1652  */
1653 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1654 			struct mtd_oob_ops *ops)
1655 {
1656 	int ret;
1657 
1658 	switch (ops->mode) {
1659 	case MTD_OPS_PLACE_OOB:
1660 	case MTD_OPS_AUTO_OOB:
1661 		break;
1662 	case MTD_OPS_RAW:
1663 		/* Not implemented yet */
1664 	default:
1665 		return -EINVAL;
1666 	}
1667 
1668 	onenand_get_device(mtd, FL_WRITING);
1669 	if (ops->datbuf)
1670 		ret = onenand_write_ops_nolock(mtd, to, ops);
1671 	else
1672 		ret = onenand_write_oob_nolock(mtd, to, ops);
1673 	onenand_release_device(mtd);
1674 
1675 	return ret;
1676 
1677 }
1678 
1679 /**
1680  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1681  * @param mtd		MTD device structure
1682  * @param ofs		offset from device start
1683  * @param allowbbt	1, if its allowed to access the bbt area
1684  *
1685  * Check, if the block is bad, Either by reading the bad block table or
1686  * calling of the scan function.
1687  */
1688 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1689 {
1690 	struct onenand_chip *this = mtd->priv;
1691 	struct bbm_info *bbm = this->bbm;
1692 
1693 	/* Return info from the table */
1694 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1695 }
1696 
1697 
1698 /**
1699  * onenand_erase - [MTD Interface] erase block(s)
1700  * @param mtd		MTD device structure
1701  * @param instr		erase instruction
1702  *
1703  * Erase one ore more blocks
1704  */
1705 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1706 {
1707 	struct onenand_chip *this = mtd->priv;
1708 	unsigned int block_size;
1709 	loff_t addr = instr->addr;
1710 	unsigned int len = instr->len;
1711 	int ret = 0, i;
1712 	struct mtd_erase_region_info *region = NULL;
1713 	unsigned int region_end = 0;
1714 
1715 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1716 			(unsigned int) addr, len);
1717 
1718 	if (FLEXONENAND(this)) {
1719 		/* Find the eraseregion of this address */
1720 		i = flexonenand_region(mtd, addr);
1721 		region = &mtd->eraseregions[i];
1722 
1723 		block_size = region->erasesize;
1724 		region_end = region->offset
1725 			+ region->erasesize * region->numblocks;
1726 
1727 		/* Start address within region must align on block boundary.
1728 		 * Erase region's start offset is always block start address.
1729 		 */
1730 		if (unlikely((addr - region->offset) & (block_size - 1))) {
1731 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1732 				" Unaligned address\n");
1733 			return -EINVAL;
1734 		}
1735 	} else {
1736 		block_size = 1 << this->erase_shift;
1737 
1738 		/* Start address must align on block boundary */
1739 		if (unlikely(addr & (block_size - 1))) {
1740 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1741 						"Unaligned address\n");
1742 			return -EINVAL;
1743 		}
1744 	}
1745 
1746 	/* Length must align on block boundary */
1747 	if (unlikely(len & (block_size - 1))) {
1748 		MTDDEBUG (MTD_DEBUG_LEVEL0,
1749 			 "onenand_erase: Length not block aligned\n");
1750 		return -EINVAL;
1751 	}
1752 
1753 	/* Grab the lock and see if the device is available */
1754 	onenand_get_device(mtd, FL_ERASING);
1755 
1756 	/* Loop throught the pages */
1757 	instr->state = MTD_ERASING;
1758 
1759 	while (len) {
1760 
1761 		/* Check if we have a bad block, we do not erase bad blocks */
1762 		if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1763 			printk(KERN_WARNING "onenand_erase: attempt to erase"
1764 				" a bad block at addr 0x%08x\n",
1765 				(unsigned int) addr);
1766 			instr->state = MTD_ERASE_FAILED;
1767 			goto erase_exit;
1768 		}
1769 
1770 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1771 
1772 		onenand_invalidate_bufferram(mtd, addr, block_size);
1773 
1774 		ret = this->wait(mtd, FL_ERASING);
1775 		/* Check, if it is write protected */
1776 		if (ret) {
1777 			if (ret == -EPERM)
1778 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1779 					  "Device is write protected!!!\n");
1780 			else
1781 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1782 					  "Failed erase, block %d\n",
1783 					onenand_block(this, addr));
1784 			instr->state = MTD_ERASE_FAILED;
1785 			instr->fail_addr = addr;
1786 
1787 			goto erase_exit;
1788 		}
1789 
1790 		len -= block_size;
1791 		addr += block_size;
1792 
1793 		if (addr == region_end) {
1794 			if (!len)
1795 				break;
1796 			region++;
1797 
1798 			block_size = region->erasesize;
1799 			region_end = region->offset
1800 				+ region->erasesize * region->numblocks;
1801 
1802 			if (len & (block_size - 1)) {
1803 				/* This has been checked at MTD
1804 				 * partitioning level. */
1805 				printk("onenand_erase: Unaligned address\n");
1806 				goto erase_exit;
1807 			}
1808 		}
1809 	}
1810 
1811 	instr->state = MTD_ERASE_DONE;
1812 
1813 erase_exit:
1814 
1815 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1816 	/* Do call back function */
1817 	if (!ret)
1818 		mtd_erase_callback(instr);
1819 
1820 	/* Deselect and wake up anyone waiting on the device */
1821 	onenand_release_device(mtd);
1822 
1823 	return ret;
1824 }
1825 
1826 /**
1827  * onenand_sync - [MTD Interface] sync
1828  * @param mtd		MTD device structure
1829  *
1830  * Sync is actually a wait for chip ready function
1831  */
1832 void onenand_sync(struct mtd_info *mtd)
1833 {
1834 	MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1835 
1836 	/* Grab the lock and see if the device is available */
1837 	onenand_get_device(mtd, FL_SYNCING);
1838 
1839 	/* Release it and go back */
1840 	onenand_release_device(mtd);
1841 }
1842 
1843 /**
1844  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1845  * @param mtd		MTD device structure
1846  * @param ofs		offset relative to mtd start
1847  *
1848  * Check whether the block is bad
1849  */
1850 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1851 {
1852 	int ret;
1853 
1854 	/* Check for invalid offset */
1855 	if (ofs > mtd->size)
1856 		return -EINVAL;
1857 
1858 	onenand_get_device(mtd, FL_READING);
1859 	ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1860 	onenand_release_device(mtd);
1861 	return ret;
1862 }
1863 
1864 /**
1865  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1866  * @param mtd           MTD device structure
1867  * @param ofs           offset from device start
1868  *
1869  * This is the default implementation, which can be overridden by
1870  * a hardware specific driver.
1871  */
1872 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1873 {
1874 	struct onenand_chip *this = mtd->priv;
1875 	struct bbm_info *bbm = this->bbm;
1876 	u_char buf[2] = {0, 0};
1877 	struct mtd_oob_ops ops = {
1878 		.mode = MTD_OPS_PLACE_OOB,
1879 		.ooblen = 2,
1880 		.oobbuf = buf,
1881 		.ooboffs = 0,
1882 	};
1883 	int block;
1884 
1885 	/* Get block number */
1886 	block = onenand_block(this, ofs);
1887 	if (bbm->bbt)
1888 		bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1889 
1890 	/* We write two bytes, so we dont have to mess with 16 bit access */
1891 	ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1892 	return onenand_write_oob_nolock(mtd, ofs, &ops);
1893 }
1894 
1895 /**
1896  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1897  * @param mtd		MTD device structure
1898  * @param ofs		offset relative to mtd start
1899  *
1900  * Mark the block as bad
1901  */
1902 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1903 {
1904 	int ret;
1905 
1906 	ret = onenand_block_isbad(mtd, ofs);
1907 	if (ret) {
1908 		/* If it was bad already, return success and do nothing */
1909 		if (ret > 0)
1910 			return 0;
1911 		return ret;
1912 	}
1913 
1914 	ret = mtd_block_markbad(mtd, ofs);
1915 	return ret;
1916 }
1917 
1918 /**
1919  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1920  * @param mtd           MTD device structure
1921  * @param ofs           offset relative to mtd start
1922  * @param len           number of bytes to lock or unlock
1923  * @param cmd           lock or unlock command
1924  *
1925  * Lock or unlock one or more blocks
1926  */
1927 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1928 {
1929 	struct onenand_chip *this = mtd->priv;
1930 	int start, end, block, value, status;
1931 
1932 	start = onenand_block(this, ofs);
1933 	end = onenand_block(this, ofs + len);
1934 
1935 	/* Continuous lock scheme */
1936 	if (this->options & ONENAND_HAS_CONT_LOCK) {
1937 		/* Set start block address */
1938 		this->write_word(start,
1939 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1940 		/* Set end block address */
1941 		this->write_word(end - 1,
1942 				 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1943 		/* Write unlock command */
1944 		this->command(mtd, cmd, 0, 0);
1945 
1946 		/* There's no return value */
1947 		this->wait(mtd, FL_UNLOCKING);
1948 
1949 		/* Sanity check */
1950 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1951 		       & ONENAND_CTRL_ONGO)
1952 			continue;
1953 
1954 		/* Check lock status */
1955 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1956 		if (!(status & ONENAND_WP_US))
1957 			printk(KERN_ERR "wp status = 0x%x\n", status);
1958 
1959 		return 0;
1960 	}
1961 
1962 	/* Block lock scheme */
1963 	for (block = start; block < end; block++) {
1964 		/* Set block address */
1965 		value = onenand_block_address(this, block);
1966 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1967 		/* Select DataRAM for DDP */
1968 		value = onenand_bufferram_address(this, block);
1969 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1970 
1971 		/* Set start block address */
1972 		this->write_word(block,
1973 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1974 		/* Write unlock command */
1975 		this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1976 
1977 		/* There's no return value */
1978 		this->wait(mtd, FL_UNLOCKING);
1979 
1980 		/* Sanity check */
1981 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1982 		       & ONENAND_CTRL_ONGO)
1983 			continue;
1984 
1985 		/* Check lock status */
1986 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1987 		if (!(status & ONENAND_WP_US))
1988 			printk(KERN_ERR "block = %d, wp status = 0x%x\n",
1989 			       block, status);
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 #ifdef ONENAND_LINUX
1996 /**
1997  * onenand_lock - [MTD Interface] Lock block(s)
1998  * @param mtd           MTD device structure
1999  * @param ofs           offset relative to mtd start
2000  * @param len           number of bytes to unlock
2001  *
2002  * Lock one or more blocks
2003  */
2004 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2005 {
2006 	int ret;
2007 
2008 	onenand_get_device(mtd, FL_LOCKING);
2009 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2010 	onenand_release_device(mtd);
2011 	return ret;
2012 }
2013 
2014 /**
2015  * onenand_unlock - [MTD Interface] Unlock block(s)
2016  * @param mtd           MTD device structure
2017  * @param ofs           offset relative to mtd start
2018  * @param len           number of bytes to unlock
2019  *
2020  * Unlock one or more blocks
2021  */
2022 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2023 {
2024 	int ret;
2025 
2026 	onenand_get_device(mtd, FL_LOCKING);
2027 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2028 	onenand_release_device(mtd);
2029 	return ret;
2030 }
2031 #endif
2032 
2033 /**
2034  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2035  * @param this          onenand chip data structure
2036  *
2037  * Check lock status
2038  */
2039 static int onenand_check_lock_status(struct onenand_chip *this)
2040 {
2041 	unsigned int value, block, status;
2042 	unsigned int end;
2043 
2044 	end = this->chipsize >> this->erase_shift;
2045 	for (block = 0; block < end; block++) {
2046 		/* Set block address */
2047 		value = onenand_block_address(this, block);
2048 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2049 		/* Select DataRAM for DDP */
2050 		value = onenand_bufferram_address(this, block);
2051 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2052 		/* Set start block address */
2053 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2054 
2055 		/* Check lock status */
2056 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2057 		if (!(status & ONENAND_WP_US)) {
2058 			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2059 			return 0;
2060 		}
2061 	}
2062 
2063 	return 1;
2064 }
2065 
2066 /**
2067  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2068  * @param mtd           MTD device structure
2069  *
2070  * Unlock all blocks
2071  */
2072 static void onenand_unlock_all(struct mtd_info *mtd)
2073 {
2074 	struct onenand_chip *this = mtd->priv;
2075 	loff_t ofs = 0;
2076 	size_t len = mtd->size;
2077 
2078 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2079 		/* Set start block address */
2080 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2081 		/* Write unlock command */
2082 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2083 
2084 		/* There's no return value */
2085 		this->wait(mtd, FL_LOCKING);
2086 
2087 		/* Sanity check */
2088 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2089 				& ONENAND_CTRL_ONGO)
2090 			continue;
2091 
2092 		/* Check lock status */
2093 		if (onenand_check_lock_status(this))
2094 			return;
2095 
2096 		/* Workaround for all block unlock in DDP */
2097 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2098 			/* All blocks on another chip */
2099 			ofs = this->chipsize >> 1;
2100 			len = this->chipsize >> 1;
2101 		}
2102 	}
2103 
2104 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2105 }
2106 
2107 
2108 /**
2109  * onenand_check_features - Check and set OneNAND features
2110  * @param mtd           MTD data structure
2111  *
2112  * Check and set OneNAND features
2113  * - lock scheme
2114  * - two plane
2115  */
2116 static void onenand_check_features(struct mtd_info *mtd)
2117 {
2118 	struct onenand_chip *this = mtd->priv;
2119 	unsigned int density, process;
2120 
2121 	/* Lock scheme depends on density and process */
2122 	density = onenand_get_density(this->device_id);
2123 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2124 
2125 	/* Lock scheme */
2126 	switch (density) {
2127 	case ONENAND_DEVICE_DENSITY_4Gb:
2128 		if (ONENAND_IS_DDP(this))
2129 			this->options |= ONENAND_HAS_2PLANE;
2130 		else
2131 			this->options |= ONENAND_HAS_4KB_PAGE;
2132 
2133 	case ONENAND_DEVICE_DENSITY_2Gb:
2134 		/* 2Gb DDP don't have 2 plane */
2135 		if (!ONENAND_IS_DDP(this))
2136 			this->options |= ONENAND_HAS_2PLANE;
2137 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2138 
2139 	case ONENAND_DEVICE_DENSITY_1Gb:
2140 		/* A-Die has all block unlock */
2141 		if (process)
2142 			this->options |= ONENAND_HAS_UNLOCK_ALL;
2143 		break;
2144 
2145 	default:
2146 		/* Some OneNAND has continuous lock scheme */
2147 		if (!process)
2148 			this->options |= ONENAND_HAS_CONT_LOCK;
2149 		break;
2150 	}
2151 
2152 	if (ONENAND_IS_MLC(this))
2153 		this->options |= ONENAND_HAS_4KB_PAGE;
2154 
2155 	if (ONENAND_IS_4KB_PAGE(this))
2156 		this->options &= ~ONENAND_HAS_2PLANE;
2157 
2158 	if (FLEXONENAND(this)) {
2159 		this->options &= ~ONENAND_HAS_CONT_LOCK;
2160 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2161 	}
2162 
2163 	if (this->options & ONENAND_HAS_CONT_LOCK)
2164 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2165 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
2166 		printk(KERN_DEBUG "Chip support all block unlock\n");
2167 	if (this->options & ONENAND_HAS_2PLANE)
2168 		printk(KERN_DEBUG "Chip has 2 plane\n");
2169 	if (this->options & ONENAND_HAS_4KB_PAGE)
2170 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2171 
2172 }
2173 
2174 /**
2175  * onenand_print_device_info - Print device ID
2176  * @param device        device ID
2177  *
2178  * Print device ID
2179  */
2180 char *onenand_print_device_info(int device, int version)
2181 {
2182 	int vcc, demuxed, ddp, density, flexonenand;
2183 	char *dev_info = malloc(80);
2184 	char *p = dev_info;
2185 
2186 	vcc = device & ONENAND_DEVICE_VCC_MASK;
2187 	demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2188 	ddp = device & ONENAND_DEVICE_IS_DDP;
2189 	density = onenand_get_density(device);
2190 	flexonenand = device & DEVICE_IS_FLEXONENAND;
2191 	p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2192 	       demuxed ? "" : "Muxed ",
2193 	       flexonenand ? "Flex-" : "",
2194 	       ddp ? "(DDP)" : "",
2195 	       (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2196 
2197 	sprintf(p, "\nOneNAND version = 0x%04x", version);
2198 	printk("%s\n", dev_info);
2199 
2200 	return dev_info;
2201 }
2202 
2203 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2204 	{ONENAND_MFR_NUMONYX, "Numonyx"},
2205 	{ONENAND_MFR_SAMSUNG, "Samsung"},
2206 };
2207 
2208 /**
2209  * onenand_check_maf - Check manufacturer ID
2210  * @param manuf         manufacturer ID
2211  *
2212  * Check manufacturer ID
2213  */
2214 static int onenand_check_maf(int manuf)
2215 {
2216 	int size = ARRAY_SIZE(onenand_manuf_ids);
2217 	int i;
2218 #ifdef ONENAND_DEBUG
2219 	char *name;
2220 #endif
2221 
2222 	for (i = 0; i < size; i++)
2223 		if (manuf == onenand_manuf_ids[i].id)
2224 			break;
2225 
2226 #ifdef ONENAND_DEBUG
2227 	if (i < size)
2228 		name = onenand_manuf_ids[i].name;
2229 	else
2230 		name = "Unknown";
2231 
2232 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2233 #endif
2234 
2235 	return i == size;
2236 }
2237 
2238 /**
2239 * flexonenand_get_boundary	- Reads the SLC boundary
2240 * @param onenand_info		- onenand info structure
2241 *
2242 * Fill up boundary[] field in onenand_chip
2243 **/
2244 static int flexonenand_get_boundary(struct mtd_info *mtd)
2245 {
2246 	struct onenand_chip *this = mtd->priv;
2247 	unsigned int die, bdry;
2248 	int syscfg, locked;
2249 
2250 	/* Disable ECC */
2251 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2252 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2253 
2254 	for (die = 0; die < this->dies; die++) {
2255 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2256 		this->wait(mtd, FL_SYNCING);
2257 
2258 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2259 		this->wait(mtd, FL_READING);
2260 
2261 		bdry = this->read_word(this->base + ONENAND_DATARAM);
2262 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2263 			locked = 0;
2264 		else
2265 			locked = 1;
2266 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2267 
2268 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2269 		this->wait(mtd, FL_RESETING);
2270 
2271 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2272 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2273 	}
2274 
2275 	/* Enable ECC */
2276 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2277 	return 0;
2278 }
2279 
2280 /**
2281  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2282  * 			  boundary[], diesize[], mtd->size, mtd->erasesize,
2283  * 			  mtd->eraseregions
2284  * @param mtd		- MTD device structure
2285  */
2286 static void flexonenand_get_size(struct mtd_info *mtd)
2287 {
2288 	struct onenand_chip *this = mtd->priv;
2289 	int die, i, eraseshift, density;
2290 	int blksperdie, maxbdry;
2291 	loff_t ofs;
2292 
2293 	density = onenand_get_density(this->device_id);
2294 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2295 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2296 	maxbdry = blksperdie - 1;
2297 	eraseshift = this->erase_shift - 1;
2298 
2299 	mtd->numeraseregions = this->dies << 1;
2300 
2301 	/* This fills up the device boundary */
2302 	flexonenand_get_boundary(mtd);
2303 	die = 0;
2304 	ofs = 0;
2305 	i = -1;
2306 	for (; die < this->dies; die++) {
2307 		if (!die || this->boundary[die-1] != maxbdry) {
2308 			i++;
2309 			mtd->eraseregions[i].offset = ofs;
2310 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2311 			mtd->eraseregions[i].numblocks =
2312 							this->boundary[die] + 1;
2313 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2314 			eraseshift++;
2315 		} else {
2316 			mtd->numeraseregions -= 1;
2317 			mtd->eraseregions[i].numblocks +=
2318 							this->boundary[die] + 1;
2319 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2320 		}
2321 		if (this->boundary[die] != maxbdry) {
2322 			i++;
2323 			mtd->eraseregions[i].offset = ofs;
2324 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2325 			mtd->eraseregions[i].numblocks = maxbdry ^
2326 							 this->boundary[die];
2327 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2328 			eraseshift--;
2329 		} else
2330 			mtd->numeraseregions -= 1;
2331 	}
2332 
2333 	/* Expose MLC erase size except when all blocks are SLC */
2334 	mtd->erasesize = 1 << this->erase_shift;
2335 	if (mtd->numeraseregions == 1)
2336 		mtd->erasesize >>= 1;
2337 
2338 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2339 	for (i = 0; i < mtd->numeraseregions; i++)
2340 		printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2341 			" numblocks: %04u]\n", mtd->eraseregions[i].offset,
2342 			mtd->eraseregions[i].erasesize,
2343 			mtd->eraseregions[i].numblocks);
2344 
2345 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
2346 		this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2347 		this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2348 						 << (this->erase_shift - 1);
2349 		mtd->size += this->diesize[die];
2350 	}
2351 }
2352 
2353 /**
2354  * flexonenand_check_blocks_erased - Check if blocks are erased
2355  * @param mtd_info	- mtd info structure
2356  * @param start		- first erase block to check
2357  * @param end		- last erase block to check
2358  *
2359  * Converting an unerased block from MLC to SLC
2360  * causes byte values to change. Since both data and its ECC
2361  * have changed, reads on the block give uncorrectable error.
2362  * This might lead to the block being detected as bad.
2363  *
2364  * Avoid this by ensuring that the block to be converted is
2365  * erased.
2366  */
2367 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2368 					int start, int end)
2369 {
2370 	struct onenand_chip *this = mtd->priv;
2371 	int i, ret;
2372 	int block;
2373 	struct mtd_oob_ops ops = {
2374 		.mode = MTD_OPS_PLACE_OOB,
2375 		.ooboffs = 0,
2376 		.ooblen	= mtd->oobsize,
2377 		.datbuf	= NULL,
2378 		.oobbuf	= this->oob_buf,
2379 	};
2380 	loff_t addr;
2381 
2382 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2383 
2384 	for (block = start; block <= end; block++) {
2385 		addr = flexonenand_addr(this, block);
2386 		if (onenand_block_isbad_nolock(mtd, addr, 0))
2387 			continue;
2388 
2389 		/*
2390 		 * Since main area write results in ECC write to spare,
2391 		 * it is sufficient to check only ECC bytes for change.
2392 		 */
2393 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
2394 		if (ret)
2395 			return ret;
2396 
2397 		for (i = 0; i < mtd->oobsize; i++)
2398 			if (this->oob_buf[i] != 0xff)
2399 				break;
2400 
2401 		if (i != mtd->oobsize) {
2402 			printk(KERN_WARNING "Block %d not erased.\n", block);
2403 			return 1;
2404 		}
2405 	}
2406 
2407 	return 0;
2408 }
2409 
2410 /**
2411  * flexonenand_set_boundary	- Writes the SLC boundary
2412  * @param mtd			- mtd info structure
2413  */
2414 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2415 				    int boundary, int lock)
2416 {
2417 	struct onenand_chip *this = mtd->priv;
2418 	int ret, density, blksperdie, old, new, thisboundary;
2419 	loff_t addr;
2420 
2421 	if (die >= this->dies)
2422 		return -EINVAL;
2423 
2424 	if (boundary == this->boundary[die])
2425 		return 0;
2426 
2427 	density = onenand_get_density(this->device_id);
2428 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
2429 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2430 
2431 	if (boundary >= blksperdie) {
2432 		printk("flexonenand_set_boundary:"
2433 			"Invalid boundary value. "
2434 			"Boundary not changed.\n");
2435 		return -EINVAL;
2436 	}
2437 
2438 	/* Check if converting blocks are erased */
2439 	old = this->boundary[die] + (die * this->density_mask);
2440 	new = boundary + (die * this->density_mask);
2441 	ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2442 						+ 1, max(old, new));
2443 	if (ret) {
2444 		printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2445 		return ret;
2446 	}
2447 
2448 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2449 	this->wait(mtd, FL_SYNCING);
2450 
2451 	/* Check is boundary is locked */
2452 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2453 	ret = this->wait(mtd, FL_READING);
2454 
2455 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2456 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2457 		printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2458 		goto out;
2459 	}
2460 
2461 	printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2462 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
2463 
2464 	boundary &= FLEXONENAND_PI_MASK;
2465 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2466 
2467 	addr = die ? this->diesize[0] : 0;
2468 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2469 	ret = this->wait(mtd, FL_ERASING);
2470 	if (ret) {
2471 		printk("flexonenand_set_boundary:"
2472 			"Failed PI erase for Die %d\n", die);
2473 		goto out;
2474 	}
2475 
2476 	this->write_word(boundary, this->base + ONENAND_DATARAM);
2477 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2478 	ret = this->wait(mtd, FL_WRITING);
2479 	if (ret) {
2480 		printk("flexonenand_set_boundary:"
2481 			"Failed PI write for Die %d\n", die);
2482 		goto out;
2483 	}
2484 
2485 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2486 	ret = this->wait(mtd, FL_WRITING);
2487 out:
2488 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2489 	this->wait(mtd, FL_RESETING);
2490 	if (!ret)
2491 		/* Recalculate device size on boundary change*/
2492 		flexonenand_get_size(mtd);
2493 
2494 	return ret;
2495 }
2496 
2497 /**
2498  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2499  * @param mtd		MTD device structure
2500  *
2501  * OneNAND detection method:
2502  *   Compare the the values from command with ones from register
2503  */
2504 static int onenand_chip_probe(struct mtd_info *mtd)
2505 {
2506 	struct onenand_chip *this = mtd->priv;
2507 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
2508 	int syscfg;
2509 
2510 	/* Save system configuration 1 */
2511 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2512 
2513 	/* Clear Sync. Burst Read mode to read BootRAM */
2514 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2515 			 this->base + ONENAND_REG_SYS_CFG1);
2516 
2517 	/* Send the command for reading device ID from BootRAM */
2518 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2519 
2520 	/* Read manufacturer and device IDs from BootRAM */
2521 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2522 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2523 
2524 	/* Reset OneNAND to read default register values */
2525 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2526 
2527 	/* Wait reset */
2528 	this->wait(mtd, FL_RESETING);
2529 
2530 	/* Restore system configuration 1 */
2531 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2532 
2533 	/* Check manufacturer ID */
2534 	if (onenand_check_maf(bram_maf_id))
2535 		return -ENXIO;
2536 
2537 	/* Read manufacturer and device IDs from Register */
2538 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2539 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2540 
2541 	/* Check OneNAND device */
2542 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2543 		return -ENXIO;
2544 
2545 	return 0;
2546 }
2547 
2548 /**
2549  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2550  * @param mtd		MTD device structure
2551  *
2552  * OneNAND detection method:
2553  *   Compare the the values from command with ones from register
2554  */
2555 int onenand_probe(struct mtd_info *mtd)
2556 {
2557 	struct onenand_chip *this = mtd->priv;
2558 	int dev_id, ver_id;
2559 	int density;
2560 	int ret;
2561 
2562 	ret = this->chip_probe(mtd);
2563 	if (ret)
2564 		return ret;
2565 
2566 	/* Read device IDs from Register */
2567 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2568 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2569 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2570 
2571 	/* Flash device information */
2572 	mtd->name = onenand_print_device_info(dev_id, ver_id);
2573 	this->device_id = dev_id;
2574 	this->version_id = ver_id;
2575 
2576 	/* Check OneNAND features */
2577 	onenand_check_features(mtd);
2578 
2579 	density = onenand_get_density(dev_id);
2580 	if (FLEXONENAND(this)) {
2581 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2582 		/* Maximum possible erase regions */
2583 		mtd->numeraseregions = this->dies << 1;
2584 		mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2585 					* (this->dies << 1));
2586 		if (!mtd->eraseregions)
2587 			return -ENOMEM;
2588 	}
2589 
2590 	/*
2591 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
2592 	 * mtd->size represents the actual device size.
2593 	 */
2594 	this->chipsize = (16 << density) << 20;
2595 
2596 	/* OneNAND page size & block size */
2597 	/* The data buffer size is equal to page size */
2598 	mtd->writesize =
2599 	    this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2600 	/* We use the full BufferRAM */
2601 	if (ONENAND_IS_4KB_PAGE(this))
2602 		mtd->writesize <<= 1;
2603 
2604 	mtd->oobsize = mtd->writesize >> 5;
2605 	/* Pagers per block is always 64 in OneNAND */
2606 	mtd->erasesize = mtd->writesize << 6;
2607 	/*
2608 	 * Flex-OneNAND SLC area has 64 pages per block.
2609 	 * Flex-OneNAND MLC area has 128 pages per block.
2610 	 * Expose MLC erase size to find erase_shift and page_mask.
2611 	 */
2612 	if (FLEXONENAND(this))
2613 		mtd->erasesize <<= 1;
2614 
2615 	this->erase_shift = ffs(mtd->erasesize) - 1;
2616 	this->page_shift = ffs(mtd->writesize) - 1;
2617 	this->ppb_shift = (this->erase_shift - this->page_shift);
2618 	this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2619 	/* Set density mask. it is used for DDP */
2620 	if (ONENAND_IS_DDP(this))
2621 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
2622 	/* It's real page size */
2623 	this->writesize = mtd->writesize;
2624 
2625 	/* REVIST: Multichip handling */
2626 
2627 	if (FLEXONENAND(this))
2628 		flexonenand_get_size(mtd);
2629 	else
2630 		mtd->size = this->chipsize;
2631 
2632 	mtd->flags = MTD_CAP_NANDFLASH;
2633 	mtd->_erase = onenand_erase;
2634 	mtd->_read = onenand_read;
2635 	mtd->_write = onenand_write;
2636 	mtd->_read_oob = onenand_read_oob;
2637 	mtd->_write_oob = onenand_write_oob;
2638 	mtd->_sync = onenand_sync;
2639 	mtd->_block_isbad = onenand_block_isbad;
2640 	mtd->_block_markbad = onenand_block_markbad;
2641 
2642 	return 0;
2643 }
2644 
2645 /**
2646  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2647  * @param mtd		MTD device structure
2648  * @param maxchips	Number of chips to scan for
2649  *
2650  * This fills out all the not initialized function pointers
2651  * with the defaults.
2652  * The flash ID is read and the mtd/chip structures are
2653  * filled with the appropriate values.
2654  */
2655 int onenand_scan(struct mtd_info *mtd, int maxchips)
2656 {
2657 	int i;
2658 	struct onenand_chip *this = mtd->priv;
2659 
2660 	if (!this->read_word)
2661 		this->read_word = onenand_readw;
2662 	if (!this->write_word)
2663 		this->write_word = onenand_writew;
2664 
2665 	if (!this->command)
2666 		this->command = onenand_command;
2667 	if (!this->wait)
2668 		this->wait = onenand_wait;
2669 	if (!this->bbt_wait)
2670 		this->bbt_wait = onenand_bbt_wait;
2671 
2672 	if (!this->read_bufferram)
2673 		this->read_bufferram = onenand_read_bufferram;
2674 	if (!this->write_bufferram)
2675 		this->write_bufferram = onenand_write_bufferram;
2676 
2677 	if (!this->chip_probe)
2678 		this->chip_probe = onenand_chip_probe;
2679 
2680 	if (!this->block_markbad)
2681 		this->block_markbad = onenand_default_block_markbad;
2682 	if (!this->scan_bbt)
2683 		this->scan_bbt = onenand_default_bbt;
2684 
2685 	if (onenand_probe(mtd))
2686 		return -ENXIO;
2687 
2688 	/* Set Sync. Burst Read after probing */
2689 	if (this->mmcontrol) {
2690 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2691 		this->read_bufferram = onenand_sync_read_bufferram;
2692 	}
2693 
2694 	/* Allocate buffers, if necessary */
2695 	if (!this->page_buf) {
2696 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2697 		if (!this->page_buf) {
2698 			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2699 			return -ENOMEM;
2700 		}
2701 		this->options |= ONENAND_PAGEBUF_ALLOC;
2702 	}
2703 	if (!this->oob_buf) {
2704 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2705 		if (!this->oob_buf) {
2706 			printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2707 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
2708 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
2709 				kfree(this->page_buf);
2710 			}
2711 			return -ENOMEM;
2712 		}
2713 		this->options |= ONENAND_OOBBUF_ALLOC;
2714 	}
2715 
2716 	this->state = FL_READY;
2717 
2718 	/*
2719 	 * Allow subpage writes up to oobsize.
2720 	 */
2721 	switch (mtd->oobsize) {
2722 	case 128:
2723 		this->ecclayout = &onenand_oob_128;
2724 		mtd->subpage_sft = 0;
2725 		break;
2726 
2727 	case 64:
2728 		this->ecclayout = &onenand_oob_64;
2729 		mtd->subpage_sft = 2;
2730 		break;
2731 
2732 	case 32:
2733 		this->ecclayout = &onenand_oob_32;
2734 		mtd->subpage_sft = 1;
2735 		break;
2736 
2737 	default:
2738 		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2739 			mtd->oobsize);
2740 		mtd->subpage_sft = 0;
2741 		/* To prevent kernel oops */
2742 		this->ecclayout = &onenand_oob_32;
2743 		break;
2744 	}
2745 
2746 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2747 
2748 	/*
2749 	 * The number of bytes available for a client to place data into
2750 	 * the out of band area
2751 	 */
2752 	this->ecclayout->oobavail = 0;
2753 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2754 	    this->ecclayout->oobfree[i].length; i++)
2755 		this->ecclayout->oobavail +=
2756 			this->ecclayout->oobfree[i].length;
2757 	mtd->oobavail = this->ecclayout->oobavail;
2758 
2759 	mtd->ecclayout = this->ecclayout;
2760 
2761 	/* Unlock whole block */
2762 	onenand_unlock_all(mtd);
2763 
2764 	return this->scan_bbt(mtd);
2765 }
2766 
2767 /**
2768  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2769  * @param mtd		MTD device structure
2770  */
2771 void onenand_release(struct mtd_info *mtd)
2772 {
2773 }
2774