1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21 
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26 
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30 
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34 	void *ret = dst;
35 	short *d = dst;
36 	const short *s = src;
37 
38 	len >>= 1;
39 	while (len-- > 0)
40 		*d++ = *s++;
41 	return ret;
42 }
43 
44 /**
45  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46  *  For now, we expose only 64 out of 80 ecc bytes
47  */
48 static struct nand_ecclayout onenand_oob_128 = {
49 	.eccbytes	= 64,
50 	.eccpos		= {
51 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55 		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56 		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57 		102, 103, 104, 105
58 		},
59 	.oobfree	= {
60 		{2, 4}, {18, 4}, {34, 4}, {50, 4},
61 		{66, 4}, {82, 4}, {98, 4}, {114, 4}
62 	}
63 };
64 
65 /**
66  * onenand_oob_64 - oob info for large (2KB) page
67  */
68 static struct nand_ecclayout onenand_oob_64 = {
69 	.eccbytes	= 20,
70 	.eccpos		= {
71 		8, 9, 10, 11, 12,
72 		24, 25, 26, 27, 28,
73 		40, 41, 42, 43, 44,
74 		56, 57, 58, 59, 60,
75 		},
76 	.oobfree	= {
77 		{2, 3}, {14, 2}, {18, 3}, {30, 2},
78 		{34, 3}, {46, 2}, {50, 3}, {62, 2}
79 	}
80 };
81 
82 /**
83  * onenand_oob_32 - oob info for middle (1KB) page
84  */
85 static struct nand_ecclayout onenand_oob_32 = {
86 	.eccbytes	= 10,
87 	.eccpos		= {
88 		8, 9, 10, 11, 12,
89 		24, 25, 26, 27, 28,
90 		},
91 	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93 
94 static const unsigned char ffchars[] = {
95 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
96 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
97 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
99 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
101 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
103 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
105 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
107 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
109 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
111 };
112 
113 /**
114  * onenand_readw - [OneNAND Interface] Read OneNAND register
115  * @param addr		address to read
116  *
117  * Read OneNAND register
118  */
119 static unsigned short onenand_readw(void __iomem * addr)
120 {
121 	return readw(addr);
122 }
123 
124 /**
125  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
126  * @param value		value to write
127  * @param addr		address to write
128  *
129  * Write OneNAND register with value
130  */
131 static void onenand_writew(unsigned short value, void __iomem * addr)
132 {
133 	writew(value, addr);
134 }
135 
136 /**
137  * onenand_block_address - [DEFAULT] Get block address
138  * @param device	the device id
139  * @param block		the block
140  * @return		translated block address if DDP, otherwise same
141  *
142  * Setup Start Address 1 Register (F100h)
143  */
144 static int onenand_block_address(struct onenand_chip *this, int block)
145 {
146 	/* Device Flash Core select, NAND Flash Block Address */
147 	if (block & this->density_mask)
148 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
149 
150 	return block;
151 }
152 
153 /**
154  * onenand_bufferram_address - [DEFAULT] Get bufferram address
155  * @param device	the device id
156  * @param block		the block
157  * @return		set DBS value if DDP, otherwise 0
158  *
159  * Setup Start Address 2 Register (F101h) for DDP
160  */
161 static int onenand_bufferram_address(struct onenand_chip *this, int block)
162 {
163 	/* Device BufferRAM Select */
164 	if (block & this->density_mask)
165 		return ONENAND_DDP_CHIP1;
166 
167 	return ONENAND_DDP_CHIP0;
168 }
169 
170 /**
171  * onenand_page_address - [DEFAULT] Get page address
172  * @param page		the page address
173  * @param sector	the sector address
174  * @return		combined page and sector address
175  *
176  * Setup Start Address 8 Register (F107h)
177  */
178 static int onenand_page_address(int page, int sector)
179 {
180 	/* Flash Page Address, Flash Sector Address */
181 	int fpa, fsa;
182 
183 	fpa = page & ONENAND_FPA_MASK;
184 	fsa = sector & ONENAND_FSA_MASK;
185 
186 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
187 }
188 
189 /**
190  * onenand_buffer_address - [DEFAULT] Get buffer address
191  * @param dataram1	DataRAM index
192  * @param sectors	the sector address
193  * @param count		the number of sectors
194  * @return		the start buffer value
195  *
196  * Setup Start Buffer Register (F200h)
197  */
198 static int onenand_buffer_address(int dataram1, int sectors, int count)
199 {
200 	int bsa, bsc;
201 
202 	/* BufferRAM Sector Address */
203 	bsa = sectors & ONENAND_BSA_MASK;
204 
205 	if (dataram1)
206 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
207 	else
208 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
209 
210 	/* BufferRAM Sector Count */
211 	bsc = count & ONENAND_BSC_MASK;
212 
213 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
214 }
215 
216 /**
217  * flexonenand_block - Return block number for flash address
218  * @param this		- OneNAND device structure
219  * @param addr		- Address for which block number is needed
220  */
221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
222 {
223 	unsigned int boundary, blk, die = 0;
224 
225 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
226 		die = 1;
227 		addr -= this->diesize[0];
228 	}
229 
230 	boundary = this->boundary[die];
231 
232 	blk = addr >> (this->erase_shift - 1);
233 	if (blk > boundary)
234 		blk = (blk + boundary + 1) >> 1;
235 
236 	blk += die ? this->density_mask : 0;
237 	return blk;
238 }
239 
240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
241 {
242 	if (!FLEXONENAND(this))
243 		return addr >> this->erase_shift;
244 	return flexonenand_block(this, addr);
245 }
246 
247 /**
248  * flexonenand_addr - Return address of the block
249  * @this:		OneNAND device structure
250  * @block:		Block number on Flex-OneNAND
251  *
252  * Return address of the block
253  */
254 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
255 {
256 	loff_t ofs = 0;
257 	int die = 0, boundary;
258 
259 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
260 		block -= this->density_mask;
261 		die = 1;
262 		ofs = this->diesize[0];
263 	}
264 
265 	boundary = this->boundary[die];
266 	ofs += (loff_t) block << (this->erase_shift - 1);
267 	if (block > (boundary + 1))
268 		ofs += (loff_t) (block - boundary - 1)
269 			<< (this->erase_shift - 1);
270 	return ofs;
271 }
272 
273 loff_t onenand_addr(struct onenand_chip *this, int block)
274 {
275 	if (!FLEXONENAND(this))
276 		return (loff_t) block << this->erase_shift;
277 	return flexonenand_addr(this, block);
278 }
279 
280 /**
281  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
282  * @param mtd		MTD device structure
283  * @param addr		address whose erase region needs to be identified
284  */
285 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
286 {
287 	int i;
288 
289 	for (i = 0; i < mtd->numeraseregions; i++)
290 		if (addr < mtd->eraseregions[i].offset)
291 			break;
292 	return i - 1;
293 }
294 
295 /**
296  * onenand_get_density - [DEFAULT] Get OneNAND density
297  * @param dev_id        OneNAND device ID
298  *
299  * Get OneNAND density from device ID
300  */
301 static inline int onenand_get_density(int dev_id)
302 {
303 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
304 	return (density & ONENAND_DEVICE_DENSITY_MASK);
305 }
306 
307 /**
308  * onenand_command - [DEFAULT] Send command to OneNAND device
309  * @param mtd		MTD device structure
310  * @param cmd		the command to be sent
311  * @param addr		offset to read from or write to
312  * @param len		number of bytes to read or write
313  *
314  * Send command to OneNAND device. This function is used for middle/large page
315  * devices (1KB/2KB Bytes per page)
316  */
317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
318 			   size_t len)
319 {
320 	struct onenand_chip *this = mtd->priv;
321 	int value;
322 	int block, page;
323 
324 	/* Now we use page size operation */
325 	int sectors = 0, count = 0;
326 
327 	/* Address translation */
328 	switch (cmd) {
329 	case ONENAND_CMD_UNLOCK:
330 	case ONENAND_CMD_LOCK:
331 	case ONENAND_CMD_LOCK_TIGHT:
332 	case ONENAND_CMD_UNLOCK_ALL:
333 		block = -1;
334 		page = -1;
335 		break;
336 
337 	case FLEXONENAND_CMD_PI_ACCESS:
338 		/* addr contains die index */
339 		block = addr * this->density_mask;
340 		page = -1;
341 		break;
342 
343 	case ONENAND_CMD_ERASE:
344 	case ONENAND_CMD_BUFFERRAM:
345 		block = onenand_block(this, addr);
346 		page = -1;
347 		break;
348 
349 	case FLEXONENAND_CMD_READ_PI:
350 		cmd = ONENAND_CMD_READ;
351 		block = addr * this->density_mask;
352 		page = 0;
353 		break;
354 
355 	default:
356 		block = onenand_block(this, addr);
357 		page = (int) (addr
358 			- onenand_addr(this, block)) >> this->page_shift;
359 		page &= this->page_mask;
360 		break;
361 	}
362 
363 	/* NOTE: The setting order of the registers is very important! */
364 	if (cmd == ONENAND_CMD_BUFFERRAM) {
365 		/* Select DataRAM for DDP */
366 		value = onenand_bufferram_address(this, block);
367 		this->write_word(value,
368 				 this->base + ONENAND_REG_START_ADDRESS2);
369 
370 		if (ONENAND_IS_4KB_PAGE(this))
371 			ONENAND_SET_BUFFERRAM0(this);
372 		else
373 			/* Switch to the next data buffer */
374 			ONENAND_SET_NEXT_BUFFERRAM(this);
375 
376 		return 0;
377 	}
378 
379 	if (block != -1) {
380 		/* Write 'DFS, FBA' of Flash */
381 		value = onenand_block_address(this, block);
382 		this->write_word(value,
383 				 this->base + ONENAND_REG_START_ADDRESS1);
384 
385 		/* Select DataRAM for DDP */
386 		value = onenand_bufferram_address(this, block);
387 		this->write_word(value,
388 				 this->base + ONENAND_REG_START_ADDRESS2);
389 	}
390 
391 	if (page != -1) {
392 		int dataram;
393 
394 		switch (cmd) {
395 		case FLEXONENAND_CMD_RECOVER_LSB:
396 		case ONENAND_CMD_READ:
397 		case ONENAND_CMD_READOOB:
398 			if (ONENAND_IS_4KB_PAGE(this))
399 				dataram = ONENAND_SET_BUFFERRAM0(this);
400 			else
401 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
402 
403 			break;
404 
405 		default:
406 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
407 			break;
408 		}
409 
410 		/* Write 'FPA, FSA' of Flash */
411 		value = onenand_page_address(page, sectors);
412 		this->write_word(value,
413 				 this->base + ONENAND_REG_START_ADDRESS8);
414 
415 		/* Write 'BSA, BSC' of DataRAM */
416 		value = onenand_buffer_address(dataram, sectors, count);
417 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
418 	}
419 
420 	/* Interrupt clear */
421 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
422 	/* Write command */
423 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
424 
425 	return 0;
426 }
427 
428 /**
429  * onenand_read_ecc - return ecc status
430  * @param this		onenand chip structure
431  */
432 static int onenand_read_ecc(struct onenand_chip *this)
433 {
434 	int ecc, i;
435 
436 	if (!FLEXONENAND(this))
437 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438 
439 	for (i = 0; i < 4; i++) {
440 		ecc = this->read_word(this->base
441 				+ ((ONENAND_REG_ECC_STATUS + i) << 1));
442 		if (likely(!ecc))
443 			continue;
444 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
445 			return ONENAND_ECC_2BIT_ALL;
446 	}
447 
448 	return 0;
449 }
450 
451 /**
452  * onenand_wait - [DEFAULT] wait until the command is done
453  * @param mtd		MTD device structure
454  * @param state		state to select the max. timeout value
455  *
456  * Wait for command done. This applies to all OneNAND command
457  * Read can take up to 30us, erase up to 2ms and program up to 350us
458  * according to general OneNAND specs
459  */
460 static int onenand_wait(struct mtd_info *mtd, int state)
461 {
462 	struct onenand_chip *this = mtd->priv;
463 	unsigned int flags = ONENAND_INT_MASTER;
464 	unsigned int interrupt = 0;
465 	unsigned int ctrl;
466 
467 	while (1) {
468 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
469 		if (interrupt & flags)
470 			break;
471 	}
472 
473 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
474 
475 	if (interrupt & ONENAND_INT_READ) {
476 		int ecc = onenand_read_ecc(this);
477 		if (ecc & ONENAND_ECC_2BIT_ALL) {
478 			printk("onenand_wait: ECC error = 0x%04x\n", ecc);
479 			return -EBADMSG;
480 		}
481 	}
482 
483 	if (ctrl & ONENAND_CTRL_ERROR) {
484 		printk("onenand_wait: controller error = 0x%04x\n", ctrl);
485 		if (ctrl & ONENAND_CTRL_LOCK)
486 			printk("onenand_wait: it's locked error = 0x%04x\n",
487 				ctrl);
488 
489 		return -EIO;
490 	}
491 
492 
493 	return 0;
494 }
495 
496 /**
497  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
498  * @param mtd		MTD data structure
499  * @param area		BufferRAM area
500  * @return		offset given area
501  *
502  * Return BufferRAM offset given area
503  */
504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
505 {
506 	struct onenand_chip *this = mtd->priv;
507 
508 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
509 		if (area == ONENAND_DATARAM)
510 			return mtd->writesize;
511 		if (area == ONENAND_SPARERAM)
512 			return mtd->oobsize;
513 	}
514 
515 	return 0;
516 }
517 
518 /**
519  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
520  * @param mtd		MTD data structure
521  * @param area		BufferRAM area
522  * @param buffer	the databuffer to put/get data
523  * @param offset	offset to read from or write to
524  * @param count		number of bytes to read/write
525  *
526  * Read the BufferRAM area
527  */
528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
529 				  unsigned char *buffer, int offset,
530 				  size_t count)
531 {
532 	struct onenand_chip *this = mtd->priv;
533 	void __iomem *bufferram;
534 
535 	bufferram = this->base + area;
536 	bufferram += onenand_bufferram_offset(mtd, area);
537 
538 	memcpy_16(buffer, bufferram + offset, count);
539 
540 	return 0;
541 }
542 
543 /**
544  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
545  * @param mtd		MTD data structure
546  * @param area		BufferRAM area
547  * @param buffer	the databuffer to put/get data
548  * @param offset	offset to read from or write to
549  * @param count		number of bytes to read/write
550  *
551  * Read the BufferRAM area with Sync. Burst Mode
552  */
553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
554 				       unsigned char *buffer, int offset,
555 				       size_t count)
556 {
557 	struct onenand_chip *this = mtd->priv;
558 	void __iomem *bufferram;
559 
560 	bufferram = this->base + area;
561 	bufferram += onenand_bufferram_offset(mtd, area);
562 
563 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
564 
565 	memcpy_16(buffer, bufferram + offset, count);
566 
567 	this->mmcontrol(mtd, 0);
568 
569 	return 0;
570 }
571 
572 /**
573  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
574  * @param mtd		MTD data structure
575  * @param area		BufferRAM area
576  * @param buffer	the databuffer to put/get data
577  * @param offset	offset to read from or write to
578  * @param count		number of bytes to read/write
579  *
580  * Write the BufferRAM area
581  */
582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
583 				   const unsigned char *buffer, int offset,
584 				   size_t count)
585 {
586 	struct onenand_chip *this = mtd->priv;
587 	void __iomem *bufferram;
588 
589 	bufferram = this->base + area;
590 	bufferram += onenand_bufferram_offset(mtd, area);
591 
592 	memcpy_16(bufferram + offset, buffer, count);
593 
594 	return 0;
595 }
596 
597 /**
598  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
599  * @param mtd		MTD data structure
600  * @param addr		address to check
601  * @return		blockpage address
602  *
603  * Get blockpage address at 2x program mode
604  */
605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
606 {
607 	struct onenand_chip *this = mtd->priv;
608 	int blockpage, block, page;
609 
610 	/* Calculate the even block number */
611 	block = (int) (addr >> this->erase_shift) & ~1;
612 	/* Is it the odd plane? */
613 	if (addr & this->writesize)
614 		block++;
615 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
616 	blockpage = (block << 7) | page;
617 
618 	return blockpage;
619 }
620 
621 /**
622  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
623  * @param mtd		MTD data structure
624  * @param addr		address to check
625  * @return		1 if there are valid data, otherwise 0
626  *
627  * Check bufferram if there is data we required
628  */
629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
630 {
631 	struct onenand_chip *this = mtd->priv;
632 	int blockpage, found = 0;
633 	unsigned int i;
634 
635 	if (ONENAND_IS_2PLANE(this))
636 		blockpage = onenand_get_2x_blockpage(mtd, addr);
637 	else
638 		blockpage = (int) (addr >> this->page_shift);
639 
640 	/* Is there valid data? */
641 	i = ONENAND_CURRENT_BUFFERRAM(this);
642 	if (this->bufferram[i].blockpage == blockpage)
643 		found = 1;
644 	else {
645 		/* Check another BufferRAM */
646 		i = ONENAND_NEXT_BUFFERRAM(this);
647 		if (this->bufferram[i].blockpage == blockpage) {
648 			ONENAND_SET_NEXT_BUFFERRAM(this);
649 			found = 1;
650 		}
651 	}
652 
653 	if (found && ONENAND_IS_DDP(this)) {
654 		/* Select DataRAM for DDP */
655 		int block = onenand_block(this, addr);
656 		int value = onenand_bufferram_address(this, block);
657 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
658 	}
659 
660 	return found;
661 }
662 
663 /**
664  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
665  * @param mtd		MTD data structure
666  * @param addr		address to update
667  * @param valid		valid flag
668  *
669  * Update BufferRAM information
670  */
671 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
672 				    int valid)
673 {
674 	struct onenand_chip *this = mtd->priv;
675 	int blockpage;
676 	unsigned int i;
677 
678 	if (ONENAND_IS_2PLANE(this))
679 		blockpage = onenand_get_2x_blockpage(mtd, addr);
680 	else
681 		blockpage = (int)(addr >> this->page_shift);
682 
683 	/* Invalidate another BufferRAM */
684 	i = ONENAND_NEXT_BUFFERRAM(this);
685 	if (this->bufferram[i].blockpage == blockpage)
686 		this->bufferram[i].blockpage = -1;
687 
688 	/* Update BufferRAM */
689 	i = ONENAND_CURRENT_BUFFERRAM(this);
690 	if (valid)
691 		this->bufferram[i].blockpage = blockpage;
692 	else
693 		this->bufferram[i].blockpage = -1;
694 
695 	return 0;
696 }
697 
698 /**
699  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
700  * @param mtd           MTD data structure
701  * @param addr          start address to invalidate
702  * @param len           length to invalidate
703  *
704  * Invalidate BufferRAM information
705  */
706 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
707 					 unsigned int len)
708 {
709 	struct onenand_chip *this = mtd->priv;
710 	int i;
711 	loff_t end_addr = addr + len;
712 
713 	/* Invalidate BufferRAM */
714 	for (i = 0; i < MAX_BUFFERRAM; i++) {
715 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
716 
717 		if (buf_addr >= addr && buf_addr < end_addr)
718 			this->bufferram[i].blockpage = -1;
719 	}
720 }
721 
722 /**
723  * onenand_get_device - [GENERIC] Get chip for selected access
724  * @param mtd		MTD device structure
725  * @param new_state	the state which is requested
726  *
727  * Get the device and lock it for exclusive access
728  */
729 static void onenand_get_device(struct mtd_info *mtd, int new_state)
730 {
731 	/* Do nothing */
732 }
733 
734 /**
735  * onenand_release_device - [GENERIC] release chip
736  * @param mtd		MTD device structure
737  *
738  * Deselect, release chip lock and wake up anyone waiting on the device
739  */
740 static void onenand_release_device(struct mtd_info *mtd)
741 {
742 	/* Do nothing */
743 }
744 
745 /**
746  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
747  * @param mtd		MTD device structure
748  * @param buf		destination address
749  * @param column	oob offset to read from
750  * @param thislen	oob length to read
751  */
752 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
753 					int column, int thislen)
754 {
755 	struct onenand_chip *this = mtd->priv;
756 	struct nand_oobfree *free;
757 	int readcol = column;
758 	int readend = column + thislen;
759 	int lastgap = 0;
760 	unsigned int i;
761 	uint8_t *oob_buf = this->oob_buf;
762 
763 	free = this->ecclayout->oobfree;
764 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
765 		if (readcol >= lastgap)
766 			readcol += free->offset - lastgap;
767 		if (readend >= lastgap)
768 			readend += free->offset - lastgap;
769 		lastgap = free->offset + free->length;
770 	}
771 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
772 	free = this->ecclayout->oobfree;
773 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
774 		int free_end = free->offset + free->length;
775 		if (free->offset < readend && free_end > readcol) {
776 			int st = max_t(int,free->offset,readcol);
777 			int ed = min_t(int,free_end,readend);
778 			int n = ed - st;
779 			memcpy(buf, oob_buf + st, n);
780 			buf += n;
781 		} else if (column == 0)
782 			break;
783 	}
784 	return 0;
785 }
786 
787 /**
788  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
789  * @param mtd		MTD device structure
790  * @param addr		address to recover
791  * @param status	return value from onenand_wait
792  *
793  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
794  * lower page address and MSB page has higher page address in paired pages.
795  * If power off occurs during MSB page program, the paired LSB page data can
796  * become corrupt. LSB page recovery read is a way to read LSB page though page
797  * data are corrupted. When uncorrectable error occurs as a result of LSB page
798  * read after power up, issue LSB page recovery read.
799  */
800 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
801 {
802 	struct onenand_chip *this = mtd->priv;
803 	int i;
804 
805 	/* Recovery is only for Flex-OneNAND */
806 	if (!FLEXONENAND(this))
807 		return status;
808 
809 	/* check if we failed due to uncorrectable error */
810 	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
811 		return status;
812 
813 	/* check if address lies in MLC region */
814 	i = flexonenand_region(mtd, addr);
815 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
816 		return status;
817 
818 	printk("onenand_recover_lsb:"
819 		"Attempting to recover from uncorrectable read\n");
820 
821 	/* Issue the LSB page recovery command */
822 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
823 	return this->wait(mtd, FL_READING);
824 }
825 
826 /**
827  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
828  * @param mtd		MTD device structure
829  * @param from		offset to read from
830  * @param ops		oob operation description structure
831  *
832  * OneNAND read main and/or out-of-band data
833  */
834 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
835 		struct mtd_oob_ops *ops)
836 {
837 	struct onenand_chip *this = mtd->priv;
838 	struct mtd_ecc_stats stats;
839 	size_t len = ops->len;
840 	size_t ooblen = ops->ooblen;
841 	u_char *buf = ops->datbuf;
842 	u_char *oobbuf = ops->oobbuf;
843 	int read = 0, column, thislen;
844 	int oobread = 0, oobcolumn, thisooblen, oobsize;
845 	int ret = 0, boundary = 0;
846 	int writesize = this->writesize;
847 
848 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
849 
850 	if (ops->mode == MTD_OPS_AUTO_OOB)
851 		oobsize = this->ecclayout->oobavail;
852 	else
853 		oobsize = mtd->oobsize;
854 
855 	oobcolumn = from & (mtd->oobsize - 1);
856 
857 	/* Do not allow reads past end of device */
858 	if ((from + len) > mtd->size) {
859 		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
860 		ops->retlen = 0;
861 		ops->oobretlen = 0;
862 		return -EINVAL;
863 	}
864 
865 	stats = mtd->ecc_stats;
866 
867 	/* Read-while-load method */
868 	/* Note: We can't use this feature in MLC */
869 
870 	/* Do first load to bufferRAM */
871 	if (read < len) {
872 		if (!onenand_check_bufferram(mtd, from)) {
873 			this->main_buf = buf;
874 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
875 			ret = this->wait(mtd, FL_READING);
876 			if (unlikely(ret))
877 				ret = onenand_recover_lsb(mtd, from, ret);
878 			onenand_update_bufferram(mtd, from, !ret);
879 			if (ret == -EBADMSG)
880 				ret = 0;
881 		}
882 	}
883 
884 	thislen = min_t(int, writesize, len - read);
885 	column = from & (writesize - 1);
886 	if (column + thislen > writesize)
887 		thislen = writesize - column;
888 
889 	while (!ret) {
890 		/* If there is more to load then start next load */
891 		from += thislen;
892 		if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
893 			this->main_buf = buf + thislen;
894 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
895 			/*
896 			 * Chip boundary handling in DDP
897 			 * Now we issued chip 1 read and pointed chip 1
898 			 * bufferam so we have to point chip 0 bufferam.
899 			 */
900 			if (ONENAND_IS_DDP(this) &&
901 					unlikely(from == (this->chipsize >> 1))) {
902 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
903 				boundary = 1;
904 			} else
905 				boundary = 0;
906 			ONENAND_SET_PREV_BUFFERRAM(this);
907 		}
908 
909 		/* While load is going, read from last bufferRAM */
910 		this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
911 
912 		/* Read oob area if needed */
913 		if (oobbuf) {
914 			thisooblen = oobsize - oobcolumn;
915 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
916 
917 			if (ops->mode == MTD_OPS_AUTO_OOB)
918 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
919 			else
920 				this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
921 			oobread += thisooblen;
922 			oobbuf += thisooblen;
923 			oobcolumn = 0;
924 		}
925 
926 		if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
927 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
928 			ret = this->wait(mtd, FL_READING);
929 			if (unlikely(ret))
930 				ret = onenand_recover_lsb(mtd, from, ret);
931 			onenand_update_bufferram(mtd, from, !ret);
932 			if (mtd_is_eccerr(ret))
933 				ret = 0;
934 		}
935 
936 		/* See if we are done */
937 		read += thislen;
938 		if (read == len)
939 			break;
940 		/* Set up for next read from bufferRAM */
941 		if (unlikely(boundary))
942 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
943 		if (!ONENAND_IS_4KB_PAGE(this))
944 			ONENAND_SET_NEXT_BUFFERRAM(this);
945 		buf += thislen;
946 		thislen = min_t(int, writesize, len - read);
947 		column = 0;
948 
949 		if (!ONENAND_IS_4KB_PAGE(this)) {
950 			/* Now wait for load */
951 			ret = this->wait(mtd, FL_READING);
952 			onenand_update_bufferram(mtd, from, !ret);
953 			if (mtd_is_eccerr(ret))
954 				ret = 0;
955 		}
956 	}
957 
958 	/*
959 	 * Return success, if no ECC failures, else -EBADMSG
960 	 * fs driver will take care of that, because
961 	 * retlen == desired len and result == -EBADMSG
962 	 */
963 	ops->retlen = read;
964 	ops->oobretlen = oobread;
965 
966 	if (ret)
967 		return ret;
968 
969 	if (mtd->ecc_stats.failed - stats.failed)
970 		return -EBADMSG;
971 
972 	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
973 }
974 
975 /**
976  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
977  * @param mtd		MTD device structure
978  * @param from		offset to read from
979  * @param ops		oob operation description structure
980  *
981  * OneNAND read out-of-band data from the spare area
982  */
983 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
984 		struct mtd_oob_ops *ops)
985 {
986 	struct onenand_chip *this = mtd->priv;
987 	struct mtd_ecc_stats stats;
988 	int read = 0, thislen, column, oobsize;
989 	size_t len = ops->ooblen;
990 	unsigned int mode = ops->mode;
991 	u_char *buf = ops->oobbuf;
992 	int ret = 0, readcmd;
993 
994 	from += ops->ooboffs;
995 
996 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
997 
998 	/* Initialize return length value */
999 	ops->oobretlen = 0;
1000 
1001 	if (mode == MTD_OPS_AUTO_OOB)
1002 		oobsize = this->ecclayout->oobavail;
1003 	else
1004 		oobsize = mtd->oobsize;
1005 
1006 	column = from & (mtd->oobsize - 1);
1007 
1008 	if (unlikely(column >= oobsize)) {
1009 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1010 		return -EINVAL;
1011 	}
1012 
1013 	/* Do not allow reads past end of device */
1014 	if (unlikely(from >= mtd->size ||
1015 		column + len > ((mtd->size >> this->page_shift) -
1016 				(from >> this->page_shift)) * oobsize)) {
1017 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1018 		return -EINVAL;
1019 	}
1020 
1021 	stats = mtd->ecc_stats;
1022 
1023 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1024 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1025 
1026 	while (read < len) {
1027 		thislen = oobsize - column;
1028 		thislen = min_t(int, thislen, len);
1029 
1030 		this->spare_buf = buf;
1031 		this->command(mtd, readcmd, from, mtd->oobsize);
1032 
1033 		onenand_update_bufferram(mtd, from, 0);
1034 
1035 		ret = this->wait(mtd, FL_READING);
1036 		if (unlikely(ret))
1037 			ret = onenand_recover_lsb(mtd, from, ret);
1038 
1039 		if (ret && ret != -EBADMSG) {
1040 			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1041 			break;
1042 		}
1043 
1044 		if (mode == MTD_OPS_AUTO_OOB)
1045 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1046 		else
1047 			this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1048 
1049 		read += thislen;
1050 
1051 		if (read == len)
1052 			break;
1053 
1054 		buf += thislen;
1055 
1056 		/* Read more? */
1057 		if (read < len) {
1058 			/* Page size */
1059 			from += mtd->writesize;
1060 			column = 0;
1061 		}
1062 	}
1063 
1064 	ops->oobretlen = read;
1065 
1066 	if (ret)
1067 		return ret;
1068 
1069 	if (mtd->ecc_stats.failed - stats.failed)
1070 		return -EBADMSG;
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1077  * @param mtd		MTD device structure
1078  * @param from		offset to read from
1079  * @param len		number of bytes to read
1080  * @param retlen	pointer to variable to store the number of read bytes
1081  * @param buf		the databuffer to put data
1082  *
1083  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1084 */
1085 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1086 		 size_t * retlen, u_char * buf)
1087 {
1088 	struct mtd_oob_ops ops = {
1089 		.len    = len,
1090 		.ooblen = 0,
1091 		.datbuf = buf,
1092 		.oobbuf = NULL,
1093 	};
1094 	int ret;
1095 
1096 	onenand_get_device(mtd, FL_READING);
1097 	ret = onenand_read_ops_nolock(mtd, from, &ops);
1098 	onenand_release_device(mtd);
1099 
1100 	*retlen = ops.retlen;
1101 	return ret;
1102 }
1103 
1104 /**
1105  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1106  * @param mtd		MTD device structure
1107  * @param from		offset to read from
1108  * @param ops		oob operations description structure
1109  *
1110  * OneNAND main and/or out-of-band
1111  */
1112 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1113 			struct mtd_oob_ops *ops)
1114 {
1115 	int ret;
1116 
1117 	switch (ops->mode) {
1118 	case MTD_OPS_PLACE_OOB:
1119 	case MTD_OPS_AUTO_OOB:
1120 		break;
1121 	case MTD_OPS_RAW:
1122 		/* Not implemented yet */
1123 	default:
1124 		return -EINVAL;
1125 	}
1126 
1127 	onenand_get_device(mtd, FL_READING);
1128 	if (ops->datbuf)
1129 		ret = onenand_read_ops_nolock(mtd, from, ops);
1130 	else
1131 		ret = onenand_read_oob_nolock(mtd, from, ops);
1132 	onenand_release_device(mtd);
1133 
1134 	return ret;
1135 }
1136 
1137 /**
1138  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1139  * @param mtd		MTD device structure
1140  * @param state		state to select the max. timeout value
1141  *
1142  * Wait for command done.
1143  */
1144 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1145 {
1146 	struct onenand_chip *this = mtd->priv;
1147 	unsigned int flags = ONENAND_INT_MASTER;
1148 	unsigned int interrupt;
1149 	unsigned int ctrl;
1150 
1151 	while (1) {
1152 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1153 		if (interrupt & flags)
1154 			break;
1155 	}
1156 
1157 	/* To get correct interrupt status in timeout case */
1158 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1159 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1160 
1161 	if (interrupt & ONENAND_INT_READ) {
1162 		int ecc = onenand_read_ecc(this);
1163 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1164 			printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1165 				", controller = 0x%04x\n", ecc, ctrl);
1166 			return ONENAND_BBT_READ_ERROR;
1167 		}
1168 	} else {
1169 		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1170 				"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1171 		return ONENAND_BBT_READ_FATAL_ERROR;
1172 	}
1173 
1174 	/* Initial bad block case: 0x2400 or 0x0400 */
1175 	if (ctrl & ONENAND_CTRL_ERROR) {
1176 		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1177 		return ONENAND_BBT_READ_ERROR;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 /**
1184  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1185  * @param mtd		MTD device structure
1186  * @param from		offset to read from
1187  * @param ops		oob operation description structure
1188  *
1189  * OneNAND read out-of-band data from the spare area for bbt scan
1190  */
1191 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1192 		struct mtd_oob_ops *ops)
1193 {
1194 	struct onenand_chip *this = mtd->priv;
1195 	int read = 0, thislen, column;
1196 	int ret = 0, readcmd;
1197 	size_t len = ops->ooblen;
1198 	u_char *buf = ops->oobbuf;
1199 
1200 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1201 
1202 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1203 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1204 
1205 	/* Initialize return value */
1206 	ops->oobretlen = 0;
1207 
1208 	/* Do not allow reads past end of device */
1209 	if (unlikely((from + len) > mtd->size)) {
1210 		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1211 		return ONENAND_BBT_READ_FATAL_ERROR;
1212 	}
1213 
1214 	/* Grab the lock and see if the device is available */
1215 	onenand_get_device(mtd, FL_READING);
1216 
1217 	column = from & (mtd->oobsize - 1);
1218 
1219 	while (read < len) {
1220 
1221 		thislen = mtd->oobsize - column;
1222 		thislen = min_t(int, thislen, len);
1223 
1224 		this->spare_buf = buf;
1225 		this->command(mtd, readcmd, from, mtd->oobsize);
1226 
1227 		onenand_update_bufferram(mtd, from, 0);
1228 
1229 		ret = this->bbt_wait(mtd, FL_READING);
1230 		if (unlikely(ret))
1231 			ret = onenand_recover_lsb(mtd, from, ret);
1232 
1233 		if (ret)
1234 			break;
1235 
1236 		this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1237 		read += thislen;
1238 		if (read == len)
1239 			break;
1240 
1241 		buf += thislen;
1242 
1243 		/* Read more? */
1244 		if (read < len) {
1245 			/* Update Page size */
1246 			from += this->writesize;
1247 			column = 0;
1248 		}
1249 	}
1250 
1251 	/* Deselect and wake up anyone waiting on the device */
1252 	onenand_release_device(mtd);
1253 
1254 	ops->oobretlen = read;
1255 	return ret;
1256 }
1257 
1258 
1259 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1260 /**
1261  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1262  * @param mtd           MTD device structure
1263  * @param buf           the databuffer to verify
1264  * @param to            offset to read from
1265  */
1266 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1267 {
1268 	struct onenand_chip *this = mtd->priv;
1269 	u_char *oob_buf = this->oob_buf;
1270 	int status, i, readcmd;
1271 
1272 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1273 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1274 
1275 	this->command(mtd, readcmd, to, mtd->oobsize);
1276 	onenand_update_bufferram(mtd, to, 0);
1277 	status = this->wait(mtd, FL_READING);
1278 	if (status)
1279 		return status;
1280 
1281 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1282 	for (i = 0; i < mtd->oobsize; i++)
1283 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1284 			return -EBADMSG;
1285 
1286 	return 0;
1287 }
1288 
1289 /**
1290  * onenand_verify - [GENERIC] verify the chip contents after a write
1291  * @param mtd          MTD device structure
1292  * @param buf          the databuffer to verify
1293  * @param addr         offset to read from
1294  * @param len          number of bytes to read and compare
1295  */
1296 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1297 {
1298 	struct onenand_chip *this = mtd->priv;
1299 	void __iomem *dataram;
1300 	int ret = 0;
1301 	int thislen, column;
1302 
1303 	while (len != 0) {
1304 		thislen = min_t(int, this->writesize, len);
1305 		column = addr & (this->writesize - 1);
1306 		if (column + thislen > this->writesize)
1307 			thislen = this->writesize - column;
1308 
1309 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1310 
1311 		onenand_update_bufferram(mtd, addr, 0);
1312 
1313 		ret = this->wait(mtd, FL_READING);
1314 		if (ret)
1315 			return ret;
1316 
1317 		onenand_update_bufferram(mtd, addr, 1);
1318 
1319 		dataram = this->base + ONENAND_DATARAM;
1320 		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1321 
1322 		if (memcmp(buf, dataram + column, thislen))
1323 			return -EBADMSG;
1324 
1325 		len -= thislen;
1326 		buf += thislen;
1327 		addr += thislen;
1328 	}
1329 
1330 	return 0;
1331 }
1332 #else
1333 #define onenand_verify(...)             (0)
1334 #define onenand_verify_oob(...)         (0)
1335 #endif
1336 
1337 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1338 
1339 /**
1340  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1341  * @param mtd           MTD device structure
1342  * @param oob_buf       oob buffer
1343  * @param buf           source address
1344  * @param column        oob offset to write to
1345  * @param thislen       oob length to write
1346  */
1347 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1348 		const u_char *buf, int column, int thislen)
1349 {
1350 	struct onenand_chip *this = mtd->priv;
1351 	struct nand_oobfree *free;
1352 	int writecol = column;
1353 	int writeend = column + thislen;
1354 	int lastgap = 0;
1355 	unsigned int i;
1356 
1357 	free = this->ecclayout->oobfree;
1358 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1359 		if (writecol >= lastgap)
1360 			writecol += free->offset - lastgap;
1361 		if (writeend >= lastgap)
1362 			writeend += free->offset - lastgap;
1363 		lastgap = free->offset + free->length;
1364 	}
1365 	free = this->ecclayout->oobfree;
1366 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1367 		int free_end = free->offset + free->length;
1368 		if (free->offset < writeend && free_end > writecol) {
1369 			int st = max_t(int,free->offset,writecol);
1370 			int ed = min_t(int,free_end,writeend);
1371 			int n = ed - st;
1372 			memcpy(oob_buf + st, buf, n);
1373 			buf += n;
1374 		} else if (column == 0)
1375 			break;
1376 	}
1377 	return 0;
1378 }
1379 
1380 /**
1381  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1382  * @param mtd           MTD device structure
1383  * @param to            offset to write to
1384  * @param ops           oob operation description structure
1385  *
1386  * Write main and/or oob with ECC
1387  */
1388 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1389 		struct mtd_oob_ops *ops)
1390 {
1391 	struct onenand_chip *this = mtd->priv;
1392 	int written = 0, column, thislen, subpage;
1393 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1394 	size_t len = ops->len;
1395 	size_t ooblen = ops->ooblen;
1396 	const u_char *buf = ops->datbuf;
1397 	const u_char *oob = ops->oobbuf;
1398 	u_char *oobbuf;
1399 	int ret = 0;
1400 
1401 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1402 
1403 	/* Initialize retlen, in case of early exit */
1404 	ops->retlen = 0;
1405 	ops->oobretlen = 0;
1406 
1407 	/* Reject writes, which are not page aligned */
1408 	if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1409 		printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1410 		return -EINVAL;
1411 	}
1412 
1413 	if (ops->mode == MTD_OPS_AUTO_OOB)
1414 		oobsize = this->ecclayout->oobavail;
1415 	else
1416 		oobsize = mtd->oobsize;
1417 
1418 	oobcolumn = to & (mtd->oobsize - 1);
1419 
1420 	column = to & (mtd->writesize - 1);
1421 
1422 	/* Loop until all data write */
1423 	while (written < len) {
1424 		u_char *wbuf = (u_char *) buf;
1425 
1426 		thislen = min_t(int, mtd->writesize - column, len - written);
1427 		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1428 
1429 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1430 
1431 		/* Partial page write */
1432 		subpage = thislen < mtd->writesize;
1433 		if (subpage) {
1434 			memset(this->page_buf, 0xff, mtd->writesize);
1435 			memcpy(this->page_buf + column, buf, thislen);
1436 			wbuf = this->page_buf;
1437 		}
1438 
1439 		this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1440 
1441 		if (oob) {
1442 			oobbuf = this->oob_buf;
1443 
1444 			/* We send data to spare ram with oobsize
1445 			 *                          * to prevent byte access */
1446 			memset(oobbuf, 0xff, mtd->oobsize);
1447 			if (ops->mode == MTD_OPS_AUTO_OOB)
1448 				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1449 			else
1450 				memcpy(oobbuf + oobcolumn, oob, thisooblen);
1451 
1452 			oobwritten += thisooblen;
1453 			oob += thisooblen;
1454 			oobcolumn = 0;
1455 		} else
1456 			oobbuf = (u_char *) ffchars;
1457 
1458 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1459 
1460 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1461 
1462 		ret = this->wait(mtd, FL_WRITING);
1463 
1464 		/* In partial page write we don't update bufferram */
1465 		onenand_update_bufferram(mtd, to, !ret && !subpage);
1466 		if (ONENAND_IS_2PLANE(this)) {
1467 			ONENAND_SET_BUFFERRAM1(this);
1468 			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1469 		}
1470 
1471 		if (ret) {
1472 			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1473 			break;
1474 		}
1475 
1476 		/* Only check verify write turn on */
1477 		ret = onenand_verify(mtd, buf, to, thislen);
1478 		if (ret) {
1479 			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1480 			break;
1481 		}
1482 
1483 		written += thislen;
1484 
1485 		if (written == len)
1486 			break;
1487 
1488 		column = 0;
1489 		to += thislen;
1490 		buf += thislen;
1491 	}
1492 
1493 	ops->retlen = written;
1494 
1495 	return ret;
1496 }
1497 
1498 /**
1499  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1500  * @param mtd           MTD device structure
1501  * @param to            offset to write to
1502  * @param len           number of bytes to write
1503  * @param retlen        pointer to variable to store the number of written bytes
1504  * @param buf           the data to write
1505  * @param mode          operation mode
1506  *
1507  * OneNAND write out-of-band
1508  */
1509 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1510 		struct mtd_oob_ops *ops)
1511 {
1512 	struct onenand_chip *this = mtd->priv;
1513 	int column, ret = 0, oobsize;
1514 	int written = 0, oobcmd;
1515 	u_char *oobbuf;
1516 	size_t len = ops->ooblen;
1517 	const u_char *buf = ops->oobbuf;
1518 	unsigned int mode = ops->mode;
1519 
1520 	to += ops->ooboffs;
1521 
1522 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1523 
1524 	/* Initialize retlen, in case of early exit */
1525 	ops->oobretlen = 0;
1526 
1527 	if (mode == MTD_OPS_AUTO_OOB)
1528 		oobsize = this->ecclayout->oobavail;
1529 	else
1530 		oobsize = mtd->oobsize;
1531 
1532 	column = to & (mtd->oobsize - 1);
1533 
1534 	if (unlikely(column >= oobsize)) {
1535 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1536 		return -EINVAL;
1537 	}
1538 
1539 	/* For compatibility with NAND: Do not allow write past end of page */
1540 	if (unlikely(column + len > oobsize)) {
1541 		printk(KERN_ERR "onenand_write_oob_nolock: "
1542 				"Attempt to write past end of page\n");
1543 		return -EINVAL;
1544 	}
1545 
1546 	/* Do not allow reads past end of device */
1547 	if (unlikely(to >= mtd->size ||
1548 				column + len > ((mtd->size >> this->page_shift) -
1549 					(to >> this->page_shift)) * oobsize)) {
1550 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1551 		return -EINVAL;
1552 	}
1553 
1554 	oobbuf = this->oob_buf;
1555 
1556 	oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1557 		ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1558 
1559 	/* Loop until all data write */
1560 	while (written < len) {
1561 		int thislen = min_t(int, oobsize, len - written);
1562 
1563 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1564 
1565 		/* We send data to spare ram with oobsize
1566 		 * to prevent byte access */
1567 		memset(oobbuf, 0xff, mtd->oobsize);
1568 		if (mode == MTD_OPS_AUTO_OOB)
1569 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1570 		else
1571 			memcpy(oobbuf + column, buf, thislen);
1572 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1573 
1574 		if (ONENAND_IS_4KB_PAGE(this)) {
1575 			/* Set main area of DataRAM to 0xff*/
1576 			memset(this->page_buf, 0xff, mtd->writesize);
1577 			this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1578 				this->page_buf,	0, mtd->writesize);
1579 		}
1580 
1581 		this->command(mtd, oobcmd, to, mtd->oobsize);
1582 
1583 		onenand_update_bufferram(mtd, to, 0);
1584 		if (ONENAND_IS_2PLANE(this)) {
1585 			ONENAND_SET_BUFFERRAM1(this);
1586 			onenand_update_bufferram(mtd, to + this->writesize, 0);
1587 		}
1588 
1589 		ret = this->wait(mtd, FL_WRITING);
1590 		if (ret) {
1591 			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1592 			break;
1593 		}
1594 
1595 		ret = onenand_verify_oob(mtd, oobbuf, to);
1596 		if (ret) {
1597 			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1598 			break;
1599 		}
1600 
1601 		written += thislen;
1602 		if (written == len)
1603 			break;
1604 
1605 		to += mtd->writesize;
1606 		buf += thislen;
1607 		column = 0;
1608 	}
1609 
1610 	ops->oobretlen = written;
1611 
1612 	return ret;
1613 }
1614 
1615 /**
1616  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1617  * @param mtd		MTD device structure
1618  * @param to		offset to write to
1619  * @param len		number of bytes to write
1620  * @param retlen	pointer to variable to store the number of written bytes
1621  * @param buf		the data to write
1622  *
1623  * Write with ECC
1624  */
1625 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1626 		  size_t * retlen, const u_char * buf)
1627 {
1628 	struct mtd_oob_ops ops = {
1629 		.len    = len,
1630 		.ooblen = 0,
1631 		.datbuf = (u_char *) buf,
1632 		.oobbuf = NULL,
1633 	};
1634 	int ret;
1635 
1636 	onenand_get_device(mtd, FL_WRITING);
1637 	ret = onenand_write_ops_nolock(mtd, to, &ops);
1638 	onenand_release_device(mtd);
1639 
1640 	*retlen = ops.retlen;
1641 	return ret;
1642 }
1643 
1644 /**
1645  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1646  * @param mtd		MTD device structure
1647  * @param to		offset to write to
1648  * @param ops		oob operation description structure
1649  *
1650  * OneNAND write main and/or out-of-band
1651  */
1652 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1653 			struct mtd_oob_ops *ops)
1654 {
1655 	int ret;
1656 
1657 	switch (ops->mode) {
1658 	case MTD_OPS_PLACE_OOB:
1659 	case MTD_OPS_AUTO_OOB:
1660 		break;
1661 	case MTD_OPS_RAW:
1662 		/* Not implemented yet */
1663 	default:
1664 		return -EINVAL;
1665 	}
1666 
1667 	onenand_get_device(mtd, FL_WRITING);
1668 	if (ops->datbuf)
1669 		ret = onenand_write_ops_nolock(mtd, to, ops);
1670 	else
1671 		ret = onenand_write_oob_nolock(mtd, to, ops);
1672 	onenand_release_device(mtd);
1673 
1674 	return ret;
1675 
1676 }
1677 
1678 /**
1679  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1680  * @param mtd		MTD device structure
1681  * @param ofs		offset from device start
1682  * @param allowbbt	1, if its allowed to access the bbt area
1683  *
1684  * Check, if the block is bad, Either by reading the bad block table or
1685  * calling of the scan function.
1686  */
1687 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1688 {
1689 	struct onenand_chip *this = mtd->priv;
1690 	struct bbm_info *bbm = this->bbm;
1691 
1692 	/* Return info from the table */
1693 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1694 }
1695 
1696 
1697 /**
1698  * onenand_erase - [MTD Interface] erase block(s)
1699  * @param mtd		MTD device structure
1700  * @param instr		erase instruction
1701  *
1702  * Erase one ore more blocks
1703  */
1704 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1705 {
1706 	struct onenand_chip *this = mtd->priv;
1707 	unsigned int block_size;
1708 	loff_t addr = instr->addr;
1709 	unsigned int len = instr->len;
1710 	int ret = 0, i;
1711 	struct mtd_erase_region_info *region = NULL;
1712 	unsigned int region_end = 0;
1713 
1714 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1715 			(unsigned int) addr, len);
1716 
1717 	if (FLEXONENAND(this)) {
1718 		/* Find the eraseregion of this address */
1719 		i = flexonenand_region(mtd, addr);
1720 		region = &mtd->eraseregions[i];
1721 
1722 		block_size = region->erasesize;
1723 		region_end = region->offset
1724 			+ region->erasesize * region->numblocks;
1725 
1726 		/* Start address within region must align on block boundary.
1727 		 * Erase region's start offset is always block start address.
1728 		 */
1729 		if (unlikely((addr - region->offset) & (block_size - 1))) {
1730 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1731 				" Unaligned address\n");
1732 			return -EINVAL;
1733 		}
1734 	} else {
1735 		block_size = 1 << this->erase_shift;
1736 
1737 		/* Start address must align on block boundary */
1738 		if (unlikely(addr & (block_size - 1))) {
1739 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1740 						"Unaligned address\n");
1741 			return -EINVAL;
1742 		}
1743 	}
1744 
1745 	/* Length must align on block boundary */
1746 	if (unlikely(len & (block_size - 1))) {
1747 		MTDDEBUG (MTD_DEBUG_LEVEL0,
1748 			 "onenand_erase: Length not block aligned\n");
1749 		return -EINVAL;
1750 	}
1751 
1752 	/* Grab the lock and see if the device is available */
1753 	onenand_get_device(mtd, FL_ERASING);
1754 
1755 	/* Loop throught the pages */
1756 	instr->state = MTD_ERASING;
1757 
1758 	while (len) {
1759 
1760 		/* Check if we have a bad block, we do not erase bad blocks */
1761 		if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1762 			printk(KERN_WARNING "onenand_erase: attempt to erase"
1763 				" a bad block at addr 0x%08x\n",
1764 				(unsigned int) addr);
1765 			instr->state = MTD_ERASE_FAILED;
1766 			goto erase_exit;
1767 		}
1768 
1769 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1770 
1771 		onenand_invalidate_bufferram(mtd, addr, block_size);
1772 
1773 		ret = this->wait(mtd, FL_ERASING);
1774 		/* Check, if it is write protected */
1775 		if (ret) {
1776 			if (ret == -EPERM)
1777 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1778 					  "Device is write protected!!!\n");
1779 			else
1780 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1781 					  "Failed erase, block %d\n",
1782 					onenand_block(this, addr));
1783 			instr->state = MTD_ERASE_FAILED;
1784 			instr->fail_addr = addr;
1785 
1786 			goto erase_exit;
1787 		}
1788 
1789 		len -= block_size;
1790 		addr += block_size;
1791 
1792 		if (addr == region_end) {
1793 			if (!len)
1794 				break;
1795 			region++;
1796 
1797 			block_size = region->erasesize;
1798 			region_end = region->offset
1799 				+ region->erasesize * region->numblocks;
1800 
1801 			if (len & (block_size - 1)) {
1802 				/* This has been checked at MTD
1803 				 * partitioning level. */
1804 				printk("onenand_erase: Unaligned address\n");
1805 				goto erase_exit;
1806 			}
1807 		}
1808 	}
1809 
1810 	instr->state = MTD_ERASE_DONE;
1811 
1812 erase_exit:
1813 
1814 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1815 	/* Do call back function */
1816 	if (!ret)
1817 		mtd_erase_callback(instr);
1818 
1819 	/* Deselect and wake up anyone waiting on the device */
1820 	onenand_release_device(mtd);
1821 
1822 	return ret;
1823 }
1824 
1825 /**
1826  * onenand_sync - [MTD Interface] sync
1827  * @param mtd		MTD device structure
1828  *
1829  * Sync is actually a wait for chip ready function
1830  */
1831 void onenand_sync(struct mtd_info *mtd)
1832 {
1833 	MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1834 
1835 	/* Grab the lock and see if the device is available */
1836 	onenand_get_device(mtd, FL_SYNCING);
1837 
1838 	/* Release it and go back */
1839 	onenand_release_device(mtd);
1840 }
1841 
1842 /**
1843  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1844  * @param mtd		MTD device structure
1845  * @param ofs		offset relative to mtd start
1846  *
1847  * Check whether the block is bad
1848  */
1849 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1850 {
1851 	int ret;
1852 
1853 	/* Check for invalid offset */
1854 	if (ofs > mtd->size)
1855 		return -EINVAL;
1856 
1857 	onenand_get_device(mtd, FL_READING);
1858 	ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1859 	onenand_release_device(mtd);
1860 	return ret;
1861 }
1862 
1863 /**
1864  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1865  * @param mtd           MTD device structure
1866  * @param ofs           offset from device start
1867  *
1868  * This is the default implementation, which can be overridden by
1869  * a hardware specific driver.
1870  */
1871 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1872 {
1873 	struct onenand_chip *this = mtd->priv;
1874 	struct bbm_info *bbm = this->bbm;
1875 	u_char buf[2] = {0, 0};
1876 	struct mtd_oob_ops ops = {
1877 		.mode = MTD_OPS_PLACE_OOB,
1878 		.ooblen = 2,
1879 		.oobbuf = buf,
1880 		.ooboffs = 0,
1881 	};
1882 	int block;
1883 
1884 	/* Get block number */
1885 	block = onenand_block(this, ofs);
1886 	if (bbm->bbt)
1887 		bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1888 
1889 	/* We write two bytes, so we dont have to mess with 16 bit access */
1890 	ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1891 	return onenand_write_oob_nolock(mtd, ofs, &ops);
1892 }
1893 
1894 /**
1895  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1896  * @param mtd		MTD device structure
1897  * @param ofs		offset relative to mtd start
1898  *
1899  * Mark the block as bad
1900  */
1901 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1902 {
1903 	int ret;
1904 
1905 	ret = onenand_block_isbad(mtd, ofs);
1906 	if (ret) {
1907 		/* If it was bad already, return success and do nothing */
1908 		if (ret > 0)
1909 			return 0;
1910 		return ret;
1911 	}
1912 
1913 	ret = mtd_block_markbad(mtd, ofs);
1914 	return ret;
1915 }
1916 
1917 /**
1918  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1919  * @param mtd           MTD device structure
1920  * @param ofs           offset relative to mtd start
1921  * @param len           number of bytes to lock or unlock
1922  * @param cmd           lock or unlock command
1923  *
1924  * Lock or unlock one or more blocks
1925  */
1926 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1927 {
1928 	struct onenand_chip *this = mtd->priv;
1929 	int start, end, block, value, status;
1930 
1931 	start = onenand_block(this, ofs);
1932 	end = onenand_block(this, ofs + len);
1933 
1934 	/* Continuous lock scheme */
1935 	if (this->options & ONENAND_HAS_CONT_LOCK) {
1936 		/* Set start block address */
1937 		this->write_word(start,
1938 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1939 		/* Set end block address */
1940 		this->write_word(end - 1,
1941 				 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1942 		/* Write unlock command */
1943 		this->command(mtd, cmd, 0, 0);
1944 
1945 		/* There's no return value */
1946 		this->wait(mtd, FL_UNLOCKING);
1947 
1948 		/* Sanity check */
1949 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1950 		       & ONENAND_CTRL_ONGO)
1951 			continue;
1952 
1953 		/* Check lock status */
1954 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1955 		if (!(status & ONENAND_WP_US))
1956 			printk(KERN_ERR "wp status = 0x%x\n", status);
1957 
1958 		return 0;
1959 	}
1960 
1961 	/* Block lock scheme */
1962 	for (block = start; block < end; block++) {
1963 		/* Set block address */
1964 		value = onenand_block_address(this, block);
1965 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1966 		/* Select DataRAM for DDP */
1967 		value = onenand_bufferram_address(this, block);
1968 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1969 
1970 		/* Set start block address */
1971 		this->write_word(block,
1972 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1973 		/* Write unlock command */
1974 		this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1975 
1976 		/* There's no return value */
1977 		this->wait(mtd, FL_UNLOCKING);
1978 
1979 		/* Sanity check */
1980 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1981 		       & ONENAND_CTRL_ONGO)
1982 			continue;
1983 
1984 		/* Check lock status */
1985 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1986 		if (!(status & ONENAND_WP_US))
1987 			printk(KERN_ERR "block = %d, wp status = 0x%x\n",
1988 			       block, status);
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 #ifdef ONENAND_LINUX
1995 /**
1996  * onenand_lock - [MTD Interface] Lock block(s)
1997  * @param mtd           MTD device structure
1998  * @param ofs           offset relative to mtd start
1999  * @param len           number of bytes to unlock
2000  *
2001  * Lock one or more blocks
2002  */
2003 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2004 {
2005 	int ret;
2006 
2007 	onenand_get_device(mtd, FL_LOCKING);
2008 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2009 	onenand_release_device(mtd);
2010 	return ret;
2011 }
2012 
2013 /**
2014  * onenand_unlock - [MTD Interface] Unlock block(s)
2015  * @param mtd           MTD device structure
2016  * @param ofs           offset relative to mtd start
2017  * @param len           number of bytes to unlock
2018  *
2019  * Unlock one or more blocks
2020  */
2021 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2022 {
2023 	int ret;
2024 
2025 	onenand_get_device(mtd, FL_LOCKING);
2026 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2027 	onenand_release_device(mtd);
2028 	return ret;
2029 }
2030 #endif
2031 
2032 /**
2033  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2034  * @param this          onenand chip data structure
2035  *
2036  * Check lock status
2037  */
2038 static int onenand_check_lock_status(struct onenand_chip *this)
2039 {
2040 	unsigned int value, block, status;
2041 	unsigned int end;
2042 
2043 	end = this->chipsize >> this->erase_shift;
2044 	for (block = 0; block < end; block++) {
2045 		/* Set block address */
2046 		value = onenand_block_address(this, block);
2047 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2048 		/* Select DataRAM for DDP */
2049 		value = onenand_bufferram_address(this, block);
2050 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2051 		/* Set start block address */
2052 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2053 
2054 		/* Check lock status */
2055 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2056 		if (!(status & ONENAND_WP_US)) {
2057 			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2058 			return 0;
2059 		}
2060 	}
2061 
2062 	return 1;
2063 }
2064 
2065 /**
2066  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2067  * @param mtd           MTD device structure
2068  *
2069  * Unlock all blocks
2070  */
2071 static void onenand_unlock_all(struct mtd_info *mtd)
2072 {
2073 	struct onenand_chip *this = mtd->priv;
2074 	loff_t ofs = 0;
2075 	size_t len = mtd->size;
2076 
2077 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2078 		/* Set start block address */
2079 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2080 		/* Write unlock command */
2081 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2082 
2083 		/* There's no return value */
2084 		this->wait(mtd, FL_LOCKING);
2085 
2086 		/* Sanity check */
2087 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2088 				& ONENAND_CTRL_ONGO)
2089 			continue;
2090 
2091 		/* Check lock status */
2092 		if (onenand_check_lock_status(this))
2093 			return;
2094 
2095 		/* Workaround for all block unlock in DDP */
2096 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2097 			/* All blocks on another chip */
2098 			ofs = this->chipsize >> 1;
2099 			len = this->chipsize >> 1;
2100 		}
2101 	}
2102 
2103 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2104 }
2105 
2106 
2107 /**
2108  * onenand_check_features - Check and set OneNAND features
2109  * @param mtd           MTD data structure
2110  *
2111  * Check and set OneNAND features
2112  * - lock scheme
2113  * - two plane
2114  */
2115 static void onenand_check_features(struct mtd_info *mtd)
2116 {
2117 	struct onenand_chip *this = mtd->priv;
2118 	unsigned int density, process;
2119 
2120 	/* Lock scheme depends on density and process */
2121 	density = onenand_get_density(this->device_id);
2122 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2123 
2124 	/* Lock scheme */
2125 	switch (density) {
2126 	case ONENAND_DEVICE_DENSITY_4Gb:
2127 		if (ONENAND_IS_DDP(this))
2128 			this->options |= ONENAND_HAS_2PLANE;
2129 		else
2130 			this->options |= ONENAND_HAS_4KB_PAGE;
2131 
2132 	case ONENAND_DEVICE_DENSITY_2Gb:
2133 		/* 2Gb DDP don't have 2 plane */
2134 		if (!ONENAND_IS_DDP(this))
2135 			this->options |= ONENAND_HAS_2PLANE;
2136 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2137 
2138 	case ONENAND_DEVICE_DENSITY_1Gb:
2139 		/* A-Die has all block unlock */
2140 		if (process)
2141 			this->options |= ONENAND_HAS_UNLOCK_ALL;
2142 		break;
2143 
2144 	default:
2145 		/* Some OneNAND has continuous lock scheme */
2146 		if (!process)
2147 			this->options |= ONENAND_HAS_CONT_LOCK;
2148 		break;
2149 	}
2150 
2151 	if (ONENAND_IS_MLC(this))
2152 		this->options |= ONENAND_HAS_4KB_PAGE;
2153 
2154 	if (ONENAND_IS_4KB_PAGE(this))
2155 		this->options &= ~ONENAND_HAS_2PLANE;
2156 
2157 	if (FLEXONENAND(this)) {
2158 		this->options &= ~ONENAND_HAS_CONT_LOCK;
2159 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2160 	}
2161 
2162 	if (this->options & ONENAND_HAS_CONT_LOCK)
2163 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2164 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
2165 		printk(KERN_DEBUG "Chip support all block unlock\n");
2166 	if (this->options & ONENAND_HAS_2PLANE)
2167 		printk(KERN_DEBUG "Chip has 2 plane\n");
2168 	if (this->options & ONENAND_HAS_4KB_PAGE)
2169 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2170 
2171 }
2172 
2173 /**
2174  * onenand_print_device_info - Print device ID
2175  * @param device        device ID
2176  *
2177  * Print device ID
2178  */
2179 char *onenand_print_device_info(int device, int version)
2180 {
2181 	int vcc, demuxed, ddp, density, flexonenand;
2182 	char *dev_info = malloc(80);
2183 	char *p = dev_info;
2184 
2185 	vcc = device & ONENAND_DEVICE_VCC_MASK;
2186 	demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2187 	ddp = device & ONENAND_DEVICE_IS_DDP;
2188 	density = onenand_get_density(device);
2189 	flexonenand = device & DEVICE_IS_FLEXONENAND;
2190 	p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2191 	       demuxed ? "" : "Muxed ",
2192 	       flexonenand ? "Flex-" : "",
2193 	       ddp ? "(DDP)" : "",
2194 	       (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2195 
2196 	sprintf(p, "\nOneNAND version = 0x%04x", version);
2197 	printk("%s\n", dev_info);
2198 
2199 	return dev_info;
2200 }
2201 
2202 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2203 	{ONENAND_MFR_NUMONYX, "Numonyx"},
2204 	{ONENAND_MFR_SAMSUNG, "Samsung"},
2205 };
2206 
2207 /**
2208  * onenand_check_maf - Check manufacturer ID
2209  * @param manuf         manufacturer ID
2210  *
2211  * Check manufacturer ID
2212  */
2213 static int onenand_check_maf(int manuf)
2214 {
2215 	int size = ARRAY_SIZE(onenand_manuf_ids);
2216 	int i;
2217 #ifdef ONENAND_DEBUG
2218 	char *name;
2219 #endif
2220 
2221 	for (i = 0; i < size; i++)
2222 		if (manuf == onenand_manuf_ids[i].id)
2223 			break;
2224 
2225 #ifdef ONENAND_DEBUG
2226 	if (i < size)
2227 		name = onenand_manuf_ids[i].name;
2228 	else
2229 		name = "Unknown";
2230 
2231 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2232 #endif
2233 
2234 	return i == size;
2235 }
2236 
2237 /**
2238 * flexonenand_get_boundary	- Reads the SLC boundary
2239 * @param onenand_info		- onenand info structure
2240 *
2241 * Fill up boundary[] field in onenand_chip
2242 **/
2243 static int flexonenand_get_boundary(struct mtd_info *mtd)
2244 {
2245 	struct onenand_chip *this = mtd->priv;
2246 	unsigned int die, bdry;
2247 	int syscfg, locked;
2248 
2249 	/* Disable ECC */
2250 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2251 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2252 
2253 	for (die = 0; die < this->dies; die++) {
2254 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2255 		this->wait(mtd, FL_SYNCING);
2256 
2257 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2258 		this->wait(mtd, FL_READING);
2259 
2260 		bdry = this->read_word(this->base + ONENAND_DATARAM);
2261 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2262 			locked = 0;
2263 		else
2264 			locked = 1;
2265 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2266 
2267 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2268 		this->wait(mtd, FL_RESETING);
2269 
2270 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2271 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2272 	}
2273 
2274 	/* Enable ECC */
2275 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2276 	return 0;
2277 }
2278 
2279 /**
2280  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2281  * 			  boundary[], diesize[], mtd->size, mtd->erasesize,
2282  * 			  mtd->eraseregions
2283  * @param mtd		- MTD device structure
2284  */
2285 static void flexonenand_get_size(struct mtd_info *mtd)
2286 {
2287 	struct onenand_chip *this = mtd->priv;
2288 	int die, i, eraseshift, density;
2289 	int blksperdie, maxbdry;
2290 	loff_t ofs;
2291 
2292 	density = onenand_get_density(this->device_id);
2293 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2294 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2295 	maxbdry = blksperdie - 1;
2296 	eraseshift = this->erase_shift - 1;
2297 
2298 	mtd->numeraseregions = this->dies << 1;
2299 
2300 	/* This fills up the device boundary */
2301 	flexonenand_get_boundary(mtd);
2302 	die = 0;
2303 	ofs = 0;
2304 	i = -1;
2305 	for (; die < this->dies; die++) {
2306 		if (!die || this->boundary[die-1] != maxbdry) {
2307 			i++;
2308 			mtd->eraseregions[i].offset = ofs;
2309 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2310 			mtd->eraseregions[i].numblocks =
2311 							this->boundary[die] + 1;
2312 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2313 			eraseshift++;
2314 		} else {
2315 			mtd->numeraseregions -= 1;
2316 			mtd->eraseregions[i].numblocks +=
2317 							this->boundary[die] + 1;
2318 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2319 		}
2320 		if (this->boundary[die] != maxbdry) {
2321 			i++;
2322 			mtd->eraseregions[i].offset = ofs;
2323 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2324 			mtd->eraseregions[i].numblocks = maxbdry ^
2325 							 this->boundary[die];
2326 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2327 			eraseshift--;
2328 		} else
2329 			mtd->numeraseregions -= 1;
2330 	}
2331 
2332 	/* Expose MLC erase size except when all blocks are SLC */
2333 	mtd->erasesize = 1 << this->erase_shift;
2334 	if (mtd->numeraseregions == 1)
2335 		mtd->erasesize >>= 1;
2336 
2337 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2338 	for (i = 0; i < mtd->numeraseregions; i++)
2339 		printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2340 			" numblocks: %04u]\n", mtd->eraseregions[i].offset,
2341 			mtd->eraseregions[i].erasesize,
2342 			mtd->eraseregions[i].numblocks);
2343 
2344 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
2345 		this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2346 		this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2347 						 << (this->erase_shift - 1);
2348 		mtd->size += this->diesize[die];
2349 	}
2350 }
2351 
2352 /**
2353  * flexonenand_check_blocks_erased - Check if blocks are erased
2354  * @param mtd_info	- mtd info structure
2355  * @param start		- first erase block to check
2356  * @param end		- last erase block to check
2357  *
2358  * Converting an unerased block from MLC to SLC
2359  * causes byte values to change. Since both data and its ECC
2360  * have changed, reads on the block give uncorrectable error.
2361  * This might lead to the block being detected as bad.
2362  *
2363  * Avoid this by ensuring that the block to be converted is
2364  * erased.
2365  */
2366 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2367 					int start, int end)
2368 {
2369 	struct onenand_chip *this = mtd->priv;
2370 	int i, ret;
2371 	int block;
2372 	struct mtd_oob_ops ops = {
2373 		.mode = MTD_OPS_PLACE_OOB,
2374 		.ooboffs = 0,
2375 		.ooblen	= mtd->oobsize,
2376 		.datbuf	= NULL,
2377 		.oobbuf	= this->oob_buf,
2378 	};
2379 	loff_t addr;
2380 
2381 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2382 
2383 	for (block = start; block <= end; block++) {
2384 		addr = flexonenand_addr(this, block);
2385 		if (onenand_block_isbad_nolock(mtd, addr, 0))
2386 			continue;
2387 
2388 		/*
2389 		 * Since main area write results in ECC write to spare,
2390 		 * it is sufficient to check only ECC bytes for change.
2391 		 */
2392 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
2393 		if (ret)
2394 			return ret;
2395 
2396 		for (i = 0; i < mtd->oobsize; i++)
2397 			if (this->oob_buf[i] != 0xff)
2398 				break;
2399 
2400 		if (i != mtd->oobsize) {
2401 			printk(KERN_WARNING "Block %d not erased.\n", block);
2402 			return 1;
2403 		}
2404 	}
2405 
2406 	return 0;
2407 }
2408 
2409 /**
2410  * flexonenand_set_boundary	- Writes the SLC boundary
2411  * @param mtd			- mtd info structure
2412  */
2413 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2414 				    int boundary, int lock)
2415 {
2416 	struct onenand_chip *this = mtd->priv;
2417 	int ret, density, blksperdie, old, new, thisboundary;
2418 	loff_t addr;
2419 
2420 	if (die >= this->dies)
2421 		return -EINVAL;
2422 
2423 	if (boundary == this->boundary[die])
2424 		return 0;
2425 
2426 	density = onenand_get_density(this->device_id);
2427 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
2428 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2429 
2430 	if (boundary >= blksperdie) {
2431 		printk("flexonenand_set_boundary:"
2432 			"Invalid boundary value. "
2433 			"Boundary not changed.\n");
2434 		return -EINVAL;
2435 	}
2436 
2437 	/* Check if converting blocks are erased */
2438 	old = this->boundary[die] + (die * this->density_mask);
2439 	new = boundary + (die * this->density_mask);
2440 	ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2441 						+ 1, max(old, new));
2442 	if (ret) {
2443 		printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2444 		return ret;
2445 	}
2446 
2447 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2448 	this->wait(mtd, FL_SYNCING);
2449 
2450 	/* Check is boundary is locked */
2451 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2452 	ret = this->wait(mtd, FL_READING);
2453 
2454 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2455 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2456 		printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2457 		goto out;
2458 	}
2459 
2460 	printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2461 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
2462 
2463 	boundary &= FLEXONENAND_PI_MASK;
2464 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2465 
2466 	addr = die ? this->diesize[0] : 0;
2467 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2468 	ret = this->wait(mtd, FL_ERASING);
2469 	if (ret) {
2470 		printk("flexonenand_set_boundary:"
2471 			"Failed PI erase for Die %d\n", die);
2472 		goto out;
2473 	}
2474 
2475 	this->write_word(boundary, this->base + ONENAND_DATARAM);
2476 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2477 	ret = this->wait(mtd, FL_WRITING);
2478 	if (ret) {
2479 		printk("flexonenand_set_boundary:"
2480 			"Failed PI write for Die %d\n", die);
2481 		goto out;
2482 	}
2483 
2484 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2485 	ret = this->wait(mtd, FL_WRITING);
2486 out:
2487 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2488 	this->wait(mtd, FL_RESETING);
2489 	if (!ret)
2490 		/* Recalculate device size on boundary change*/
2491 		flexonenand_get_size(mtd);
2492 
2493 	return ret;
2494 }
2495 
2496 /**
2497  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2498  * @param mtd		MTD device structure
2499  *
2500  * OneNAND detection method:
2501  *   Compare the the values from command with ones from register
2502  */
2503 static int onenand_chip_probe(struct mtd_info *mtd)
2504 {
2505 	struct onenand_chip *this = mtd->priv;
2506 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
2507 	int syscfg;
2508 
2509 	/* Save system configuration 1 */
2510 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2511 
2512 	/* Clear Sync. Burst Read mode to read BootRAM */
2513 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2514 			 this->base + ONENAND_REG_SYS_CFG1);
2515 
2516 	/* Send the command for reading device ID from BootRAM */
2517 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2518 
2519 	/* Read manufacturer and device IDs from BootRAM */
2520 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2521 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2522 
2523 	/* Reset OneNAND to read default register values */
2524 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2525 
2526 	/* Wait reset */
2527 	this->wait(mtd, FL_RESETING);
2528 
2529 	/* Restore system configuration 1 */
2530 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2531 
2532 	/* Check manufacturer ID */
2533 	if (onenand_check_maf(bram_maf_id))
2534 		return -ENXIO;
2535 
2536 	/* Read manufacturer and device IDs from Register */
2537 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2538 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2539 
2540 	/* Check OneNAND device */
2541 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2542 		return -ENXIO;
2543 
2544 	return 0;
2545 }
2546 
2547 /**
2548  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2549  * @param mtd		MTD device structure
2550  *
2551  * OneNAND detection method:
2552  *   Compare the the values from command with ones from register
2553  */
2554 int onenand_probe(struct mtd_info *mtd)
2555 {
2556 	struct onenand_chip *this = mtd->priv;
2557 	int dev_id, ver_id;
2558 	int density;
2559 	int ret;
2560 
2561 	ret = this->chip_probe(mtd);
2562 	if (ret)
2563 		return ret;
2564 
2565 	/* Read device IDs from Register */
2566 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2567 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2568 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2569 
2570 	/* Flash device information */
2571 	mtd->name = onenand_print_device_info(dev_id, ver_id);
2572 	this->device_id = dev_id;
2573 	this->version_id = ver_id;
2574 
2575 	/* Check OneNAND features */
2576 	onenand_check_features(mtd);
2577 
2578 	density = onenand_get_density(dev_id);
2579 	if (FLEXONENAND(this)) {
2580 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2581 		/* Maximum possible erase regions */
2582 		mtd->numeraseregions = this->dies << 1;
2583 		mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2584 					* (this->dies << 1));
2585 		if (!mtd->eraseregions)
2586 			return -ENOMEM;
2587 	}
2588 
2589 	/*
2590 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
2591 	 * mtd->size represents the actual device size.
2592 	 */
2593 	this->chipsize = (16 << density) << 20;
2594 
2595 	/* OneNAND page size & block size */
2596 	/* The data buffer size is equal to page size */
2597 	mtd->writesize =
2598 	    this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2599 	/* We use the full BufferRAM */
2600 	if (ONENAND_IS_4KB_PAGE(this))
2601 		mtd->writesize <<= 1;
2602 
2603 	mtd->oobsize = mtd->writesize >> 5;
2604 	/* Pagers per block is always 64 in OneNAND */
2605 	mtd->erasesize = mtd->writesize << 6;
2606 	/*
2607 	 * Flex-OneNAND SLC area has 64 pages per block.
2608 	 * Flex-OneNAND MLC area has 128 pages per block.
2609 	 * Expose MLC erase size to find erase_shift and page_mask.
2610 	 */
2611 	if (FLEXONENAND(this))
2612 		mtd->erasesize <<= 1;
2613 
2614 	this->erase_shift = ffs(mtd->erasesize) - 1;
2615 	this->page_shift = ffs(mtd->writesize) - 1;
2616 	this->ppb_shift = (this->erase_shift - this->page_shift);
2617 	this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2618 	/* Set density mask. it is used for DDP */
2619 	if (ONENAND_IS_DDP(this))
2620 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
2621 	/* It's real page size */
2622 	this->writesize = mtd->writesize;
2623 
2624 	/* REVIST: Multichip handling */
2625 
2626 	if (FLEXONENAND(this))
2627 		flexonenand_get_size(mtd);
2628 	else
2629 		mtd->size = this->chipsize;
2630 
2631 	mtd->flags = MTD_CAP_NANDFLASH;
2632 	mtd->_erase = onenand_erase;
2633 	mtd->_read = onenand_read;
2634 	mtd->_write = onenand_write;
2635 	mtd->_read_oob = onenand_read_oob;
2636 	mtd->_write_oob = onenand_write_oob;
2637 	mtd->_sync = onenand_sync;
2638 	mtd->_block_isbad = onenand_block_isbad;
2639 	mtd->_block_markbad = onenand_block_markbad;
2640 
2641 	return 0;
2642 }
2643 
2644 /**
2645  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2646  * @param mtd		MTD device structure
2647  * @param maxchips	Number of chips to scan for
2648  *
2649  * This fills out all the not initialized function pointers
2650  * with the defaults.
2651  * The flash ID is read and the mtd/chip structures are
2652  * filled with the appropriate values.
2653  */
2654 int onenand_scan(struct mtd_info *mtd, int maxchips)
2655 {
2656 	int i;
2657 	struct onenand_chip *this = mtd->priv;
2658 
2659 	if (!this->read_word)
2660 		this->read_word = onenand_readw;
2661 	if (!this->write_word)
2662 		this->write_word = onenand_writew;
2663 
2664 	if (!this->command)
2665 		this->command = onenand_command;
2666 	if (!this->wait)
2667 		this->wait = onenand_wait;
2668 	if (!this->bbt_wait)
2669 		this->bbt_wait = onenand_bbt_wait;
2670 
2671 	if (!this->read_bufferram)
2672 		this->read_bufferram = onenand_read_bufferram;
2673 	if (!this->write_bufferram)
2674 		this->write_bufferram = onenand_write_bufferram;
2675 
2676 	if (!this->chip_probe)
2677 		this->chip_probe = onenand_chip_probe;
2678 
2679 	if (!this->block_markbad)
2680 		this->block_markbad = onenand_default_block_markbad;
2681 	if (!this->scan_bbt)
2682 		this->scan_bbt = onenand_default_bbt;
2683 
2684 	if (onenand_probe(mtd))
2685 		return -ENXIO;
2686 
2687 	/* Set Sync. Burst Read after probing */
2688 	if (this->mmcontrol) {
2689 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2690 		this->read_bufferram = onenand_sync_read_bufferram;
2691 	}
2692 
2693 	/* Allocate buffers, if necessary */
2694 	if (!this->page_buf) {
2695 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2696 		if (!this->page_buf) {
2697 			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2698 			return -ENOMEM;
2699 		}
2700 		this->options |= ONENAND_PAGEBUF_ALLOC;
2701 	}
2702 	if (!this->oob_buf) {
2703 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2704 		if (!this->oob_buf) {
2705 			printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2706 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
2707 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
2708 				kfree(this->page_buf);
2709 			}
2710 			return -ENOMEM;
2711 		}
2712 		this->options |= ONENAND_OOBBUF_ALLOC;
2713 	}
2714 
2715 	this->state = FL_READY;
2716 
2717 	/*
2718 	 * Allow subpage writes up to oobsize.
2719 	 */
2720 	switch (mtd->oobsize) {
2721 	case 128:
2722 		this->ecclayout = &onenand_oob_128;
2723 		mtd->subpage_sft = 0;
2724 		break;
2725 
2726 	case 64:
2727 		this->ecclayout = &onenand_oob_64;
2728 		mtd->subpage_sft = 2;
2729 		break;
2730 
2731 	case 32:
2732 		this->ecclayout = &onenand_oob_32;
2733 		mtd->subpage_sft = 1;
2734 		break;
2735 
2736 	default:
2737 		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2738 			mtd->oobsize);
2739 		mtd->subpage_sft = 0;
2740 		/* To prevent kernel oops */
2741 		this->ecclayout = &onenand_oob_32;
2742 		break;
2743 	}
2744 
2745 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2746 
2747 	/*
2748 	 * The number of bytes available for a client to place data into
2749 	 * the out of band area
2750 	 */
2751 	this->ecclayout->oobavail = 0;
2752 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2753 	    this->ecclayout->oobfree[i].length; i++)
2754 		this->ecclayout->oobavail +=
2755 			this->ecclayout->oobfree[i].length;
2756 	mtd->oobavail = this->ecclayout->oobavail;
2757 
2758 	mtd->ecclayout = this->ecclayout;
2759 
2760 	/* Unlock whole block */
2761 	onenand_unlock_all(mtd);
2762 
2763 	return this->scan_bbt(mtd);
2764 }
2765 
2766 /**
2767  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2768  * @param mtd		MTD device structure
2769  */
2770 void onenand_release(struct mtd_info *mtd)
2771 {
2772 }
2773