xref: /openbmc/u-boot/drivers/mtd/nand/raw/omap_gpmc.c (revision fd0bc623)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
4  * Rohit Choraria <rohitkc@ti.com>
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <linux/errno.h>
10 #include <asm/arch/mem.h>
11 #include <linux/mtd/omap_gpmc.h>
12 #include <linux/mtd/nand_ecc.h>
13 #include <linux/bch.h>
14 #include <linux/compiler.h>
15 #include <nand.h>
16 #include <linux/mtd/omap_elm.h>
17 
18 #define BADBLOCK_MARKER_LENGTH	2
19 #define SECTOR_BYTES		512
20 #define ECCCLEAR		(0x1 << 8)
21 #define ECCRESULTREG1		(0x1 << 0)
22 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
23 #define BCH4_BIT_PAD		4
24 
25 #ifdef CONFIG_BCH
26 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
27 				0x97, 0x79, 0xe5, 0x24, 0xb5};
28 #endif
29 static uint8_t cs_next;
30 static __maybe_unused struct nand_ecclayout omap_ecclayout;
31 
32 #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
33 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
34 	{ CONFIG_NAND_OMAP_GPMC_WSCFG };
35 #else
36 /* wscfg is preset to zero since its a static variable */
37 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
38 #endif
39 
40 /*
41  * Driver configurations
42  */
43 struct omap_nand_info {
44 	struct bch_control *control;
45 	enum omap_ecc ecc_scheme;
46 	uint8_t cs;
47 	uint8_t ws;		/* wait status pin (0,1) */
48 };
49 
50 /* We are wasting a bit of memory but al least we are safe */
51 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
52 
53 /*
54  * omap_nand_hwcontrol - Set the address pointers corretly for the
55  *			following address/data/command operation
56  */
57 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
58 				uint32_t ctrl)
59 {
60 	register struct nand_chip *this = mtd_to_nand(mtd);
61 	struct omap_nand_info *info = nand_get_controller_data(this);
62 	int cs = info->cs;
63 
64 	/*
65 	 * Point the IO_ADDR to DATA and ADDRESS registers instead
66 	 * of chip address
67 	 */
68 	switch (ctrl) {
69 	case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
70 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
71 		break;
72 	case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
73 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
74 		break;
75 	case NAND_CTRL_CHANGE | NAND_NCE:
76 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
77 		break;
78 	}
79 
80 	if (cmd != NAND_CMD_NONE)
81 		writeb(cmd, this->IO_ADDR_W);
82 }
83 
84 /* Check wait pin as dev ready indicator */
85 static int omap_dev_ready(struct mtd_info *mtd)
86 {
87 	register struct nand_chip *this = mtd_to_nand(mtd);
88 	struct omap_nand_info *info = nand_get_controller_data(this);
89 	return gpmc_cfg->status & (1 << (8 + info->ws));
90 }
91 
92 /*
93  * gen_true_ecc - This function will generate true ECC value, which
94  * can be used when correcting data read from NAND flash memory core
95  *
96  * @ecc_buf:	buffer to store ecc code
97  *
98  * @return:	re-formatted ECC value
99  */
100 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
101 {
102 	return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
103 		((ecc_buf[2] & 0x0F) << 8);
104 }
105 
106 /*
107  * omap_correct_data - Compares the ecc read from nand spare area with ECC
108  * registers values and corrects one bit error if it has occurred
109  * Further details can be had from OMAP TRM and the following selected links:
110  * http://en.wikipedia.org/wiki/Hamming_code
111  * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
112  *
113  * @mtd:		 MTD device structure
114  * @dat:		 page data
115  * @read_ecc:		 ecc read from nand flash
116  * @calc_ecc:		 ecc read from ECC registers
117  *
118  * @return 0 if data is OK or corrected, else returns -1
119  */
120 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
121 				uint8_t *read_ecc, uint8_t *calc_ecc)
122 {
123 	uint32_t orig_ecc, new_ecc, res, hm;
124 	uint16_t parity_bits, byte;
125 	uint8_t bit;
126 
127 	/* Regenerate the orginal ECC */
128 	orig_ecc = gen_true_ecc(read_ecc);
129 	new_ecc = gen_true_ecc(calc_ecc);
130 	/* Get the XOR of real ecc */
131 	res = orig_ecc ^ new_ecc;
132 	if (res) {
133 		/* Get the hamming width */
134 		hm = hweight32(res);
135 		/* Single bit errors can be corrected! */
136 		if (hm == 12) {
137 			/* Correctable data! */
138 			parity_bits = res >> 16;
139 			bit = (parity_bits & 0x7);
140 			byte = (parity_bits >> 3) & 0x1FF;
141 			/* Flip the bit to correct */
142 			dat[byte] ^= (0x1 << bit);
143 		} else if (hm == 1) {
144 			printf("Error: Ecc is wrong\n");
145 			/* ECC itself is corrupted */
146 			return 2;
147 		} else {
148 			/*
149 			 * hm distance != parity pairs OR one, could mean 2 bit
150 			 * error OR potentially be on a blank page..
151 			 * orig_ecc: contains spare area data from nand flash.
152 			 * new_ecc: generated ecc while reading data area.
153 			 * Note: if the ecc = 0, all data bits from which it was
154 			 * generated are 0xFF.
155 			 * The 3 byte(24 bits) ecc is generated per 512byte
156 			 * chunk of a page. If orig_ecc(from spare area)
157 			 * is 0xFF && new_ecc(computed now from data area)=0x0,
158 			 * this means that data area is 0xFF and spare area is
159 			 * 0xFF. A sure sign of a erased page!
160 			 */
161 			if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
162 				return 0;
163 			printf("Error: Bad compare! failed\n");
164 			/* detected 2 bit error */
165 			return -EBADMSG;
166 		}
167 	}
168 	return 0;
169 }
170 
171 /*
172  * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
173  * @mtd:	MTD device structure
174  * @mode:	Read/Write mode
175  */
176 __maybe_unused
177 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
178 {
179 	struct nand_chip	*nand	= mtd_to_nand(mtd);
180 	struct omap_nand_info	*info	= nand_get_controller_data(nand);
181 	unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
182 	unsigned int ecc_algo = 0;
183 	unsigned int bch_type = 0;
184 	unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
185 	u32 ecc_size_config_val = 0;
186 	u32 ecc_config_val = 0;
187 	int cs = info->cs;
188 
189 	/* configure GPMC for specific ecc-scheme */
190 	switch (info->ecc_scheme) {
191 	case OMAP_ECC_HAM1_CODE_SW:
192 		return;
193 	case OMAP_ECC_HAM1_CODE_HW:
194 		ecc_algo = 0x0;
195 		bch_type = 0x0;
196 		bch_wrapmode = 0x00;
197 		eccsize0 = 0xFF;
198 		eccsize1 = 0xFF;
199 		break;
200 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
201 	case OMAP_ECC_BCH8_CODE_HW:
202 		ecc_algo = 0x1;
203 		bch_type = 0x1;
204 		if (mode == NAND_ECC_WRITE) {
205 			bch_wrapmode = 0x01;
206 			eccsize0 = 0;  /* extra bits in nibbles per sector */
207 			eccsize1 = 28; /* OOB bits in nibbles per sector */
208 		} else {
209 			bch_wrapmode = 0x01;
210 			eccsize0 = 26; /* ECC bits in nibbles per sector */
211 			eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
212 		}
213 		break;
214 	case OMAP_ECC_BCH16_CODE_HW:
215 		ecc_algo = 0x1;
216 		bch_type = 0x2;
217 		if (mode == NAND_ECC_WRITE) {
218 			bch_wrapmode = 0x01;
219 			eccsize0 = 0;  /* extra bits in nibbles per sector */
220 			eccsize1 = 52; /* OOB bits in nibbles per sector */
221 		} else {
222 			bch_wrapmode = 0x01;
223 			eccsize0 = 52; /* ECC bits in nibbles per sector */
224 			eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
225 		}
226 		break;
227 	default:
228 		return;
229 	}
230 	/* Clear ecc and enable bits */
231 	writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
232 	/* Configure ecc size for BCH */
233 	ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
234 	writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
235 
236 	/* Configure device details for BCH engine */
237 	ecc_config_val = ((ecc_algo << 16)	| /* HAM1 | BCHx */
238 			(bch_type << 12)	| /* BCH4/BCH8/BCH16 */
239 			(bch_wrapmode << 8)	| /* wrap mode */
240 			(dev_width << 7)	| /* bus width */
241 			(0x0 << 4)		| /* number of sectors */
242 			(cs <<  1)		| /* ECC CS */
243 			(0x1));			  /* enable ECC */
244 	writel(ecc_config_val, &gpmc_cfg->ecc_config);
245 }
246 
247 /*
248  *  omap_calculate_ecc - Read ECC result
249  *  @mtd:	MTD structure
250  *  @dat:	unused
251  *  @ecc_code:	ecc_code buffer
252  *  Using noninverted ECC can be considered ugly since writing a blank
253  *  page ie. padding will clear the ECC bytes. This is no problem as
254  *  long nobody is trying to write data on the seemingly unused page.
255  *  Reading an erased page will produce an ECC mismatch between
256  *  generated and read ECC bytes that has to be dealt with separately.
257  *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
258  *  is used, the result of read will be 0x0 while the ECC offsets of the
259  *  spare area will be 0xFF which will result in an ECC mismatch.
260  */
261 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
262 				uint8_t *ecc_code)
263 {
264 	struct nand_chip *chip = mtd_to_nand(mtd);
265 	struct omap_nand_info *info = nand_get_controller_data(chip);
266 	const uint32_t *ptr;
267 	uint32_t val = 0;
268 	int8_t i = 0, j;
269 
270 	switch (info->ecc_scheme) {
271 	case OMAP_ECC_HAM1_CODE_HW:
272 		val = readl(&gpmc_cfg->ecc1_result);
273 		ecc_code[0] = val & 0xFF;
274 		ecc_code[1] = (val >> 16) & 0xFF;
275 		ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
276 		break;
277 #ifdef CONFIG_BCH
278 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
279 #endif
280 	case OMAP_ECC_BCH8_CODE_HW:
281 		ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
282 		val = readl(ptr);
283 		ecc_code[i++] = (val >>  0) & 0xFF;
284 		ptr--;
285 		for (j = 0; j < 3; j++) {
286 			val = readl(ptr);
287 			ecc_code[i++] = (val >> 24) & 0xFF;
288 			ecc_code[i++] = (val >> 16) & 0xFF;
289 			ecc_code[i++] = (val >>  8) & 0xFF;
290 			ecc_code[i++] = (val >>  0) & 0xFF;
291 			ptr--;
292 		}
293 		break;
294 	case OMAP_ECC_BCH16_CODE_HW:
295 		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
296 		ecc_code[i++] = (val >>  8) & 0xFF;
297 		ecc_code[i++] = (val >>  0) & 0xFF;
298 		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
299 		ecc_code[i++] = (val >> 24) & 0xFF;
300 		ecc_code[i++] = (val >> 16) & 0xFF;
301 		ecc_code[i++] = (val >>  8) & 0xFF;
302 		ecc_code[i++] = (val >>  0) & 0xFF;
303 		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
304 		ecc_code[i++] = (val >> 24) & 0xFF;
305 		ecc_code[i++] = (val >> 16) & 0xFF;
306 		ecc_code[i++] = (val >>  8) & 0xFF;
307 		ecc_code[i++] = (val >>  0) & 0xFF;
308 		for (j = 3; j >= 0; j--) {
309 			val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
310 									);
311 			ecc_code[i++] = (val >> 24) & 0xFF;
312 			ecc_code[i++] = (val >> 16) & 0xFF;
313 			ecc_code[i++] = (val >>  8) & 0xFF;
314 			ecc_code[i++] = (val >>  0) & 0xFF;
315 		}
316 		break;
317 	default:
318 		return -EINVAL;
319 	}
320 	/* ECC scheme specific syndrome customizations */
321 	switch (info->ecc_scheme) {
322 	case OMAP_ECC_HAM1_CODE_HW:
323 		break;
324 #ifdef CONFIG_BCH
325 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
326 
327 		for (i = 0; i < chip->ecc.bytes; i++)
328 			*(ecc_code + i) = *(ecc_code + i) ^
329 						bch8_polynomial[i];
330 		break;
331 #endif
332 	case OMAP_ECC_BCH8_CODE_HW:
333 		ecc_code[chip->ecc.bytes - 1] = 0x00;
334 		break;
335 	case OMAP_ECC_BCH16_CODE_HW:
336 		break;
337 	default:
338 		return -EINVAL;
339 	}
340 	return 0;
341 }
342 
343 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
344 
345 #define PREFETCH_CONFIG1_CS_SHIFT	24
346 #define PREFETCH_FIFOTHRESHOLD_MAX	0x40
347 #define PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
348 #define PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
349 #define PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
350 #define ENABLE_PREFETCH			(1 << 7)
351 
352 /**
353  * omap_prefetch_enable - configures and starts prefetch transfer
354  * @fifo_th: fifo threshold to be used for read/ write
355  * @count: number of bytes to be transferred
356  * @is_write: prefetch read(0) or write post(1) mode
357  * @cs: chip select to use
358  */
359 static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
360 {
361 	uint32_t val;
362 
363 	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
364 		return -EINVAL;
365 
366 	if (readl(&gpmc_cfg->prefetch_control))
367 		return -EBUSY;
368 
369 	/* Set the amount of bytes to be prefetched */
370 	writel(count, &gpmc_cfg->prefetch_config2);
371 
372 	val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
373 		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
374 	writel(val, &gpmc_cfg->prefetch_config1);
375 
376 	/*  Start the prefetch engine */
377 	writel(1, &gpmc_cfg->prefetch_control);
378 
379 	return 0;
380 }
381 
382 /**
383  * omap_prefetch_reset - disables and stops the prefetch engine
384  */
385 static void omap_prefetch_reset(void)
386 {
387 	writel(0, &gpmc_cfg->prefetch_control);
388 	writel(0, &gpmc_cfg->prefetch_config1);
389 }
390 
391 static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
392 {
393 	int ret;
394 	uint32_t cnt;
395 	struct omap_nand_info *info = nand_get_controller_data(chip);
396 
397 	ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
398 	if (ret < 0)
399 		return ret;
400 
401 	do {
402 		int i;
403 
404 		cnt = readl(&gpmc_cfg->prefetch_status);
405 		cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
406 
407 		for (i = 0; i < cnt / 4; i++) {
408 			*buf++ = readl(CONFIG_SYS_NAND_BASE);
409 			len -= 4;
410 		}
411 	} while (len);
412 
413 	omap_prefetch_reset();
414 
415 	return 0;
416 }
417 
418 static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
419 {
420 	struct nand_chip *chip = mtd_to_nand(mtd);
421 
422 	if (chip->options & NAND_BUSWIDTH_16)
423 		nand_read_buf16(mtd, buf, len);
424 	else
425 		nand_read_buf(mtd, buf, len);
426 }
427 
428 static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
429 {
430 	int ret;
431 	uint32_t head, tail;
432 	struct nand_chip *chip = mtd_to_nand(mtd);
433 
434 	/*
435 	 * If the destination buffer is unaligned, start with reading
436 	 * the overlap byte-wise.
437 	 */
438 	head = ((uint32_t) buf) % 4;
439 	if (head) {
440 		omap_nand_read(mtd, buf, head);
441 		buf += head;
442 		len -= head;
443 	}
444 
445 	/*
446 	 * Only transfer multiples of 4 bytes in a pre-fetched fashion.
447 	 * If there's a residue, care for it byte-wise afterwards.
448 	 */
449 	tail = len % 4;
450 
451 	ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
452 	if (ret < 0) {
453 		/* fallback in case the prefetch engine is busy */
454 		omap_nand_read(mtd, buf, len);
455 	} else if (tail) {
456 		buf += len - tail;
457 		omap_nand_read(mtd, buf, tail);
458 	}
459 }
460 #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
461 
462 #ifdef CONFIG_NAND_OMAP_ELM
463 /*
464  * omap_reverse_list - re-orders list elements in reverse order [internal]
465  * @list:	pointer to start of list
466  * @length:	length of list
467 */
468 static void omap_reverse_list(u8 *list, unsigned int length)
469 {
470 	unsigned int i, j;
471 	unsigned int half_length = length / 2;
472 	u8 tmp;
473 	for (i = 0, j = length - 1; i < half_length; i++, j--) {
474 		tmp = list[i];
475 		list[i] = list[j];
476 		list[j] = tmp;
477 	}
478 }
479 
480 /*
481  * omap_correct_data_bch - Compares the ecc read from nand spare area
482  * with ECC registers values and corrects one bit error if it has occurred
483  *
484  * @mtd:	MTD device structure
485  * @dat:	page data
486  * @read_ecc:	ecc read from nand flash (ignored)
487  * @calc_ecc:	ecc read from ECC registers
488  *
489  * @return 0 if data is OK or corrected, else returns -1
490  */
491 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
492 				uint8_t *read_ecc, uint8_t *calc_ecc)
493 {
494 	struct nand_chip *chip = mtd_to_nand(mtd);
495 	struct omap_nand_info *info = nand_get_controller_data(chip);
496 	struct nand_ecc_ctrl *ecc = &chip->ecc;
497 	uint32_t error_count = 0, error_max;
498 	uint32_t error_loc[ELM_MAX_ERROR_COUNT];
499 	enum bch_level bch_type;
500 	uint32_t i, ecc_flag = 0;
501 	uint8_t count;
502 	uint32_t byte_pos, bit_pos;
503 	int err = 0;
504 
505 	/* check calculated ecc */
506 	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
507 		if (calc_ecc[i] != 0x00)
508 			ecc_flag = 1;
509 	}
510 	if (!ecc_flag)
511 		return 0;
512 
513 	/* check for whether its a erased-page */
514 	ecc_flag = 0;
515 	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
516 		if (read_ecc[i] != 0xff)
517 			ecc_flag = 1;
518 	}
519 	if (!ecc_flag)
520 		return 0;
521 
522 	/*
523 	 * while reading ECC result we read it in big endian.
524 	 * Hence while loading to ELM we have rotate to get the right endian.
525 	 */
526 	switch (info->ecc_scheme) {
527 	case OMAP_ECC_BCH8_CODE_HW:
528 		bch_type = BCH_8_BIT;
529 		omap_reverse_list(calc_ecc, ecc->bytes - 1);
530 		break;
531 	case OMAP_ECC_BCH16_CODE_HW:
532 		bch_type = BCH_16_BIT;
533 		omap_reverse_list(calc_ecc, ecc->bytes);
534 		break;
535 	default:
536 		return -EINVAL;
537 	}
538 	/* use elm module to check for errors */
539 	elm_config(bch_type);
540 	err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
541 	if (err)
542 		return err;
543 
544 	/* correct bch error */
545 	for (count = 0; count < error_count; count++) {
546 		switch (info->ecc_scheme) {
547 		case OMAP_ECC_BCH8_CODE_HW:
548 			/* 14th byte in ECC is reserved to match ROM layout */
549 			error_max = SECTOR_BYTES + (ecc->bytes - 1);
550 			break;
551 		case OMAP_ECC_BCH16_CODE_HW:
552 			error_max = SECTOR_BYTES + ecc->bytes;
553 			break;
554 		default:
555 			return -EINVAL;
556 		}
557 		byte_pos = error_max - (error_loc[count] / 8) - 1;
558 		bit_pos  = error_loc[count] % 8;
559 		if (byte_pos < SECTOR_BYTES) {
560 			dat[byte_pos] ^= 1 << bit_pos;
561 			debug("nand: bit-flip corrected @data=%d\n", byte_pos);
562 		} else if (byte_pos < error_max) {
563 			read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
564 			debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
565 								SECTOR_BYTES);
566 		} else {
567 			err = -EBADMSG;
568 			printf("nand: error: invalid bit-flip location\n");
569 		}
570 	}
571 	return (err) ? err : error_count;
572 }
573 
574 /**
575  * omap_read_page_bch - hardware ecc based page read function
576  * @mtd:	mtd info structure
577  * @chip:	nand chip info structure
578  * @buf:	buffer to store read data
579  * @oob_required: caller expects OOB data read to chip->oob_poi
580  * @page:	page number to read
581  *
582  */
583 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
584 				uint8_t *buf, int oob_required, int page)
585 {
586 	int i, eccsize = chip->ecc.size;
587 	int eccbytes = chip->ecc.bytes;
588 	int eccsteps = chip->ecc.steps;
589 	uint8_t *p = buf;
590 	uint8_t *ecc_calc = chip->buffers->ecccalc;
591 	uint8_t *ecc_code = chip->buffers->ecccode;
592 	uint32_t *eccpos = chip->ecc.layout->eccpos;
593 	uint8_t *oob = chip->oob_poi;
594 	uint32_t data_pos;
595 	uint32_t oob_pos;
596 
597 	data_pos = 0;
598 	/* oob area start */
599 	oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
600 	oob += chip->ecc.layout->eccpos[0];
601 
602 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
603 				oob += eccbytes) {
604 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
605 		/* read data */
606 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
607 		chip->read_buf(mtd, p, eccsize);
608 
609 		/* read respective ecc from oob area */
610 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
611 		chip->read_buf(mtd, oob, eccbytes);
612 		/* read syndrome */
613 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
614 
615 		data_pos += eccsize;
616 		oob_pos += eccbytes;
617 	}
618 
619 	for (i = 0; i < chip->ecc.total; i++)
620 		ecc_code[i] = chip->oob_poi[eccpos[i]];
621 
622 	eccsteps = chip->ecc.steps;
623 	p = buf;
624 
625 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
626 		int stat;
627 
628 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
629 		if (stat < 0)
630 			mtd->ecc_stats.failed++;
631 		else
632 			mtd->ecc_stats.corrected += stat;
633 	}
634 	return 0;
635 }
636 #endif /* CONFIG_NAND_OMAP_ELM */
637 
638 /*
639  * OMAP3 BCH8 support (with BCH library)
640  */
641 #ifdef CONFIG_BCH
642 /**
643  * omap_correct_data_bch_sw - Decode received data and correct errors
644  * @mtd: MTD device structure
645  * @data: page data
646  * @read_ecc: ecc read from nand flash
647  * @calc_ecc: ecc read from HW ECC registers
648  */
649 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
650 				 u_char *read_ecc, u_char *calc_ecc)
651 {
652 	int i, count;
653 	/* cannot correct more than 8 errors */
654 	unsigned int errloc[8];
655 	struct nand_chip *chip = mtd_to_nand(mtd);
656 	struct omap_nand_info *info = nand_get_controller_data(chip);
657 
658 	count = decode_bch(info->control, NULL, SECTOR_BYTES,
659 				read_ecc, calc_ecc, NULL, errloc);
660 	if (count > 0) {
661 		/* correct errors */
662 		for (i = 0; i < count; i++) {
663 			/* correct data only, not ecc bytes */
664 			if (errloc[i] < SECTOR_BYTES << 3)
665 				data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
666 			debug("corrected bitflip %u\n", errloc[i]);
667 #ifdef DEBUG
668 			puts("read_ecc: ");
669 			/*
670 			 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
671 			 * here!
672 			 */
673 			for (i = 0; i < 13; i++)
674 				printf("%02x ", read_ecc[i]);
675 			puts("\n");
676 			puts("calc_ecc: ");
677 			for (i = 0; i < 13; i++)
678 				printf("%02x ", calc_ecc[i]);
679 			puts("\n");
680 #endif
681 		}
682 	} else if (count < 0) {
683 		puts("ecc unrecoverable error\n");
684 	}
685 	return count;
686 }
687 
688 /**
689  * omap_free_bch - Release BCH ecc resources
690  * @mtd: MTD device structure
691  */
692 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
693 {
694 	struct nand_chip *chip = mtd_to_nand(mtd);
695 	struct omap_nand_info *info = nand_get_controller_data(chip);
696 
697 	if (info->control) {
698 		free_bch(info->control);
699 		info->control = NULL;
700 	}
701 }
702 #endif /* CONFIG_BCH */
703 
704 /**
705  * omap_select_ecc_scheme - configures driver for particular ecc-scheme
706  * @nand: NAND chip device structure
707  * @ecc_scheme: ecc scheme to configure
708  * @pagesize: number of main-area bytes per page of NAND device
709  * @oobsize: number of OOB/spare bytes per page of NAND device
710  */
711 static int omap_select_ecc_scheme(struct nand_chip *nand,
712 	enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
713 	struct omap_nand_info	*info		= nand_get_controller_data(nand);
714 	struct nand_ecclayout	*ecclayout	= &omap_ecclayout;
715 	int eccsteps = pagesize / SECTOR_BYTES;
716 	int i;
717 
718 	switch (ecc_scheme) {
719 	case OMAP_ECC_HAM1_CODE_SW:
720 		debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
721 		/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
722 		 * initialized in nand_scan_tail(), so just set ecc.mode */
723 		info->control		= NULL;
724 		nand->ecc.mode		= NAND_ECC_SOFT;
725 		nand->ecc.layout	= NULL;
726 		nand->ecc.size		= 0;
727 		break;
728 
729 	case OMAP_ECC_HAM1_CODE_HW:
730 		debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
731 		/* check ecc-scheme requirements before updating ecc info */
732 		if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
733 			printf("nand: error: insufficient OOB: require=%d\n", (
734 				(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
735 			return -EINVAL;
736 		}
737 		info->control		= NULL;
738 		/* populate ecc specific fields */
739 		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
740 		nand->ecc.mode		= NAND_ECC_HW;
741 		nand->ecc.strength	= 1;
742 		nand->ecc.size		= SECTOR_BYTES;
743 		nand->ecc.bytes		= 3;
744 		nand->ecc.hwctl		= omap_enable_hwecc;
745 		nand->ecc.correct	= omap_correct_data;
746 		nand->ecc.calculate	= omap_calculate_ecc;
747 		/* define ecc-layout */
748 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
749 		for (i = 0; i < ecclayout->eccbytes; i++) {
750 			if (nand->options & NAND_BUSWIDTH_16)
751 				ecclayout->eccpos[i] = i + 2;
752 			else
753 				ecclayout->eccpos[i] = i + 1;
754 		}
755 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
756 		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
757 						BADBLOCK_MARKER_LENGTH;
758 		break;
759 
760 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
761 #ifdef CONFIG_BCH
762 		debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
763 		/* check ecc-scheme requirements before updating ecc info */
764 		if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
765 			printf("nand: error: insufficient OOB: require=%d\n", (
766 				(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
767 			return -EINVAL;
768 		}
769 		/* check if BCH S/W library can be used for error detection */
770 		info->control = init_bch(13, 8, 0x201b);
771 		if (!info->control) {
772 			printf("nand: error: could not init_bch()\n");
773 			return -ENODEV;
774 		}
775 		/* populate ecc specific fields */
776 		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
777 		nand->ecc.mode		= NAND_ECC_HW;
778 		nand->ecc.strength	= 8;
779 		nand->ecc.size		= SECTOR_BYTES;
780 		nand->ecc.bytes		= 13;
781 		nand->ecc.hwctl		= omap_enable_hwecc;
782 		nand->ecc.correct	= omap_correct_data_bch_sw;
783 		nand->ecc.calculate	= omap_calculate_ecc;
784 		/* define ecc-layout */
785 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
786 		ecclayout->eccpos[0]	= BADBLOCK_MARKER_LENGTH;
787 		for (i = 1; i < ecclayout->eccbytes; i++) {
788 			if (i % nand->ecc.bytes)
789 				ecclayout->eccpos[i] =
790 						ecclayout->eccpos[i - 1] + 1;
791 			else
792 				ecclayout->eccpos[i] =
793 						ecclayout->eccpos[i - 1] + 2;
794 		}
795 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
796 		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
797 						BADBLOCK_MARKER_LENGTH;
798 		break;
799 #else
800 		printf("nand: error: CONFIG_BCH required for ECC\n");
801 		return -EINVAL;
802 #endif
803 
804 	case OMAP_ECC_BCH8_CODE_HW:
805 #ifdef CONFIG_NAND_OMAP_ELM
806 		debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
807 		/* check ecc-scheme requirements before updating ecc info */
808 		if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
809 			printf("nand: error: insufficient OOB: require=%d\n", (
810 				(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
811 			return -EINVAL;
812 		}
813 		/* intialize ELM for ECC error detection */
814 		elm_init();
815 		info->control		= NULL;
816 		/* populate ecc specific fields */
817 		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
818 		nand->ecc.mode		= NAND_ECC_HW;
819 		nand->ecc.strength	= 8;
820 		nand->ecc.size		= SECTOR_BYTES;
821 		nand->ecc.bytes		= 14;
822 		nand->ecc.hwctl		= omap_enable_hwecc;
823 		nand->ecc.correct	= omap_correct_data_bch;
824 		nand->ecc.calculate	= omap_calculate_ecc;
825 		nand->ecc.read_page	= omap_read_page_bch;
826 		/* define ecc-layout */
827 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
828 		for (i = 0; i < ecclayout->eccbytes; i++)
829 			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
830 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
831 		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
832 						BADBLOCK_MARKER_LENGTH;
833 		break;
834 #else
835 		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
836 		return -EINVAL;
837 #endif
838 
839 	case OMAP_ECC_BCH16_CODE_HW:
840 #ifdef CONFIG_NAND_OMAP_ELM
841 		debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
842 		/* check ecc-scheme requirements before updating ecc info */
843 		if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
844 			printf("nand: error: insufficient OOB: require=%d\n", (
845 				(26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
846 			return -EINVAL;
847 		}
848 		/* intialize ELM for ECC error detection */
849 		elm_init();
850 		/* populate ecc specific fields */
851 		nand->ecc.mode		= NAND_ECC_HW;
852 		nand->ecc.size		= SECTOR_BYTES;
853 		nand->ecc.bytes		= 26;
854 		nand->ecc.strength	= 16;
855 		nand->ecc.hwctl		= omap_enable_hwecc;
856 		nand->ecc.correct	= omap_correct_data_bch;
857 		nand->ecc.calculate	= omap_calculate_ecc;
858 		nand->ecc.read_page	= omap_read_page_bch;
859 		/* define ecc-layout */
860 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
861 		for (i = 0; i < ecclayout->eccbytes; i++)
862 			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
863 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
864 		ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
865 						BADBLOCK_MARKER_LENGTH;
866 		break;
867 #else
868 		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
869 		return -EINVAL;
870 #endif
871 	default:
872 		debug("nand: error: ecc scheme not enabled or supported\n");
873 		return -EINVAL;
874 	}
875 
876 	/* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
877 	if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
878 		nand->ecc.layout = ecclayout;
879 
880 	info->ecc_scheme = ecc_scheme;
881 	return 0;
882 }
883 
884 #ifndef CONFIG_SPL_BUILD
885 /*
886  * omap_nand_switch_ecc - switch the ECC operation between different engines
887  * (h/w and s/w) and different algorithms (hamming and BCHx)
888  *
889  * @hardware		- true if one of the HW engines should be used
890  * @eccstrength		- the number of bits that could be corrected
891  *			  (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
892  */
893 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
894 {
895 	struct nand_chip *nand;
896 	struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
897 	int err = 0;
898 
899 	if (!mtd) {
900 		printf("nand: error: no NAND devices found\n");
901 		return -ENODEV;
902 	}
903 
904 	nand = mtd_to_nand(mtd);
905 	nand->options |= NAND_OWN_BUFFERS;
906 	nand->options &= ~NAND_SUBPAGE_READ;
907 	/* Setup the ecc configurations again */
908 	if (hardware) {
909 		if (eccstrength == 1) {
910 			err = omap_select_ecc_scheme(nand,
911 					OMAP_ECC_HAM1_CODE_HW,
912 					mtd->writesize, mtd->oobsize);
913 		} else if (eccstrength == 8) {
914 			err = omap_select_ecc_scheme(nand,
915 					OMAP_ECC_BCH8_CODE_HW,
916 					mtd->writesize, mtd->oobsize);
917 		} else if (eccstrength == 16) {
918 			err = omap_select_ecc_scheme(nand,
919 					OMAP_ECC_BCH16_CODE_HW,
920 					mtd->writesize, mtd->oobsize);
921 		} else {
922 			printf("nand: error: unsupported ECC scheme\n");
923 			return -EINVAL;
924 		}
925 	} else {
926 		if (eccstrength == 1) {
927 			err = omap_select_ecc_scheme(nand,
928 					OMAP_ECC_HAM1_CODE_SW,
929 					mtd->writesize, mtd->oobsize);
930 		} else if (eccstrength == 8) {
931 			err = omap_select_ecc_scheme(nand,
932 					OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
933 					mtd->writesize, mtd->oobsize);
934 		} else {
935 			printf("nand: error: unsupported ECC scheme\n");
936 			return -EINVAL;
937 		}
938 	}
939 
940 	/* Update NAND handling after ECC mode switch */
941 	if (!err)
942 		err = nand_scan_tail(mtd);
943 	return err;
944 }
945 #endif /* CONFIG_SPL_BUILD */
946 
947 /*
948  * Board-specific NAND initialization. The following members of the
949  * argument are board-specific:
950  * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
951  * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
952  * - cmd_ctrl: hardwarespecific function for accesing control-lines
953  * - waitfunc: hardwarespecific function for accesing device ready/busy line
954  * - ecc.hwctl: function to enable (reset) hardware ecc generator
955  * - ecc.mode: mode of ecc, see defines
956  * - chip_delay: chip dependent delay for transfering data from array to
957  *   read regs (tR)
958  * - options: various chip options. They can partly be set to inform
959  *   nand_scan about special functionality. See the defines for further
960  *   explanation
961  */
962 int board_nand_init(struct nand_chip *nand)
963 {
964 	int32_t gpmc_config = 0;
965 	int cs = cs_next++;
966 	int err = 0;
967 	/*
968 	 * xloader/Uboot's gpmc configuration would have configured GPMC for
969 	 * nand type of memory. The following logic scans and latches on to the
970 	 * first CS with NAND type memory.
971 	 * TBD: need to make this logic generic to handle multiple CS NAND
972 	 * devices.
973 	 */
974 	while (cs < GPMC_MAX_CS) {
975 		/* Check if NAND type is set */
976 		if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
977 			/* Found it!! */
978 			break;
979 		}
980 		cs++;
981 	}
982 	if (cs >= GPMC_MAX_CS) {
983 		printf("nand: error: Unable to find NAND settings in "
984 			"GPMC Configuration - quitting\n");
985 		return -ENODEV;
986 	}
987 
988 	gpmc_config = readl(&gpmc_cfg->config);
989 	/* Disable Write protect */
990 	gpmc_config |= 0x10;
991 	writel(gpmc_config, &gpmc_cfg->config);
992 
993 	nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
994 	nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
995 	omap_nand_info[cs].control = NULL;
996 	omap_nand_info[cs].cs = cs;
997 	omap_nand_info[cs].ws = wscfg[cs];
998 	nand_set_controller_data(nand, &omap_nand_info[cs]);
999 	nand->cmd_ctrl	= omap_nand_hwcontrol;
1000 	nand->options	|= NAND_NO_PADDING | NAND_CACHEPRG;
1001 	nand->chip_delay = 100;
1002 	nand->ecc.layout = &omap_ecclayout;
1003 
1004 	/* configure driver and controller based on NAND device bus-width */
1005 	gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
1006 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
1007 	nand->options |= NAND_BUSWIDTH_16;
1008 	writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
1009 #else
1010 	nand->options &= ~NAND_BUSWIDTH_16;
1011 	writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1012 #endif
1013 	/* select ECC scheme */
1014 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1015 	err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
1016 			CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
1017 #else
1018 	/* pagesize and oobsize are not required to configure sw ecc-scheme */
1019 	err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1020 			0, 0);
1021 #endif
1022 	if (err)
1023 		return err;
1024 
1025 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
1026 	nand->read_buf = omap_nand_read_prefetch;
1027 #else
1028 	if (nand->options & NAND_BUSWIDTH_16)
1029 		nand->read_buf = nand_read_buf16;
1030 	else
1031 		nand->read_buf = nand_read_buf;
1032 #endif
1033 
1034 	nand->dev_ready = omap_dev_ready;
1035 
1036 	return 0;
1037 }
1038