xref: /openbmc/u-boot/drivers/mtd/onenand/onenand_base.c (revision 344c837686b4268882ee4942f2a1e5e5716c7383)
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21 
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include "linux/mtd/flashchip.h"
26 #include <linux/mtd/onenand.h>
27 
28 #include <asm/io.h>
29 #include <asm/errno.h>
30 #include <malloc.h>
31 
32 /* It should access 16-bit instead of 8-bit */
33 static void *memcpy_16(void *dst, const void *src, unsigned int len)
34 {
35 	void *ret = dst;
36 	short *d = dst;
37 	const short *s = src;
38 
39 	len >>= 1;
40 	while (len-- > 0)
41 		*d++ = *s++;
42 	return ret;
43 }
44 
45 /**
46  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
47  *  For now, we expose only 64 out of 80 ecc bytes
48  */
49 static struct nand_ecclayout onenand_oob_128 = {
50 	.eccbytes	= 64,
51 	.eccpos		= {
52 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
53 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
54 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
55 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
56 		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
57 		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
58 		102, 103, 104, 105
59 		},
60 	.oobfree	= {
61 		{2, 4}, {18, 4}, {34, 4}, {50, 4},
62 		{66, 4}, {82, 4}, {98, 4}, {114, 4}
63 	}
64 };
65 
66 /**
67  * onenand_oob_64 - oob info for large (2KB) page
68  */
69 static struct nand_ecclayout onenand_oob_64 = {
70 	.eccbytes	= 20,
71 	.eccpos		= {
72 		8, 9, 10, 11, 12,
73 		24, 25, 26, 27, 28,
74 		40, 41, 42, 43, 44,
75 		56, 57, 58, 59, 60,
76 		},
77 	.oobfree	= {
78 		{2, 3}, {14, 2}, {18, 3}, {30, 2},
79 		{34, 3}, {46, 2}, {50, 3}, {62, 2}
80 	}
81 };
82 
83 /**
84  * onenand_oob_32 - oob info for middle (1KB) page
85  */
86 static struct nand_ecclayout onenand_oob_32 = {
87 	.eccbytes	= 10,
88 	.eccpos		= {
89 		8, 9, 10, 11, 12,
90 		24, 25, 26, 27, 28,
91 		},
92 	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
93 };
94 
95 /*
96  * Warning! This array is used with the memcpy_16() function, thus
97  * it must be aligned to 2 bytes. GCC can make this array unaligned
98  * as the array is made of unsigned char, which memcpy16() doesn't
99  * like and will cause unaligned access.
100  */
101 static const unsigned char __aligned(2) ffchars[] = {
102 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
103 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
104 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
105 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
106 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
107 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
108 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
109 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
110 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
111 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
112 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
113 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
114 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
115 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
116 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
117 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
118 };
119 
120 /**
121  * onenand_readw - [OneNAND Interface] Read OneNAND register
122  * @param addr		address to read
123  *
124  * Read OneNAND register
125  */
126 static unsigned short onenand_readw(void __iomem * addr)
127 {
128 	return readw(addr);
129 }
130 
131 /**
132  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
133  * @param value		value to write
134  * @param addr		address to write
135  *
136  * Write OneNAND register with value
137  */
138 static void onenand_writew(unsigned short value, void __iomem * addr)
139 {
140 	writew(value, addr);
141 }
142 
143 /**
144  * onenand_block_address - [DEFAULT] Get block address
145  * @param device	the device id
146  * @param block		the block
147  * @return		translated block address if DDP, otherwise same
148  *
149  * Setup Start Address 1 Register (F100h)
150  */
151 static int onenand_block_address(struct onenand_chip *this, int block)
152 {
153 	/* Device Flash Core select, NAND Flash Block Address */
154 	if (block & this->density_mask)
155 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
156 
157 	return block;
158 }
159 
160 /**
161  * onenand_bufferram_address - [DEFAULT] Get bufferram address
162  * @param device	the device id
163  * @param block		the block
164  * @return		set DBS value if DDP, otherwise 0
165  *
166  * Setup Start Address 2 Register (F101h) for DDP
167  */
168 static int onenand_bufferram_address(struct onenand_chip *this, int block)
169 {
170 	/* Device BufferRAM Select */
171 	if (block & this->density_mask)
172 		return ONENAND_DDP_CHIP1;
173 
174 	return ONENAND_DDP_CHIP0;
175 }
176 
177 /**
178  * onenand_page_address - [DEFAULT] Get page address
179  * @param page		the page address
180  * @param sector	the sector address
181  * @return		combined page and sector address
182  *
183  * Setup Start Address 8 Register (F107h)
184  */
185 static int onenand_page_address(int page, int sector)
186 {
187 	/* Flash Page Address, Flash Sector Address */
188 	int fpa, fsa;
189 
190 	fpa = page & ONENAND_FPA_MASK;
191 	fsa = sector & ONENAND_FSA_MASK;
192 
193 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
194 }
195 
196 /**
197  * onenand_buffer_address - [DEFAULT] Get buffer address
198  * @param dataram1	DataRAM index
199  * @param sectors	the sector address
200  * @param count		the number of sectors
201  * @return		the start buffer value
202  *
203  * Setup Start Buffer Register (F200h)
204  */
205 static int onenand_buffer_address(int dataram1, int sectors, int count)
206 {
207 	int bsa, bsc;
208 
209 	/* BufferRAM Sector Address */
210 	bsa = sectors & ONENAND_BSA_MASK;
211 
212 	if (dataram1)
213 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
214 	else
215 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
216 
217 	/* BufferRAM Sector Count */
218 	bsc = count & ONENAND_BSC_MASK;
219 
220 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
221 }
222 
223 /**
224  * flexonenand_block - Return block number for flash address
225  * @param this		- OneNAND device structure
226  * @param addr		- Address for which block number is needed
227  */
228 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
229 {
230 	unsigned int boundary, blk, die = 0;
231 
232 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
233 		die = 1;
234 		addr -= this->diesize[0];
235 	}
236 
237 	boundary = this->boundary[die];
238 
239 	blk = addr >> (this->erase_shift - 1);
240 	if (blk > boundary)
241 		blk = (blk + boundary + 1) >> 1;
242 
243 	blk += die ? this->density_mask : 0;
244 	return blk;
245 }
246 
247 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
248 {
249 	if (!FLEXONENAND(this))
250 		return addr >> this->erase_shift;
251 	return flexonenand_block(this, addr);
252 }
253 
254 /**
255  * flexonenand_addr - Return address of the block
256  * @this:		OneNAND device structure
257  * @block:		Block number on Flex-OneNAND
258  *
259  * Return address of the block
260  */
261 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
262 {
263 	loff_t ofs = 0;
264 	int die = 0, boundary;
265 
266 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
267 		block -= this->density_mask;
268 		die = 1;
269 		ofs = this->diesize[0];
270 	}
271 
272 	boundary = this->boundary[die];
273 	ofs += (loff_t) block << (this->erase_shift - 1);
274 	if (block > (boundary + 1))
275 		ofs += (loff_t) (block - boundary - 1)
276 			<< (this->erase_shift - 1);
277 	return ofs;
278 }
279 
280 loff_t onenand_addr(struct onenand_chip *this, int block)
281 {
282 	if (!FLEXONENAND(this))
283 		return (loff_t) block << this->erase_shift;
284 	return flexonenand_addr(this, block);
285 }
286 
287 /**
288  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
289  * @param mtd		MTD device structure
290  * @param addr		address whose erase region needs to be identified
291  */
292 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
293 {
294 	int i;
295 
296 	for (i = 0; i < mtd->numeraseregions; i++)
297 		if (addr < mtd->eraseregions[i].offset)
298 			break;
299 	return i - 1;
300 }
301 
302 /**
303  * onenand_get_density - [DEFAULT] Get OneNAND density
304  * @param dev_id        OneNAND device ID
305  *
306  * Get OneNAND density from device ID
307  */
308 static inline int onenand_get_density(int dev_id)
309 {
310 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
311 	return (density & ONENAND_DEVICE_DENSITY_MASK);
312 }
313 
314 /**
315  * onenand_command - [DEFAULT] Send command to OneNAND device
316  * @param mtd		MTD device structure
317  * @param cmd		the command to be sent
318  * @param addr		offset to read from or write to
319  * @param len		number of bytes to read or write
320  *
321  * Send command to OneNAND device. This function is used for middle/large page
322  * devices (1KB/2KB Bytes per page)
323  */
324 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
325 			   size_t len)
326 {
327 	struct onenand_chip *this = mtd->priv;
328 	int value;
329 	int block, page;
330 
331 	/* Now we use page size operation */
332 	int sectors = 0, count = 0;
333 
334 	/* Address translation */
335 	switch (cmd) {
336 	case ONENAND_CMD_UNLOCK:
337 	case ONENAND_CMD_LOCK:
338 	case ONENAND_CMD_LOCK_TIGHT:
339 	case ONENAND_CMD_UNLOCK_ALL:
340 		block = -1;
341 		page = -1;
342 		break;
343 
344 	case FLEXONENAND_CMD_PI_ACCESS:
345 		/* addr contains die index */
346 		block = addr * this->density_mask;
347 		page = -1;
348 		break;
349 
350 	case ONENAND_CMD_ERASE:
351 	case ONENAND_CMD_BUFFERRAM:
352 		block = onenand_block(this, addr);
353 		page = -1;
354 		break;
355 
356 	case FLEXONENAND_CMD_READ_PI:
357 		cmd = ONENAND_CMD_READ;
358 		block = addr * this->density_mask;
359 		page = 0;
360 		break;
361 
362 	default:
363 		block = onenand_block(this, addr);
364 		page = (int) (addr
365 			- onenand_addr(this, block)) >> this->page_shift;
366 		page &= this->page_mask;
367 		break;
368 	}
369 
370 	/* NOTE: The setting order of the registers is very important! */
371 	if (cmd == ONENAND_CMD_BUFFERRAM) {
372 		/* Select DataRAM for DDP */
373 		value = onenand_bufferram_address(this, block);
374 		this->write_word(value,
375 				 this->base + ONENAND_REG_START_ADDRESS2);
376 
377 		if (ONENAND_IS_4KB_PAGE(this))
378 			ONENAND_SET_BUFFERRAM0(this);
379 		else
380 			/* Switch to the next data buffer */
381 			ONENAND_SET_NEXT_BUFFERRAM(this);
382 
383 		return 0;
384 	}
385 
386 	if (block != -1) {
387 		/* Write 'DFS, FBA' of Flash */
388 		value = onenand_block_address(this, block);
389 		this->write_word(value,
390 				 this->base + ONENAND_REG_START_ADDRESS1);
391 
392 		/* Select DataRAM for DDP */
393 		value = onenand_bufferram_address(this, block);
394 		this->write_word(value,
395 				 this->base + ONENAND_REG_START_ADDRESS2);
396 	}
397 
398 	if (page != -1) {
399 		int dataram;
400 
401 		switch (cmd) {
402 		case FLEXONENAND_CMD_RECOVER_LSB:
403 		case ONENAND_CMD_READ:
404 		case ONENAND_CMD_READOOB:
405 			if (ONENAND_IS_4KB_PAGE(this))
406 				dataram = ONENAND_SET_BUFFERRAM0(this);
407 			else
408 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
409 
410 			break;
411 
412 		default:
413 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
414 			break;
415 		}
416 
417 		/* Write 'FPA, FSA' of Flash */
418 		value = onenand_page_address(page, sectors);
419 		this->write_word(value,
420 				 this->base + ONENAND_REG_START_ADDRESS8);
421 
422 		/* Write 'BSA, BSC' of DataRAM */
423 		value = onenand_buffer_address(dataram, sectors, count);
424 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
425 	}
426 
427 	/* Interrupt clear */
428 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
429 	/* Write command */
430 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
431 
432 	return 0;
433 }
434 
435 /**
436  * onenand_read_ecc - return ecc status
437  * @param this		onenand chip structure
438  */
439 static int onenand_read_ecc(struct onenand_chip *this)
440 {
441 	int ecc, i;
442 
443 	if (!FLEXONENAND(this))
444 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
445 
446 	for (i = 0; i < 4; i++) {
447 		ecc = this->read_word(this->base
448 				+ ((ONENAND_REG_ECC_STATUS + i) << 1));
449 		if (likely(!ecc))
450 			continue;
451 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
452 			return ONENAND_ECC_2BIT_ALL;
453 	}
454 
455 	return 0;
456 }
457 
458 /**
459  * onenand_wait - [DEFAULT] wait until the command is done
460  * @param mtd		MTD device structure
461  * @param state		state to select the max. timeout value
462  *
463  * Wait for command done. This applies to all OneNAND command
464  * Read can take up to 30us, erase up to 2ms and program up to 350us
465  * according to general OneNAND specs
466  */
467 static int onenand_wait(struct mtd_info *mtd, int state)
468 {
469 	struct onenand_chip *this = mtd->priv;
470 	unsigned int flags = ONENAND_INT_MASTER;
471 	unsigned int interrupt = 0;
472 	unsigned int ctrl;
473 
474 	while (1) {
475 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
476 		if (interrupt & flags)
477 			break;
478 	}
479 
480 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
481 
482 	if (interrupt & ONENAND_INT_READ) {
483 		int ecc = onenand_read_ecc(this);
484 		if (ecc & ONENAND_ECC_2BIT_ALL) {
485 			printk("onenand_wait: ECC error = 0x%04x\n", ecc);
486 			return -EBADMSG;
487 		}
488 	}
489 
490 	if (ctrl & ONENAND_CTRL_ERROR) {
491 		printk("onenand_wait: controller error = 0x%04x\n", ctrl);
492 		if (ctrl & ONENAND_CTRL_LOCK)
493 			printk("onenand_wait: it's locked error = 0x%04x\n",
494 				ctrl);
495 
496 		return -EIO;
497 	}
498 
499 
500 	return 0;
501 }
502 
503 /**
504  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
505  * @param mtd		MTD data structure
506  * @param area		BufferRAM area
507  * @return		offset given area
508  *
509  * Return BufferRAM offset given area
510  */
511 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
512 {
513 	struct onenand_chip *this = mtd->priv;
514 
515 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
516 		if (area == ONENAND_DATARAM)
517 			return mtd->writesize;
518 		if (area == ONENAND_SPARERAM)
519 			return mtd->oobsize;
520 	}
521 
522 	return 0;
523 }
524 
525 /**
526  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
527  * @param mtd		MTD data structure
528  * @param area		BufferRAM area
529  * @param buffer	the databuffer to put/get data
530  * @param offset	offset to read from or write to
531  * @param count		number of bytes to read/write
532  *
533  * Read the BufferRAM area
534  */
535 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
536 				  unsigned char *buffer, int offset,
537 				  size_t count)
538 {
539 	struct onenand_chip *this = mtd->priv;
540 	void __iomem *bufferram;
541 
542 	bufferram = this->base + area;
543 	bufferram += onenand_bufferram_offset(mtd, area);
544 
545 	memcpy_16(buffer, bufferram + offset, count);
546 
547 	return 0;
548 }
549 
550 /**
551  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
552  * @param mtd		MTD data structure
553  * @param area		BufferRAM area
554  * @param buffer	the databuffer to put/get data
555  * @param offset	offset to read from or write to
556  * @param count		number of bytes to read/write
557  *
558  * Read the BufferRAM area with Sync. Burst Mode
559  */
560 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
561 				       unsigned char *buffer, int offset,
562 				       size_t count)
563 {
564 	struct onenand_chip *this = mtd->priv;
565 	void __iomem *bufferram;
566 
567 	bufferram = this->base + area;
568 	bufferram += onenand_bufferram_offset(mtd, area);
569 
570 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
571 
572 	memcpy_16(buffer, bufferram + offset, count);
573 
574 	this->mmcontrol(mtd, 0);
575 
576 	return 0;
577 }
578 
579 /**
580  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
581  * @param mtd		MTD data structure
582  * @param area		BufferRAM area
583  * @param buffer	the databuffer to put/get data
584  * @param offset	offset to read from or write to
585  * @param count		number of bytes to read/write
586  *
587  * Write the BufferRAM area
588  */
589 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
590 				   const unsigned char *buffer, int offset,
591 				   size_t count)
592 {
593 	struct onenand_chip *this = mtd->priv;
594 	void __iomem *bufferram;
595 
596 	bufferram = this->base + area;
597 	bufferram += onenand_bufferram_offset(mtd, area);
598 
599 	memcpy_16(bufferram + offset, buffer, count);
600 
601 	return 0;
602 }
603 
604 /**
605  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
606  * @param mtd		MTD data structure
607  * @param addr		address to check
608  * @return		blockpage address
609  *
610  * Get blockpage address at 2x program mode
611  */
612 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
613 {
614 	struct onenand_chip *this = mtd->priv;
615 	int blockpage, block, page;
616 
617 	/* Calculate the even block number */
618 	block = (int) (addr >> this->erase_shift) & ~1;
619 	/* Is it the odd plane? */
620 	if (addr & this->writesize)
621 		block++;
622 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
623 	blockpage = (block << 7) | page;
624 
625 	return blockpage;
626 }
627 
628 /**
629  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
630  * @param mtd		MTD data structure
631  * @param addr		address to check
632  * @return		1 if there are valid data, otherwise 0
633  *
634  * Check bufferram if there is data we required
635  */
636 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
637 {
638 	struct onenand_chip *this = mtd->priv;
639 	int blockpage, found = 0;
640 	unsigned int i;
641 
642 	if (ONENAND_IS_2PLANE(this))
643 		blockpage = onenand_get_2x_blockpage(mtd, addr);
644 	else
645 		blockpage = (int) (addr >> this->page_shift);
646 
647 	/* Is there valid data? */
648 	i = ONENAND_CURRENT_BUFFERRAM(this);
649 	if (this->bufferram[i].blockpage == blockpage)
650 		found = 1;
651 	else {
652 		/* Check another BufferRAM */
653 		i = ONENAND_NEXT_BUFFERRAM(this);
654 		if (this->bufferram[i].blockpage == blockpage) {
655 			ONENAND_SET_NEXT_BUFFERRAM(this);
656 			found = 1;
657 		}
658 	}
659 
660 	if (found && ONENAND_IS_DDP(this)) {
661 		/* Select DataRAM for DDP */
662 		int block = onenand_block(this, addr);
663 		int value = onenand_bufferram_address(this, block);
664 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
665 	}
666 
667 	return found;
668 }
669 
670 /**
671  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
672  * @param mtd		MTD data structure
673  * @param addr		address to update
674  * @param valid		valid flag
675  *
676  * Update BufferRAM information
677  */
678 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
679 				    int valid)
680 {
681 	struct onenand_chip *this = mtd->priv;
682 	int blockpage;
683 	unsigned int i;
684 
685 	if (ONENAND_IS_2PLANE(this))
686 		blockpage = onenand_get_2x_blockpage(mtd, addr);
687 	else
688 		blockpage = (int)(addr >> this->page_shift);
689 
690 	/* Invalidate another BufferRAM */
691 	i = ONENAND_NEXT_BUFFERRAM(this);
692 	if (this->bufferram[i].blockpage == blockpage)
693 		this->bufferram[i].blockpage = -1;
694 
695 	/* Update BufferRAM */
696 	i = ONENAND_CURRENT_BUFFERRAM(this);
697 	if (valid)
698 		this->bufferram[i].blockpage = blockpage;
699 	else
700 		this->bufferram[i].blockpage = -1;
701 
702 	return 0;
703 }
704 
705 /**
706  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
707  * @param mtd           MTD data structure
708  * @param addr          start address to invalidate
709  * @param len           length to invalidate
710  *
711  * Invalidate BufferRAM information
712  */
713 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
714 					 unsigned int len)
715 {
716 	struct onenand_chip *this = mtd->priv;
717 	int i;
718 	loff_t end_addr = addr + len;
719 
720 	/* Invalidate BufferRAM */
721 	for (i = 0; i < MAX_BUFFERRAM; i++) {
722 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
723 
724 		if (buf_addr >= addr && buf_addr < end_addr)
725 			this->bufferram[i].blockpage = -1;
726 	}
727 }
728 
729 /**
730  * onenand_get_device - [GENERIC] Get chip for selected access
731  * @param mtd		MTD device structure
732  * @param new_state	the state which is requested
733  *
734  * Get the device and lock it for exclusive access
735  */
736 static void onenand_get_device(struct mtd_info *mtd, int new_state)
737 {
738 	/* Do nothing */
739 }
740 
741 /**
742  * onenand_release_device - [GENERIC] release chip
743  * @param mtd		MTD device structure
744  *
745  * Deselect, release chip lock and wake up anyone waiting on the device
746  */
747 static void onenand_release_device(struct mtd_info *mtd)
748 {
749 	/* Do nothing */
750 }
751 
752 /**
753  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
754  * @param mtd		MTD device structure
755  * @param buf		destination address
756  * @param column	oob offset to read from
757  * @param thislen	oob length to read
758  */
759 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
760 					int column, int thislen)
761 {
762 	struct onenand_chip *this = mtd->priv;
763 	struct nand_oobfree *free;
764 	int readcol = column;
765 	int readend = column + thislen;
766 	int lastgap = 0;
767 	unsigned int i;
768 	uint8_t *oob_buf = this->oob_buf;
769 
770 	free = this->ecclayout->oobfree;
771 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
772 	     i++, free++) {
773 		if (readcol >= lastgap)
774 			readcol += free->offset - lastgap;
775 		if (readend >= lastgap)
776 			readend += free->offset - lastgap;
777 		lastgap = free->offset + free->length;
778 	}
779 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
780 	free = this->ecclayout->oobfree;
781 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
782 	     i++, free++) {
783 		int free_end = free->offset + free->length;
784 		if (free->offset < readend && free_end > readcol) {
785 			int st = max_t(int,free->offset,readcol);
786 			int ed = min_t(int,free_end,readend);
787 			int n = ed - st;
788 			memcpy(buf, oob_buf + st, n);
789 			buf += n;
790 		} else if (column == 0)
791 			break;
792 	}
793 	return 0;
794 }
795 
796 /**
797  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
798  * @param mtd		MTD device structure
799  * @param addr		address to recover
800  * @param status	return value from onenand_wait
801  *
802  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
803  * lower page address and MSB page has higher page address in paired pages.
804  * If power off occurs during MSB page program, the paired LSB page data can
805  * become corrupt. LSB page recovery read is a way to read LSB page though page
806  * data are corrupted. When uncorrectable error occurs as a result of LSB page
807  * read after power up, issue LSB page recovery read.
808  */
809 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
810 {
811 	struct onenand_chip *this = mtd->priv;
812 	int i;
813 
814 	/* Recovery is only for Flex-OneNAND */
815 	if (!FLEXONENAND(this))
816 		return status;
817 
818 	/* check if we failed due to uncorrectable error */
819 	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
820 		return status;
821 
822 	/* check if address lies in MLC region */
823 	i = flexonenand_region(mtd, addr);
824 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
825 		return status;
826 
827 	printk("onenand_recover_lsb:"
828 		"Attempting to recover from uncorrectable read\n");
829 
830 	/* Issue the LSB page recovery command */
831 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
832 	return this->wait(mtd, FL_READING);
833 }
834 
835 /**
836  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
837  * @param mtd		MTD device structure
838  * @param from		offset to read from
839  * @param ops		oob operation description structure
840  *
841  * OneNAND read main and/or out-of-band data
842  */
843 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
844 		struct mtd_oob_ops *ops)
845 {
846 	struct onenand_chip *this = mtd->priv;
847 	struct mtd_ecc_stats stats;
848 	size_t len = ops->len;
849 	size_t ooblen = ops->ooblen;
850 	u_char *buf = ops->datbuf;
851 	u_char *oobbuf = ops->oobbuf;
852 	int read = 0, column, thislen;
853 	int oobread = 0, oobcolumn, thisooblen, oobsize;
854 	int ret = 0, boundary = 0;
855 	int writesize = this->writesize;
856 
857 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
858 
859 	if (ops->mode == MTD_OPS_AUTO_OOB)
860 		oobsize = this->ecclayout->oobavail;
861 	else
862 		oobsize = mtd->oobsize;
863 
864 	oobcolumn = from & (mtd->oobsize - 1);
865 
866 	/* Do not allow reads past end of device */
867 	if ((from + len) > mtd->size) {
868 		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
869 		ops->retlen = 0;
870 		ops->oobretlen = 0;
871 		return -EINVAL;
872 	}
873 
874 	stats = mtd->ecc_stats;
875 
876 	/* Read-while-load method */
877 	/* Note: We can't use this feature in MLC */
878 
879 	/* Do first load to bufferRAM */
880 	if (read < len) {
881 		if (!onenand_check_bufferram(mtd, from)) {
882 			this->main_buf = buf;
883 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
884 			ret = this->wait(mtd, FL_READING);
885 			if (unlikely(ret))
886 				ret = onenand_recover_lsb(mtd, from, ret);
887 			onenand_update_bufferram(mtd, from, !ret);
888 			if (ret == -EBADMSG)
889 				ret = 0;
890 		}
891 	}
892 
893 	thislen = min_t(int, writesize, len - read);
894 	column = from & (writesize - 1);
895 	if (column + thislen > writesize)
896 		thislen = writesize - column;
897 
898 	while (!ret) {
899 		/* If there is more to load then start next load */
900 		from += thislen;
901 		if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
902 			this->main_buf = buf + thislen;
903 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
904 			/*
905 			 * Chip boundary handling in DDP
906 			 * Now we issued chip 1 read and pointed chip 1
907 			 * bufferam so we have to point chip 0 bufferam.
908 			 */
909 			if (ONENAND_IS_DDP(this) &&
910 					unlikely(from == (this->chipsize >> 1))) {
911 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
912 				boundary = 1;
913 			} else
914 				boundary = 0;
915 			ONENAND_SET_PREV_BUFFERRAM(this);
916 		}
917 
918 		/* While load is going, read from last bufferRAM */
919 		this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
920 
921 		/* Read oob area if needed */
922 		if (oobbuf) {
923 			thisooblen = oobsize - oobcolumn;
924 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
925 
926 			if (ops->mode == MTD_OPS_AUTO_OOB)
927 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
928 			else
929 				this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
930 			oobread += thisooblen;
931 			oobbuf += thisooblen;
932 			oobcolumn = 0;
933 		}
934 
935 		if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
936 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
937 			ret = this->wait(mtd, FL_READING);
938 			if (unlikely(ret))
939 				ret = onenand_recover_lsb(mtd, from, ret);
940 			onenand_update_bufferram(mtd, from, !ret);
941 			if (mtd_is_eccerr(ret))
942 				ret = 0;
943 		}
944 
945 		/* See if we are done */
946 		read += thislen;
947 		if (read == len)
948 			break;
949 		/* Set up for next read from bufferRAM */
950 		if (unlikely(boundary))
951 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
952 		if (!ONENAND_IS_4KB_PAGE(this))
953 			ONENAND_SET_NEXT_BUFFERRAM(this);
954 		buf += thislen;
955 		thislen = min_t(int, writesize, len - read);
956 		column = 0;
957 
958 		if (!ONENAND_IS_4KB_PAGE(this)) {
959 			/* Now wait for load */
960 			ret = this->wait(mtd, FL_READING);
961 			onenand_update_bufferram(mtd, from, !ret);
962 			if (mtd_is_eccerr(ret))
963 				ret = 0;
964 		}
965 	}
966 
967 	/*
968 	 * Return success, if no ECC failures, else -EBADMSG
969 	 * fs driver will take care of that, because
970 	 * retlen == desired len and result == -EBADMSG
971 	 */
972 	ops->retlen = read;
973 	ops->oobretlen = oobread;
974 
975 	if (ret)
976 		return ret;
977 
978 	if (mtd->ecc_stats.failed - stats.failed)
979 		return -EBADMSG;
980 
981 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
982 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
983 }
984 
985 /**
986  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
987  * @param mtd		MTD device structure
988  * @param from		offset to read from
989  * @param ops		oob operation description structure
990  *
991  * OneNAND read out-of-band data from the spare area
992  */
993 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
994 		struct mtd_oob_ops *ops)
995 {
996 	struct onenand_chip *this = mtd->priv;
997 	struct mtd_ecc_stats stats;
998 	int read = 0, thislen, column, oobsize;
999 	size_t len = ops->ooblen;
1000 	unsigned int mode = ops->mode;
1001 	u_char *buf = ops->oobbuf;
1002 	int ret = 0, readcmd;
1003 
1004 	from += ops->ooboffs;
1005 
1006 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1007 
1008 	/* Initialize return length value */
1009 	ops->oobretlen = 0;
1010 
1011 	if (mode == MTD_OPS_AUTO_OOB)
1012 		oobsize = this->ecclayout->oobavail;
1013 	else
1014 		oobsize = mtd->oobsize;
1015 
1016 	column = from & (mtd->oobsize - 1);
1017 
1018 	if (unlikely(column >= oobsize)) {
1019 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1020 		return -EINVAL;
1021 	}
1022 
1023 	/* Do not allow reads past end of device */
1024 	if (unlikely(from >= mtd->size ||
1025 		column + len > ((mtd->size >> this->page_shift) -
1026 				(from >> this->page_shift)) * oobsize)) {
1027 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1028 		return -EINVAL;
1029 	}
1030 
1031 	stats = mtd->ecc_stats;
1032 
1033 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1034 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1035 
1036 	while (read < len) {
1037 		thislen = oobsize - column;
1038 		thislen = min_t(int, thislen, len);
1039 
1040 		this->spare_buf = buf;
1041 		this->command(mtd, readcmd, from, mtd->oobsize);
1042 
1043 		onenand_update_bufferram(mtd, from, 0);
1044 
1045 		ret = this->wait(mtd, FL_READING);
1046 		if (unlikely(ret))
1047 			ret = onenand_recover_lsb(mtd, from, ret);
1048 
1049 		if (ret && ret != -EBADMSG) {
1050 			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1051 			break;
1052 		}
1053 
1054 		if (mode == MTD_OPS_AUTO_OOB)
1055 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1056 		else
1057 			this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1058 
1059 		read += thislen;
1060 
1061 		if (read == len)
1062 			break;
1063 
1064 		buf += thislen;
1065 
1066 		/* Read more? */
1067 		if (read < len) {
1068 			/* Page size */
1069 			from += mtd->writesize;
1070 			column = 0;
1071 		}
1072 	}
1073 
1074 	ops->oobretlen = read;
1075 
1076 	if (ret)
1077 		return ret;
1078 
1079 	if (mtd->ecc_stats.failed - stats.failed)
1080 		return -EBADMSG;
1081 
1082 	return 0;
1083 }
1084 
1085 /**
1086  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1087  * @param mtd		MTD device structure
1088  * @param from		offset to read from
1089  * @param len		number of bytes to read
1090  * @param retlen	pointer to variable to store the number of read bytes
1091  * @param buf		the databuffer to put data
1092  *
1093  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1094 */
1095 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1096 		 size_t * retlen, u_char * buf)
1097 {
1098 	struct mtd_oob_ops ops = {
1099 		.len    = len,
1100 		.ooblen = 0,
1101 		.datbuf = buf,
1102 		.oobbuf = NULL,
1103 	};
1104 	int ret;
1105 
1106 	onenand_get_device(mtd, FL_READING);
1107 	ret = onenand_read_ops_nolock(mtd, from, &ops);
1108 	onenand_release_device(mtd);
1109 
1110 	*retlen = ops.retlen;
1111 	return ret;
1112 }
1113 
1114 /**
1115  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1116  * @param mtd		MTD device structure
1117  * @param from		offset to read from
1118  * @param ops		oob operations description structure
1119  *
1120  * OneNAND main and/or out-of-band
1121  */
1122 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1123 			struct mtd_oob_ops *ops)
1124 {
1125 	int ret;
1126 
1127 	switch (ops->mode) {
1128 	case MTD_OPS_PLACE_OOB:
1129 	case MTD_OPS_AUTO_OOB:
1130 		break;
1131 	case MTD_OPS_RAW:
1132 		/* Not implemented yet */
1133 	default:
1134 		return -EINVAL;
1135 	}
1136 
1137 	onenand_get_device(mtd, FL_READING);
1138 	if (ops->datbuf)
1139 		ret = onenand_read_ops_nolock(mtd, from, ops);
1140 	else
1141 		ret = onenand_read_oob_nolock(mtd, from, ops);
1142 	onenand_release_device(mtd);
1143 
1144 	return ret;
1145 }
1146 
1147 /**
1148  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1149  * @param mtd		MTD device structure
1150  * @param state		state to select the max. timeout value
1151  *
1152  * Wait for command done.
1153  */
1154 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1155 {
1156 	struct onenand_chip *this = mtd->priv;
1157 	unsigned int flags = ONENAND_INT_MASTER;
1158 	unsigned int interrupt;
1159 	unsigned int ctrl;
1160 
1161 	while (1) {
1162 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1163 		if (interrupt & flags)
1164 			break;
1165 	}
1166 
1167 	/* To get correct interrupt status in timeout case */
1168 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1169 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1170 
1171 	if (interrupt & ONENAND_INT_READ) {
1172 		int ecc = onenand_read_ecc(this);
1173 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1174 			printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1175 				", controller = 0x%04x\n", ecc, ctrl);
1176 			return ONENAND_BBT_READ_ERROR;
1177 		}
1178 	} else {
1179 		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1180 				"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1181 		return ONENAND_BBT_READ_FATAL_ERROR;
1182 	}
1183 
1184 	/* Initial bad block case: 0x2400 or 0x0400 */
1185 	if (ctrl & ONENAND_CTRL_ERROR) {
1186 		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1187 		return ONENAND_BBT_READ_ERROR;
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 /**
1194  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1195  * @param mtd		MTD device structure
1196  * @param from		offset to read from
1197  * @param ops		oob operation description structure
1198  *
1199  * OneNAND read out-of-band data from the spare area for bbt scan
1200  */
1201 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1202 		struct mtd_oob_ops *ops)
1203 {
1204 	struct onenand_chip *this = mtd->priv;
1205 	int read = 0, thislen, column;
1206 	int ret = 0, readcmd;
1207 	size_t len = ops->ooblen;
1208 	u_char *buf = ops->oobbuf;
1209 
1210 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1211 
1212 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1213 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1214 
1215 	/* Initialize return value */
1216 	ops->oobretlen = 0;
1217 
1218 	/* Do not allow reads past end of device */
1219 	if (unlikely((from + len) > mtd->size)) {
1220 		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1221 		return ONENAND_BBT_READ_FATAL_ERROR;
1222 	}
1223 
1224 	/* Grab the lock and see if the device is available */
1225 	onenand_get_device(mtd, FL_READING);
1226 
1227 	column = from & (mtd->oobsize - 1);
1228 
1229 	while (read < len) {
1230 
1231 		thislen = mtd->oobsize - column;
1232 		thislen = min_t(int, thislen, len);
1233 
1234 		this->spare_buf = buf;
1235 		this->command(mtd, readcmd, from, mtd->oobsize);
1236 
1237 		onenand_update_bufferram(mtd, from, 0);
1238 
1239 		ret = this->bbt_wait(mtd, FL_READING);
1240 		if (unlikely(ret))
1241 			ret = onenand_recover_lsb(mtd, from, ret);
1242 
1243 		if (ret)
1244 			break;
1245 
1246 		this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1247 		read += thislen;
1248 		if (read == len)
1249 			break;
1250 
1251 		buf += thislen;
1252 
1253 		/* Read more? */
1254 		if (read < len) {
1255 			/* Update Page size */
1256 			from += this->writesize;
1257 			column = 0;
1258 		}
1259 	}
1260 
1261 	/* Deselect and wake up anyone waiting on the device */
1262 	onenand_release_device(mtd);
1263 
1264 	ops->oobretlen = read;
1265 	return ret;
1266 }
1267 
1268 
1269 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1270 /**
1271  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1272  * @param mtd           MTD device structure
1273  * @param buf           the databuffer to verify
1274  * @param to            offset to read from
1275  */
1276 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1277 {
1278 	struct onenand_chip *this = mtd->priv;
1279 	u_char *oob_buf = this->oob_buf;
1280 	int status, i, readcmd;
1281 
1282 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1283 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1284 
1285 	this->command(mtd, readcmd, to, mtd->oobsize);
1286 	onenand_update_bufferram(mtd, to, 0);
1287 	status = this->wait(mtd, FL_READING);
1288 	if (status)
1289 		return status;
1290 
1291 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1292 	for (i = 0; i < mtd->oobsize; i++)
1293 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1294 			return -EBADMSG;
1295 
1296 	return 0;
1297 }
1298 
1299 /**
1300  * onenand_verify - [GENERIC] verify the chip contents after a write
1301  * @param mtd          MTD device structure
1302  * @param buf          the databuffer to verify
1303  * @param addr         offset to read from
1304  * @param len          number of bytes to read and compare
1305  */
1306 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1307 {
1308 	struct onenand_chip *this = mtd->priv;
1309 	void __iomem *dataram;
1310 	int ret = 0;
1311 	int thislen, column;
1312 
1313 	while (len != 0) {
1314 		thislen = min_t(int, this->writesize, len);
1315 		column = addr & (this->writesize - 1);
1316 		if (column + thislen > this->writesize)
1317 			thislen = this->writesize - column;
1318 
1319 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1320 
1321 		onenand_update_bufferram(mtd, addr, 0);
1322 
1323 		ret = this->wait(mtd, FL_READING);
1324 		if (ret)
1325 			return ret;
1326 
1327 		onenand_update_bufferram(mtd, addr, 1);
1328 
1329 		dataram = this->base + ONENAND_DATARAM;
1330 		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1331 
1332 		if (memcmp(buf, dataram + column, thislen))
1333 			return -EBADMSG;
1334 
1335 		len -= thislen;
1336 		buf += thislen;
1337 		addr += thislen;
1338 	}
1339 
1340 	return 0;
1341 }
1342 #else
1343 #define onenand_verify(...)             (0)
1344 #define onenand_verify_oob(...)         (0)
1345 #endif
1346 
1347 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1348 
1349 /**
1350  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1351  * @param mtd           MTD device structure
1352  * @param oob_buf       oob buffer
1353  * @param buf           source address
1354  * @param column        oob offset to write to
1355  * @param thislen       oob length to write
1356  */
1357 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1358 		const u_char *buf, int column, int thislen)
1359 {
1360 	struct onenand_chip *this = mtd->priv;
1361 	struct nand_oobfree *free;
1362 	int writecol = column;
1363 	int writeend = column + thislen;
1364 	int lastgap = 0;
1365 	unsigned int i;
1366 
1367 	free = this->ecclayout->oobfree;
1368 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1369 	     i++, free++) {
1370 		if (writecol >= lastgap)
1371 			writecol += free->offset - lastgap;
1372 		if (writeend >= lastgap)
1373 			writeend += free->offset - lastgap;
1374 		lastgap = free->offset + free->length;
1375 	}
1376 	free = this->ecclayout->oobfree;
1377 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1378 	     i++, free++) {
1379 		int free_end = free->offset + free->length;
1380 		if (free->offset < writeend && free_end > writecol) {
1381 			int st = max_t(int,free->offset,writecol);
1382 			int ed = min_t(int,free_end,writeend);
1383 			int n = ed - st;
1384 			memcpy(oob_buf + st, buf, n);
1385 			buf += n;
1386 		} else if (column == 0)
1387 			break;
1388 	}
1389 	return 0;
1390 }
1391 
1392 /**
1393  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1394  * @param mtd           MTD device structure
1395  * @param to            offset to write to
1396  * @param ops           oob operation description structure
1397  *
1398  * Write main and/or oob with ECC
1399  */
1400 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1401 		struct mtd_oob_ops *ops)
1402 {
1403 	struct onenand_chip *this = mtd->priv;
1404 	int written = 0, column, thislen, subpage;
1405 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1406 	size_t len = ops->len;
1407 	size_t ooblen = ops->ooblen;
1408 	const u_char *buf = ops->datbuf;
1409 	const u_char *oob = ops->oobbuf;
1410 	u_char *oobbuf;
1411 	int ret = 0;
1412 
1413 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1414 
1415 	/* Initialize retlen, in case of early exit */
1416 	ops->retlen = 0;
1417 	ops->oobretlen = 0;
1418 
1419 	/* Reject writes, which are not page aligned */
1420 	if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1421 		printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1422 		return -EINVAL;
1423 	}
1424 
1425 	if (ops->mode == MTD_OPS_AUTO_OOB)
1426 		oobsize = this->ecclayout->oobavail;
1427 	else
1428 		oobsize = mtd->oobsize;
1429 
1430 	oobcolumn = to & (mtd->oobsize - 1);
1431 
1432 	column = to & (mtd->writesize - 1);
1433 
1434 	/* Loop until all data write */
1435 	while (written < len) {
1436 		u_char *wbuf = (u_char *) buf;
1437 
1438 		thislen = min_t(int, mtd->writesize - column, len - written);
1439 		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1440 
1441 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1442 
1443 		/* Partial page write */
1444 		subpage = thislen < mtd->writesize;
1445 		if (subpage) {
1446 			memset(this->page_buf, 0xff, mtd->writesize);
1447 			memcpy(this->page_buf + column, buf, thislen);
1448 			wbuf = this->page_buf;
1449 		}
1450 
1451 		this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1452 
1453 		if (oob) {
1454 			oobbuf = this->oob_buf;
1455 
1456 			/* We send data to spare ram with oobsize
1457 			 *                          * to prevent byte access */
1458 			memset(oobbuf, 0xff, mtd->oobsize);
1459 			if (ops->mode == MTD_OPS_AUTO_OOB)
1460 				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1461 			else
1462 				memcpy(oobbuf + oobcolumn, oob, thisooblen);
1463 
1464 			oobwritten += thisooblen;
1465 			oob += thisooblen;
1466 			oobcolumn = 0;
1467 		} else
1468 			oobbuf = (u_char *) ffchars;
1469 
1470 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1471 
1472 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1473 
1474 		ret = this->wait(mtd, FL_WRITING);
1475 
1476 		/* In partial page write we don't update bufferram */
1477 		onenand_update_bufferram(mtd, to, !ret && !subpage);
1478 		if (ONENAND_IS_2PLANE(this)) {
1479 			ONENAND_SET_BUFFERRAM1(this);
1480 			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1481 		}
1482 
1483 		if (ret) {
1484 			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1485 			break;
1486 		}
1487 
1488 		/* Only check verify write turn on */
1489 		ret = onenand_verify(mtd, buf, to, thislen);
1490 		if (ret) {
1491 			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1492 			break;
1493 		}
1494 
1495 		written += thislen;
1496 
1497 		if (written == len)
1498 			break;
1499 
1500 		column = 0;
1501 		to += thislen;
1502 		buf += thislen;
1503 	}
1504 
1505 	ops->retlen = written;
1506 
1507 	return ret;
1508 }
1509 
1510 /**
1511  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1512  * @param mtd           MTD device structure
1513  * @param to            offset to write to
1514  * @param len           number of bytes to write
1515  * @param retlen        pointer to variable to store the number of written bytes
1516  * @param buf           the data to write
1517  * @param mode          operation mode
1518  *
1519  * OneNAND write out-of-band
1520  */
1521 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1522 		struct mtd_oob_ops *ops)
1523 {
1524 	struct onenand_chip *this = mtd->priv;
1525 	int column, ret = 0, oobsize;
1526 	int written = 0, oobcmd;
1527 	u_char *oobbuf;
1528 	size_t len = ops->ooblen;
1529 	const u_char *buf = ops->oobbuf;
1530 	unsigned int mode = ops->mode;
1531 
1532 	to += ops->ooboffs;
1533 
1534 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1535 
1536 	/* Initialize retlen, in case of early exit */
1537 	ops->oobretlen = 0;
1538 
1539 	if (mode == MTD_OPS_AUTO_OOB)
1540 		oobsize = this->ecclayout->oobavail;
1541 	else
1542 		oobsize = mtd->oobsize;
1543 
1544 	column = to & (mtd->oobsize - 1);
1545 
1546 	if (unlikely(column >= oobsize)) {
1547 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1548 		return -EINVAL;
1549 	}
1550 
1551 	/* For compatibility with NAND: Do not allow write past end of page */
1552 	if (unlikely(column + len > oobsize)) {
1553 		printk(KERN_ERR "onenand_write_oob_nolock: "
1554 				"Attempt to write past end of page\n");
1555 		return -EINVAL;
1556 	}
1557 
1558 	/* Do not allow reads past end of device */
1559 	if (unlikely(to >= mtd->size ||
1560 				column + len > ((mtd->size >> this->page_shift) -
1561 					(to >> this->page_shift)) * oobsize)) {
1562 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1563 		return -EINVAL;
1564 	}
1565 
1566 	oobbuf = this->oob_buf;
1567 
1568 	oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1569 		ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1570 
1571 	/* Loop until all data write */
1572 	while (written < len) {
1573 		int thislen = min_t(int, oobsize, len - written);
1574 
1575 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1576 
1577 		/* We send data to spare ram with oobsize
1578 		 * to prevent byte access */
1579 		memset(oobbuf, 0xff, mtd->oobsize);
1580 		if (mode == MTD_OPS_AUTO_OOB)
1581 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1582 		else
1583 			memcpy(oobbuf + column, buf, thislen);
1584 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1585 
1586 		if (ONENAND_IS_4KB_PAGE(this)) {
1587 			/* Set main area of DataRAM to 0xff*/
1588 			memset(this->page_buf, 0xff, mtd->writesize);
1589 			this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1590 				this->page_buf,	0, mtd->writesize);
1591 		}
1592 
1593 		this->command(mtd, oobcmd, to, mtd->oobsize);
1594 
1595 		onenand_update_bufferram(mtd, to, 0);
1596 		if (ONENAND_IS_2PLANE(this)) {
1597 			ONENAND_SET_BUFFERRAM1(this);
1598 			onenand_update_bufferram(mtd, to + this->writesize, 0);
1599 		}
1600 
1601 		ret = this->wait(mtd, FL_WRITING);
1602 		if (ret) {
1603 			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1604 			break;
1605 		}
1606 
1607 		ret = onenand_verify_oob(mtd, oobbuf, to);
1608 		if (ret) {
1609 			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1610 			break;
1611 		}
1612 
1613 		written += thislen;
1614 		if (written == len)
1615 			break;
1616 
1617 		to += mtd->writesize;
1618 		buf += thislen;
1619 		column = 0;
1620 	}
1621 
1622 	ops->oobretlen = written;
1623 
1624 	return ret;
1625 }
1626 
1627 /**
1628  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1629  * @param mtd		MTD device structure
1630  * @param to		offset to write to
1631  * @param len		number of bytes to write
1632  * @param retlen	pointer to variable to store the number of written bytes
1633  * @param buf		the data to write
1634  *
1635  * Write with ECC
1636  */
1637 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1638 		  size_t * retlen, const u_char * buf)
1639 {
1640 	struct mtd_oob_ops ops = {
1641 		.len    = len,
1642 		.ooblen = 0,
1643 		.datbuf = (u_char *) buf,
1644 		.oobbuf = NULL,
1645 	};
1646 	int ret;
1647 
1648 	onenand_get_device(mtd, FL_WRITING);
1649 	ret = onenand_write_ops_nolock(mtd, to, &ops);
1650 	onenand_release_device(mtd);
1651 
1652 	*retlen = ops.retlen;
1653 	return ret;
1654 }
1655 
1656 /**
1657  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1658  * @param mtd		MTD device structure
1659  * @param to		offset to write to
1660  * @param ops		oob operation description structure
1661  *
1662  * OneNAND write main and/or out-of-band
1663  */
1664 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1665 			struct mtd_oob_ops *ops)
1666 {
1667 	int ret;
1668 
1669 	switch (ops->mode) {
1670 	case MTD_OPS_PLACE_OOB:
1671 	case MTD_OPS_AUTO_OOB:
1672 		break;
1673 	case MTD_OPS_RAW:
1674 		/* Not implemented yet */
1675 	default:
1676 		return -EINVAL;
1677 	}
1678 
1679 	onenand_get_device(mtd, FL_WRITING);
1680 	if (ops->datbuf)
1681 		ret = onenand_write_ops_nolock(mtd, to, ops);
1682 	else
1683 		ret = onenand_write_oob_nolock(mtd, to, ops);
1684 	onenand_release_device(mtd);
1685 
1686 	return ret;
1687 
1688 }
1689 
1690 /**
1691  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1692  * @param mtd		MTD device structure
1693  * @param ofs		offset from device start
1694  * @param allowbbt	1, if its allowed to access the bbt area
1695  *
1696  * Check, if the block is bad, Either by reading the bad block table or
1697  * calling of the scan function.
1698  */
1699 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1700 {
1701 	struct onenand_chip *this = mtd->priv;
1702 	struct bbm_info *bbm = this->bbm;
1703 
1704 	/* Return info from the table */
1705 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1706 }
1707 
1708 
1709 /**
1710  * onenand_erase - [MTD Interface] erase block(s)
1711  * @param mtd		MTD device structure
1712  * @param instr		erase instruction
1713  *
1714  * Erase one ore more blocks
1715  */
1716 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1717 {
1718 	struct onenand_chip *this = mtd->priv;
1719 	unsigned int block_size;
1720 	loff_t addr = instr->addr;
1721 	unsigned int len = instr->len;
1722 	int ret = 0, i;
1723 	struct mtd_erase_region_info *region = NULL;
1724 	unsigned int region_end = 0;
1725 
1726 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1727 			(unsigned int) addr, len);
1728 
1729 	if (FLEXONENAND(this)) {
1730 		/* Find the eraseregion of this address */
1731 		i = flexonenand_region(mtd, addr);
1732 		region = &mtd->eraseregions[i];
1733 
1734 		block_size = region->erasesize;
1735 		region_end = region->offset
1736 			+ region->erasesize * region->numblocks;
1737 
1738 		/* Start address within region must align on block boundary.
1739 		 * Erase region's start offset is always block start address.
1740 		 */
1741 		if (unlikely((addr - region->offset) & (block_size - 1))) {
1742 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1743 				" Unaligned address\n");
1744 			return -EINVAL;
1745 		}
1746 	} else {
1747 		block_size = 1 << this->erase_shift;
1748 
1749 		/* Start address must align on block boundary */
1750 		if (unlikely(addr & (block_size - 1))) {
1751 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1752 						"Unaligned address\n");
1753 			return -EINVAL;
1754 		}
1755 	}
1756 
1757 	/* Length must align on block boundary */
1758 	if (unlikely(len & (block_size - 1))) {
1759 		MTDDEBUG (MTD_DEBUG_LEVEL0,
1760 			 "onenand_erase: Length not block aligned\n");
1761 		return -EINVAL;
1762 	}
1763 
1764 	/* Grab the lock and see if the device is available */
1765 	onenand_get_device(mtd, FL_ERASING);
1766 
1767 	/* Loop throught the pages */
1768 	instr->state = MTD_ERASING;
1769 
1770 	while (len) {
1771 
1772 		/* Check if we have a bad block, we do not erase bad blocks */
1773 		if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1774 			printk(KERN_WARNING "onenand_erase: attempt to erase"
1775 				" a bad block at addr 0x%08x\n",
1776 				(unsigned int) addr);
1777 			instr->state = MTD_ERASE_FAILED;
1778 			goto erase_exit;
1779 		}
1780 
1781 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1782 
1783 		onenand_invalidate_bufferram(mtd, addr, block_size);
1784 
1785 		ret = this->wait(mtd, FL_ERASING);
1786 		/* Check, if it is write protected */
1787 		if (ret) {
1788 			if (ret == -EPERM)
1789 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1790 					  "Device is write protected!!!\n");
1791 			else
1792 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1793 					  "Failed erase, block %d\n",
1794 					onenand_block(this, addr));
1795 			instr->state = MTD_ERASE_FAILED;
1796 			instr->fail_addr = addr;
1797 
1798 			goto erase_exit;
1799 		}
1800 
1801 		len -= block_size;
1802 		addr += block_size;
1803 
1804 		if (addr == region_end) {
1805 			if (!len)
1806 				break;
1807 			region++;
1808 
1809 			block_size = region->erasesize;
1810 			region_end = region->offset
1811 				+ region->erasesize * region->numblocks;
1812 
1813 			if (len & (block_size - 1)) {
1814 				/* This has been checked at MTD
1815 				 * partitioning level. */
1816 				printk("onenand_erase: Unaligned address\n");
1817 				goto erase_exit;
1818 			}
1819 		}
1820 	}
1821 
1822 	instr->state = MTD_ERASE_DONE;
1823 
1824 erase_exit:
1825 
1826 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1827 	/* Do call back function */
1828 	if (!ret)
1829 		mtd_erase_callback(instr);
1830 
1831 	/* Deselect and wake up anyone waiting on the device */
1832 	onenand_release_device(mtd);
1833 
1834 	return ret;
1835 }
1836 
1837 /**
1838  * onenand_sync - [MTD Interface] sync
1839  * @param mtd		MTD device structure
1840  *
1841  * Sync is actually a wait for chip ready function
1842  */
1843 void onenand_sync(struct mtd_info *mtd)
1844 {
1845 	MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1846 
1847 	/* Grab the lock and see if the device is available */
1848 	onenand_get_device(mtd, FL_SYNCING);
1849 
1850 	/* Release it and go back */
1851 	onenand_release_device(mtd);
1852 }
1853 
1854 /**
1855  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1856  * @param mtd		MTD device structure
1857  * @param ofs		offset relative to mtd start
1858  *
1859  * Check whether the block is bad
1860  */
1861 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1862 {
1863 	int ret;
1864 
1865 	/* Check for invalid offset */
1866 	if (ofs > mtd->size)
1867 		return -EINVAL;
1868 
1869 	onenand_get_device(mtd, FL_READING);
1870 	ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1871 	onenand_release_device(mtd);
1872 	return ret;
1873 }
1874 
1875 /**
1876  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1877  * @param mtd           MTD device structure
1878  * @param ofs           offset from device start
1879  *
1880  * This is the default implementation, which can be overridden by
1881  * a hardware specific driver.
1882  */
1883 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1884 {
1885 	struct onenand_chip *this = mtd->priv;
1886 	struct bbm_info *bbm = this->bbm;
1887 	u_char buf[2] = {0, 0};
1888 	struct mtd_oob_ops ops = {
1889 		.mode = MTD_OPS_PLACE_OOB,
1890 		.ooblen = 2,
1891 		.oobbuf = buf,
1892 		.ooboffs = 0,
1893 	};
1894 	int block;
1895 
1896 	/* Get block number */
1897 	block = onenand_block(this, ofs);
1898 	if (bbm->bbt)
1899 		bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1900 
1901 	/* We write two bytes, so we dont have to mess with 16 bit access */
1902 	ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1903 	return onenand_write_oob_nolock(mtd, ofs, &ops);
1904 }
1905 
1906 /**
1907  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1908  * @param mtd		MTD device structure
1909  * @param ofs		offset relative to mtd start
1910  *
1911  * Mark the block as bad
1912  */
1913 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1914 {
1915 	int ret;
1916 
1917 	ret = onenand_block_isbad(mtd, ofs);
1918 	if (ret) {
1919 		/* If it was bad already, return success and do nothing */
1920 		if (ret > 0)
1921 			return 0;
1922 		return ret;
1923 	}
1924 
1925 	ret = mtd_block_markbad(mtd, ofs);
1926 	return ret;
1927 }
1928 
1929 /**
1930  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1931  * @param mtd           MTD device structure
1932  * @param ofs           offset relative to mtd start
1933  * @param len           number of bytes to lock or unlock
1934  * @param cmd           lock or unlock command
1935  *
1936  * Lock or unlock one or more blocks
1937  */
1938 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1939 {
1940 	struct onenand_chip *this = mtd->priv;
1941 	int start, end, block, value, status;
1942 
1943 	start = onenand_block(this, ofs);
1944 	end = onenand_block(this, ofs + len);
1945 
1946 	/* Continuous lock scheme */
1947 	if (this->options & ONENAND_HAS_CONT_LOCK) {
1948 		/* Set start block address */
1949 		this->write_word(start,
1950 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1951 		/* Set end block address */
1952 		this->write_word(end - 1,
1953 				 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1954 		/* Write unlock command */
1955 		this->command(mtd, cmd, 0, 0);
1956 
1957 		/* There's no return value */
1958 		this->wait(mtd, FL_UNLOCKING);
1959 
1960 		/* Sanity check */
1961 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1962 		       & ONENAND_CTRL_ONGO)
1963 			continue;
1964 
1965 		/* Check lock status */
1966 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1967 		if (!(status & ONENAND_WP_US))
1968 			printk(KERN_ERR "wp status = 0x%x\n", status);
1969 
1970 		return 0;
1971 	}
1972 
1973 	/* Block lock scheme */
1974 	for (block = start; block < end; block++) {
1975 		/* Set block address */
1976 		value = onenand_block_address(this, block);
1977 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1978 		/* Select DataRAM for DDP */
1979 		value = onenand_bufferram_address(this, block);
1980 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1981 
1982 		/* Set start block address */
1983 		this->write_word(block,
1984 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1985 		/* Write unlock command */
1986 		this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1987 
1988 		/* There's no return value */
1989 		this->wait(mtd, FL_UNLOCKING);
1990 
1991 		/* Sanity check */
1992 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1993 		       & ONENAND_CTRL_ONGO)
1994 			continue;
1995 
1996 		/* Check lock status */
1997 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1998 		if (!(status & ONENAND_WP_US))
1999 			printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2000 			       block, status);
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 #ifdef ONENAND_LINUX
2007 /**
2008  * onenand_lock - [MTD Interface] Lock block(s)
2009  * @param mtd           MTD device structure
2010  * @param ofs           offset relative to mtd start
2011  * @param len           number of bytes to unlock
2012  *
2013  * Lock one or more blocks
2014  */
2015 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2016 {
2017 	int ret;
2018 
2019 	onenand_get_device(mtd, FL_LOCKING);
2020 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2021 	onenand_release_device(mtd);
2022 	return ret;
2023 }
2024 
2025 /**
2026  * onenand_unlock - [MTD Interface] Unlock block(s)
2027  * @param mtd           MTD device structure
2028  * @param ofs           offset relative to mtd start
2029  * @param len           number of bytes to unlock
2030  *
2031  * Unlock one or more blocks
2032  */
2033 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2034 {
2035 	int ret;
2036 
2037 	onenand_get_device(mtd, FL_LOCKING);
2038 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2039 	onenand_release_device(mtd);
2040 	return ret;
2041 }
2042 #endif
2043 
2044 /**
2045  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2046  * @param this          onenand chip data structure
2047  *
2048  * Check lock status
2049  */
2050 static int onenand_check_lock_status(struct onenand_chip *this)
2051 {
2052 	unsigned int value, block, status;
2053 	unsigned int end;
2054 
2055 	end = this->chipsize >> this->erase_shift;
2056 	for (block = 0; block < end; block++) {
2057 		/* Set block address */
2058 		value = onenand_block_address(this, block);
2059 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2060 		/* Select DataRAM for DDP */
2061 		value = onenand_bufferram_address(this, block);
2062 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2063 		/* Set start block address */
2064 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2065 
2066 		/* Check lock status */
2067 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2068 		if (!(status & ONENAND_WP_US)) {
2069 			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2070 			return 0;
2071 		}
2072 	}
2073 
2074 	return 1;
2075 }
2076 
2077 /**
2078  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2079  * @param mtd           MTD device structure
2080  *
2081  * Unlock all blocks
2082  */
2083 static void onenand_unlock_all(struct mtd_info *mtd)
2084 {
2085 	struct onenand_chip *this = mtd->priv;
2086 	loff_t ofs = 0;
2087 	size_t len = mtd->size;
2088 
2089 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2090 		/* Set start block address */
2091 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2092 		/* Write unlock command */
2093 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2094 
2095 		/* There's no return value */
2096 		this->wait(mtd, FL_LOCKING);
2097 
2098 		/* Sanity check */
2099 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2100 				& ONENAND_CTRL_ONGO)
2101 			continue;
2102 
2103 		/* Check lock status */
2104 		if (onenand_check_lock_status(this))
2105 			return;
2106 
2107 		/* Workaround for all block unlock in DDP */
2108 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2109 			/* All blocks on another chip */
2110 			ofs = this->chipsize >> 1;
2111 			len = this->chipsize >> 1;
2112 		}
2113 	}
2114 
2115 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2116 }
2117 
2118 
2119 /**
2120  * onenand_check_features - Check and set OneNAND features
2121  * @param mtd           MTD data structure
2122  *
2123  * Check and set OneNAND features
2124  * - lock scheme
2125  * - two plane
2126  */
2127 static void onenand_check_features(struct mtd_info *mtd)
2128 {
2129 	struct onenand_chip *this = mtd->priv;
2130 	unsigned int density, process;
2131 
2132 	/* Lock scheme depends on density and process */
2133 	density = onenand_get_density(this->device_id);
2134 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2135 
2136 	/* Lock scheme */
2137 	switch (density) {
2138 	case ONENAND_DEVICE_DENSITY_4Gb:
2139 		if (ONENAND_IS_DDP(this))
2140 			this->options |= ONENAND_HAS_2PLANE;
2141 		else
2142 			this->options |= ONENAND_HAS_4KB_PAGE;
2143 
2144 	case ONENAND_DEVICE_DENSITY_2Gb:
2145 		/* 2Gb DDP don't have 2 plane */
2146 		if (!ONENAND_IS_DDP(this))
2147 			this->options |= ONENAND_HAS_2PLANE;
2148 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2149 
2150 	case ONENAND_DEVICE_DENSITY_1Gb:
2151 		/* A-Die has all block unlock */
2152 		if (process)
2153 			this->options |= ONENAND_HAS_UNLOCK_ALL;
2154 		break;
2155 
2156 	default:
2157 		/* Some OneNAND has continuous lock scheme */
2158 		if (!process)
2159 			this->options |= ONENAND_HAS_CONT_LOCK;
2160 		break;
2161 	}
2162 
2163 	if (ONENAND_IS_MLC(this))
2164 		this->options |= ONENAND_HAS_4KB_PAGE;
2165 
2166 	if (ONENAND_IS_4KB_PAGE(this))
2167 		this->options &= ~ONENAND_HAS_2PLANE;
2168 
2169 	if (FLEXONENAND(this)) {
2170 		this->options &= ~ONENAND_HAS_CONT_LOCK;
2171 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2172 	}
2173 
2174 	if (this->options & ONENAND_HAS_CONT_LOCK)
2175 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2176 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
2177 		printk(KERN_DEBUG "Chip support all block unlock\n");
2178 	if (this->options & ONENAND_HAS_2PLANE)
2179 		printk(KERN_DEBUG "Chip has 2 plane\n");
2180 	if (this->options & ONENAND_HAS_4KB_PAGE)
2181 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2182 
2183 }
2184 
2185 /**
2186  * onenand_print_device_info - Print device ID
2187  * @param device        device ID
2188  *
2189  * Print device ID
2190  */
2191 char *onenand_print_device_info(int device, int version)
2192 {
2193 	int vcc, demuxed, ddp, density, flexonenand;
2194 	char *dev_info = malloc(80);
2195 	char *p = dev_info;
2196 
2197 	vcc = device & ONENAND_DEVICE_VCC_MASK;
2198 	demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2199 	ddp = device & ONENAND_DEVICE_IS_DDP;
2200 	density = onenand_get_density(device);
2201 	flexonenand = device & DEVICE_IS_FLEXONENAND;
2202 	p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2203 	       demuxed ? "" : "Muxed ",
2204 	       flexonenand ? "Flex-" : "",
2205 	       ddp ? "(DDP)" : "",
2206 	       (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2207 
2208 	sprintf(p, "\nOneNAND version = 0x%04x", version);
2209 	printk("%s\n", dev_info);
2210 
2211 	return dev_info;
2212 }
2213 
2214 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2215 	{ONENAND_MFR_NUMONYX, "Numonyx"},
2216 	{ONENAND_MFR_SAMSUNG, "Samsung"},
2217 };
2218 
2219 /**
2220  * onenand_check_maf - Check manufacturer ID
2221  * @param manuf         manufacturer ID
2222  *
2223  * Check manufacturer ID
2224  */
2225 static int onenand_check_maf(int manuf)
2226 {
2227 	int size = ARRAY_SIZE(onenand_manuf_ids);
2228 	int i;
2229 #ifdef ONENAND_DEBUG
2230 	char *name;
2231 #endif
2232 
2233 	for (i = 0; i < size; i++)
2234 		if (manuf == onenand_manuf_ids[i].id)
2235 			break;
2236 
2237 #ifdef ONENAND_DEBUG
2238 	if (i < size)
2239 		name = onenand_manuf_ids[i].name;
2240 	else
2241 		name = "Unknown";
2242 
2243 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2244 #endif
2245 
2246 	return i == size;
2247 }
2248 
2249 /**
2250 * flexonenand_get_boundary	- Reads the SLC boundary
2251 * @param onenand_info		- onenand info structure
2252 *
2253 * Fill up boundary[] field in onenand_chip
2254 **/
2255 static int flexonenand_get_boundary(struct mtd_info *mtd)
2256 {
2257 	struct onenand_chip *this = mtd->priv;
2258 	unsigned int die, bdry;
2259 	int syscfg, locked;
2260 
2261 	/* Disable ECC */
2262 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2263 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2264 
2265 	for (die = 0; die < this->dies; die++) {
2266 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2267 		this->wait(mtd, FL_SYNCING);
2268 
2269 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2270 		this->wait(mtd, FL_READING);
2271 
2272 		bdry = this->read_word(this->base + ONENAND_DATARAM);
2273 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2274 			locked = 0;
2275 		else
2276 			locked = 1;
2277 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2278 
2279 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2280 		this->wait(mtd, FL_RESETING);
2281 
2282 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2283 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2284 	}
2285 
2286 	/* Enable ECC */
2287 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2288 	return 0;
2289 }
2290 
2291 /**
2292  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2293  * 			  boundary[], diesize[], mtd->size, mtd->erasesize,
2294  * 			  mtd->eraseregions
2295  * @param mtd		- MTD device structure
2296  */
2297 static void flexonenand_get_size(struct mtd_info *mtd)
2298 {
2299 	struct onenand_chip *this = mtd->priv;
2300 	int die, i, eraseshift, density;
2301 	int blksperdie, maxbdry;
2302 	loff_t ofs;
2303 
2304 	density = onenand_get_density(this->device_id);
2305 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2306 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2307 	maxbdry = blksperdie - 1;
2308 	eraseshift = this->erase_shift - 1;
2309 
2310 	mtd->numeraseregions = this->dies << 1;
2311 
2312 	/* This fills up the device boundary */
2313 	flexonenand_get_boundary(mtd);
2314 	die = 0;
2315 	ofs = 0;
2316 	i = -1;
2317 	for (; die < this->dies; die++) {
2318 		if (!die || this->boundary[die-1] != maxbdry) {
2319 			i++;
2320 			mtd->eraseregions[i].offset = ofs;
2321 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2322 			mtd->eraseregions[i].numblocks =
2323 							this->boundary[die] + 1;
2324 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2325 			eraseshift++;
2326 		} else {
2327 			mtd->numeraseregions -= 1;
2328 			mtd->eraseregions[i].numblocks +=
2329 							this->boundary[die] + 1;
2330 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2331 		}
2332 		if (this->boundary[die] != maxbdry) {
2333 			i++;
2334 			mtd->eraseregions[i].offset = ofs;
2335 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2336 			mtd->eraseregions[i].numblocks = maxbdry ^
2337 							 this->boundary[die];
2338 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2339 			eraseshift--;
2340 		} else
2341 			mtd->numeraseregions -= 1;
2342 	}
2343 
2344 	/* Expose MLC erase size except when all blocks are SLC */
2345 	mtd->erasesize = 1 << this->erase_shift;
2346 	if (mtd->numeraseregions == 1)
2347 		mtd->erasesize >>= 1;
2348 
2349 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2350 	for (i = 0; i < mtd->numeraseregions; i++)
2351 		printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2352 			" numblocks: %04u]\n", mtd->eraseregions[i].offset,
2353 			mtd->eraseregions[i].erasesize,
2354 			mtd->eraseregions[i].numblocks);
2355 
2356 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
2357 		this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2358 		this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2359 						 << (this->erase_shift - 1);
2360 		mtd->size += this->diesize[die];
2361 	}
2362 }
2363 
2364 /**
2365  * flexonenand_check_blocks_erased - Check if blocks are erased
2366  * @param mtd_info	- mtd info structure
2367  * @param start		- first erase block to check
2368  * @param end		- last erase block to check
2369  *
2370  * Converting an unerased block from MLC to SLC
2371  * causes byte values to change. Since both data and its ECC
2372  * have changed, reads on the block give uncorrectable error.
2373  * This might lead to the block being detected as bad.
2374  *
2375  * Avoid this by ensuring that the block to be converted is
2376  * erased.
2377  */
2378 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2379 					int start, int end)
2380 {
2381 	struct onenand_chip *this = mtd->priv;
2382 	int i, ret;
2383 	int block;
2384 	struct mtd_oob_ops ops = {
2385 		.mode = MTD_OPS_PLACE_OOB,
2386 		.ooboffs = 0,
2387 		.ooblen	= mtd->oobsize,
2388 		.datbuf	= NULL,
2389 		.oobbuf	= this->oob_buf,
2390 	};
2391 	loff_t addr;
2392 
2393 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2394 
2395 	for (block = start; block <= end; block++) {
2396 		addr = flexonenand_addr(this, block);
2397 		if (onenand_block_isbad_nolock(mtd, addr, 0))
2398 			continue;
2399 
2400 		/*
2401 		 * Since main area write results in ECC write to spare,
2402 		 * it is sufficient to check only ECC bytes for change.
2403 		 */
2404 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
2405 		if (ret)
2406 			return ret;
2407 
2408 		for (i = 0; i < mtd->oobsize; i++)
2409 			if (this->oob_buf[i] != 0xff)
2410 				break;
2411 
2412 		if (i != mtd->oobsize) {
2413 			printk(KERN_WARNING "Block %d not erased.\n", block);
2414 			return 1;
2415 		}
2416 	}
2417 
2418 	return 0;
2419 }
2420 
2421 /**
2422  * flexonenand_set_boundary	- Writes the SLC boundary
2423  * @param mtd			- mtd info structure
2424  */
2425 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2426 				    int boundary, int lock)
2427 {
2428 	struct onenand_chip *this = mtd->priv;
2429 	int ret, density, blksperdie, old, new, thisboundary;
2430 	loff_t addr;
2431 
2432 	if (die >= this->dies)
2433 		return -EINVAL;
2434 
2435 	if (boundary == this->boundary[die])
2436 		return 0;
2437 
2438 	density = onenand_get_density(this->device_id);
2439 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
2440 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2441 
2442 	if (boundary >= blksperdie) {
2443 		printk("flexonenand_set_boundary:"
2444 			"Invalid boundary value. "
2445 			"Boundary not changed.\n");
2446 		return -EINVAL;
2447 	}
2448 
2449 	/* Check if converting blocks are erased */
2450 	old = this->boundary[die] + (die * this->density_mask);
2451 	new = boundary + (die * this->density_mask);
2452 	ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2453 						+ 1, max(old, new));
2454 	if (ret) {
2455 		printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2456 		return ret;
2457 	}
2458 
2459 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2460 	this->wait(mtd, FL_SYNCING);
2461 
2462 	/* Check is boundary is locked */
2463 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2464 	ret = this->wait(mtd, FL_READING);
2465 
2466 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2467 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2468 		printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2469 		goto out;
2470 	}
2471 
2472 	printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2473 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
2474 
2475 	boundary &= FLEXONENAND_PI_MASK;
2476 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2477 
2478 	addr = die ? this->diesize[0] : 0;
2479 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2480 	ret = this->wait(mtd, FL_ERASING);
2481 	if (ret) {
2482 		printk("flexonenand_set_boundary:"
2483 			"Failed PI erase for Die %d\n", die);
2484 		goto out;
2485 	}
2486 
2487 	this->write_word(boundary, this->base + ONENAND_DATARAM);
2488 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2489 	ret = this->wait(mtd, FL_WRITING);
2490 	if (ret) {
2491 		printk("flexonenand_set_boundary:"
2492 			"Failed PI write for Die %d\n", die);
2493 		goto out;
2494 	}
2495 
2496 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2497 	ret = this->wait(mtd, FL_WRITING);
2498 out:
2499 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2500 	this->wait(mtd, FL_RESETING);
2501 	if (!ret)
2502 		/* Recalculate device size on boundary change*/
2503 		flexonenand_get_size(mtd);
2504 
2505 	return ret;
2506 }
2507 
2508 /**
2509  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2510  * @param mtd		MTD device structure
2511  *
2512  * OneNAND detection method:
2513  *   Compare the the values from command with ones from register
2514  */
2515 static int onenand_chip_probe(struct mtd_info *mtd)
2516 {
2517 	struct onenand_chip *this = mtd->priv;
2518 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
2519 	int syscfg;
2520 
2521 	/* Save system configuration 1 */
2522 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2523 
2524 	/* Clear Sync. Burst Read mode to read BootRAM */
2525 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2526 			 this->base + ONENAND_REG_SYS_CFG1);
2527 
2528 	/* Send the command for reading device ID from BootRAM */
2529 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2530 
2531 	/* Read manufacturer and device IDs from BootRAM */
2532 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2533 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2534 
2535 	/* Reset OneNAND to read default register values */
2536 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2537 
2538 	/* Wait reset */
2539 	this->wait(mtd, FL_RESETING);
2540 
2541 	/* Restore system configuration 1 */
2542 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2543 
2544 	/* Check manufacturer ID */
2545 	if (onenand_check_maf(bram_maf_id))
2546 		return -ENXIO;
2547 
2548 	/* Read manufacturer and device IDs from Register */
2549 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2550 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2551 
2552 	/* Check OneNAND device */
2553 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2554 		return -ENXIO;
2555 
2556 	return 0;
2557 }
2558 
2559 /**
2560  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2561  * @param mtd		MTD device structure
2562  *
2563  * OneNAND detection method:
2564  *   Compare the the values from command with ones from register
2565  */
2566 int onenand_probe(struct mtd_info *mtd)
2567 {
2568 	struct onenand_chip *this = mtd->priv;
2569 	int dev_id, ver_id;
2570 	int density;
2571 	int ret;
2572 
2573 	ret = this->chip_probe(mtd);
2574 	if (ret)
2575 		return ret;
2576 
2577 	/* Read device IDs from Register */
2578 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2579 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2580 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2581 
2582 	/* Flash device information */
2583 	mtd->name = onenand_print_device_info(dev_id, ver_id);
2584 	this->device_id = dev_id;
2585 	this->version_id = ver_id;
2586 
2587 	/* Check OneNAND features */
2588 	onenand_check_features(mtd);
2589 
2590 	density = onenand_get_density(dev_id);
2591 	if (FLEXONENAND(this)) {
2592 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2593 		/* Maximum possible erase regions */
2594 		mtd->numeraseregions = this->dies << 1;
2595 		mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2596 					* (this->dies << 1));
2597 		if (!mtd->eraseregions)
2598 			return -ENOMEM;
2599 	}
2600 
2601 	/*
2602 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
2603 	 * mtd->size represents the actual device size.
2604 	 */
2605 	this->chipsize = (16 << density) << 20;
2606 
2607 	/* OneNAND page size & block size */
2608 	/* The data buffer size is equal to page size */
2609 	mtd->writesize =
2610 	    this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2611 	/* We use the full BufferRAM */
2612 	if (ONENAND_IS_4KB_PAGE(this))
2613 		mtd->writesize <<= 1;
2614 
2615 	mtd->oobsize = mtd->writesize >> 5;
2616 	/* Pagers per block is always 64 in OneNAND */
2617 	mtd->erasesize = mtd->writesize << 6;
2618 	/*
2619 	 * Flex-OneNAND SLC area has 64 pages per block.
2620 	 * Flex-OneNAND MLC area has 128 pages per block.
2621 	 * Expose MLC erase size to find erase_shift and page_mask.
2622 	 */
2623 	if (FLEXONENAND(this))
2624 		mtd->erasesize <<= 1;
2625 
2626 	this->erase_shift = ffs(mtd->erasesize) - 1;
2627 	this->page_shift = ffs(mtd->writesize) - 1;
2628 	this->ppb_shift = (this->erase_shift - this->page_shift);
2629 	this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2630 	/* Set density mask. it is used for DDP */
2631 	if (ONENAND_IS_DDP(this))
2632 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
2633 	/* It's real page size */
2634 	this->writesize = mtd->writesize;
2635 
2636 	/* REVIST: Multichip handling */
2637 
2638 	if (FLEXONENAND(this))
2639 		flexonenand_get_size(mtd);
2640 	else
2641 		mtd->size = this->chipsize;
2642 
2643 	mtd->flags = MTD_CAP_NANDFLASH;
2644 	mtd->_erase = onenand_erase;
2645 	mtd->_read = onenand_read;
2646 	mtd->_write = onenand_write;
2647 	mtd->_read_oob = onenand_read_oob;
2648 	mtd->_write_oob = onenand_write_oob;
2649 	mtd->_sync = onenand_sync;
2650 	mtd->_block_isbad = onenand_block_isbad;
2651 	mtd->_block_markbad = onenand_block_markbad;
2652 
2653 	return 0;
2654 }
2655 
2656 /**
2657  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2658  * @param mtd		MTD device structure
2659  * @param maxchips	Number of chips to scan for
2660  *
2661  * This fills out all the not initialized function pointers
2662  * with the defaults.
2663  * The flash ID is read and the mtd/chip structures are
2664  * filled with the appropriate values.
2665  */
2666 int onenand_scan(struct mtd_info *mtd, int maxchips)
2667 {
2668 	int i;
2669 	struct onenand_chip *this = mtd->priv;
2670 
2671 	if (!this->read_word)
2672 		this->read_word = onenand_readw;
2673 	if (!this->write_word)
2674 		this->write_word = onenand_writew;
2675 
2676 	if (!this->command)
2677 		this->command = onenand_command;
2678 	if (!this->wait)
2679 		this->wait = onenand_wait;
2680 	if (!this->bbt_wait)
2681 		this->bbt_wait = onenand_bbt_wait;
2682 
2683 	if (!this->read_bufferram)
2684 		this->read_bufferram = onenand_read_bufferram;
2685 	if (!this->write_bufferram)
2686 		this->write_bufferram = onenand_write_bufferram;
2687 
2688 	if (!this->chip_probe)
2689 		this->chip_probe = onenand_chip_probe;
2690 
2691 	if (!this->block_markbad)
2692 		this->block_markbad = onenand_default_block_markbad;
2693 	if (!this->scan_bbt)
2694 		this->scan_bbt = onenand_default_bbt;
2695 
2696 	if (onenand_probe(mtd))
2697 		return -ENXIO;
2698 
2699 	/* Set Sync. Burst Read after probing */
2700 	if (this->mmcontrol) {
2701 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2702 		this->read_bufferram = onenand_sync_read_bufferram;
2703 	}
2704 
2705 	/* Allocate buffers, if necessary */
2706 	if (!this->page_buf) {
2707 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2708 		if (!this->page_buf) {
2709 			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2710 			return -ENOMEM;
2711 		}
2712 		this->options |= ONENAND_PAGEBUF_ALLOC;
2713 	}
2714 	if (!this->oob_buf) {
2715 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2716 		if (!this->oob_buf) {
2717 			printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2718 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
2719 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
2720 				kfree(this->page_buf);
2721 			}
2722 			return -ENOMEM;
2723 		}
2724 		this->options |= ONENAND_OOBBUF_ALLOC;
2725 	}
2726 
2727 	this->state = FL_READY;
2728 
2729 	/*
2730 	 * Allow subpage writes up to oobsize.
2731 	 */
2732 	switch (mtd->oobsize) {
2733 	case 128:
2734 		this->ecclayout = &onenand_oob_128;
2735 		mtd->subpage_sft = 0;
2736 		break;
2737 
2738 	case 64:
2739 		this->ecclayout = &onenand_oob_64;
2740 		mtd->subpage_sft = 2;
2741 		break;
2742 
2743 	case 32:
2744 		this->ecclayout = &onenand_oob_32;
2745 		mtd->subpage_sft = 1;
2746 		break;
2747 
2748 	default:
2749 		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2750 			mtd->oobsize);
2751 		mtd->subpage_sft = 0;
2752 		/* To prevent kernel oops */
2753 		this->ecclayout = &onenand_oob_32;
2754 		break;
2755 	}
2756 
2757 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2758 
2759 	/*
2760 	 * The number of bytes available for a client to place data into
2761 	 * the out of band area
2762 	 */
2763 	this->ecclayout->oobavail = 0;
2764 
2765 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE &&
2766 	    this->ecclayout->oobfree[i].length; i++)
2767 		this->ecclayout->oobavail +=
2768 			this->ecclayout->oobfree[i].length;
2769 	mtd->oobavail = this->ecclayout->oobavail;
2770 
2771 	mtd->ecclayout = this->ecclayout;
2772 
2773 	/* Unlock whole block */
2774 	onenand_unlock_all(mtd);
2775 
2776 	return this->scan_bbt(mtd);
2777 }
2778 
2779 /**
2780  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2781  * @param mtd		MTD device structure
2782  */
2783 void onenand_release(struct mtd_info *mtd)
2784 {
2785 }
2786