xref: /openbmc/u-boot/drivers/mtd/nand/raw/mxc_nand.c (revision 9ab403d0dd3c88370612c97f8c4cb88199302833)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2004-2007 Freescale Semiconductor, Inc.
4  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5  * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
6  */
7 
8 #include <common.h>
9 #include <nand.h>
10 #include <linux/err.h>
11 #include <asm/io.h>
12 #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
13 	defined(CONFIG_MX51) || defined(CONFIG_MX53)
14 #include <asm/arch/imx-regs.h>
15 #endif
16 #include "mxc_nand.h"
17 
18 #define DRIVER_NAME "mxc_nand"
19 
20 struct mxc_nand_host {
21 	struct nand_chip		*nand;
22 
23 	struct mxc_nand_regs __iomem	*regs;
24 #ifdef MXC_NFC_V3_2
25 	struct mxc_nand_ip_regs __iomem	*ip_regs;
26 #endif
27 	int				spare_only;
28 	int				status_request;
29 	int				pagesize_2k;
30 	int				clk_act;
31 	uint16_t			col_addr;
32 	unsigned int			page_addr;
33 };
34 
35 static struct mxc_nand_host mxc_host;
36 static struct mxc_nand_host *host = &mxc_host;
37 
38 /* Define delays in microsec for NAND device operations */
39 #define TROP_US_DELAY   2000
40 /* Macros to get byte and bit positions of ECC */
41 #define COLPOS(x)  ((x) >> 3)
42 #define BITPOS(x) ((x) & 0xf)
43 
44 /* Define single bit Error positions in Main & Spare area */
45 #define MAIN_SINGLEBIT_ERROR 0x4
46 #define SPARE_SINGLEBIT_ERROR 0x1
47 
48 /* OOB placement block for use with hardware ecc generation */
49 #if defined(MXC_NFC_V1)
50 #ifndef CONFIG_SYS_NAND_LARGEPAGE
51 static struct nand_ecclayout nand_hw_eccoob = {
52 	.eccbytes = 5,
53 	.eccpos = {6, 7, 8, 9, 10},
54 	.oobfree = { {0, 5}, {11, 5}, }
55 };
56 #else
57 static struct nand_ecclayout nand_hw_eccoob2k = {
58 	.eccbytes = 20,
59 	.eccpos = {
60 		6, 7, 8, 9, 10,
61 		22, 23, 24, 25, 26,
62 		38, 39, 40, 41, 42,
63 		54, 55, 56, 57, 58,
64 	},
65 	.oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
66 };
67 #endif
68 #elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
69 #ifndef CONFIG_SYS_NAND_LARGEPAGE
70 static struct nand_ecclayout nand_hw_eccoob = {
71 	.eccbytes = 9,
72 	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
73 	.oobfree = { {2, 5} }
74 };
75 #else
76 static struct nand_ecclayout nand_hw_eccoob2k = {
77 	.eccbytes = 36,
78 	.eccpos = {
79 		7, 8, 9, 10, 11, 12, 13, 14, 15,
80 		23, 24, 25, 26, 27, 28, 29, 30, 31,
81 		39, 40, 41, 42, 43, 44, 45, 46, 47,
82 		55, 56, 57, 58, 59, 60, 61, 62, 63,
83 	},
84 	.oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
85 };
86 #endif
87 #endif
88 
89 static int is_16bit_nand(void)
90 {
91 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
92 	return 1;
93 #else
94 	return 0;
95 #endif
96 }
97 
98 static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
99 {
100 	uint32_t *d = dest;
101 
102 	size >>= 2;
103 	while (size--)
104 		__raw_writel(__raw_readl(source++), d++);
105 	return dest;
106 }
107 
108 /*
109  * This function polls the NANDFC to wait for the basic operation to
110  * complete by checking the INT bit.
111  */
112 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
113 				uint16_t param)
114 {
115 	uint32_t tmp;
116 
117 	while (max_retries-- > 0) {
118 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
119 		tmp = readnfc(&host->regs->config2);
120 		if (tmp & NFC_V1_V2_CONFIG2_INT) {
121 			tmp &= ~NFC_V1_V2_CONFIG2_INT;
122 			writenfc(tmp, &host->regs->config2);
123 #elif defined(MXC_NFC_V3_2)
124 		tmp = readnfc(&host->ip_regs->ipc);
125 		if (tmp & NFC_V3_IPC_INT) {
126 			tmp &= ~NFC_V3_IPC_INT;
127 			writenfc(tmp, &host->ip_regs->ipc);
128 #endif
129 			break;
130 		}
131 		udelay(1);
132 	}
133 	if (max_retries < 0) {
134 		pr_debug("%s(%d): INT not set\n",
135 				__func__, param);
136 	}
137 }
138 
139 /*
140  * This function issues the specified command to the NAND device and
141  * waits for completion.
142  */
143 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
144 {
145 	pr_debug("send_cmd(host, 0x%x)\n", cmd);
146 
147 	writenfc(cmd, &host->regs->flash_cmd);
148 	writenfc(NFC_CMD, &host->regs->operation);
149 
150 	/* Wait for operation to complete */
151 	wait_op_done(host, TROP_US_DELAY, cmd);
152 }
153 
154 /*
155  * This function sends an address (or partial address) to the
156  * NAND device. The address is used to select the source/destination for
157  * a NAND command.
158  */
159 static void send_addr(struct mxc_nand_host *host, uint16_t addr)
160 {
161 	pr_debug("send_addr(host, 0x%x)\n", addr);
162 
163 	writenfc(addr, &host->regs->flash_addr);
164 	writenfc(NFC_ADDR, &host->regs->operation);
165 
166 	/* Wait for operation to complete */
167 	wait_op_done(host, TROP_US_DELAY, addr);
168 }
169 
170 /*
171  * This function requests the NANDFC to initiate the transfer
172  * of data currently in the NANDFC RAM buffer to the NAND device.
173  */
174 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
175 			int spare_only)
176 {
177 	if (spare_only)
178 		pr_debug("send_prog_page (%d)\n", spare_only);
179 
180 	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
181 		int i;
182 		/*
183 		 *  The controller copies the 64 bytes of spare data from
184 		 *  the first 16 bytes of each of the 4 64 byte spare buffers.
185 		 *  Copy the contiguous data starting in spare_area[0] to
186 		 *  the four spare area buffers.
187 		 */
188 		for (i = 1; i < 4; i++) {
189 			void __iomem *src = &host->regs->spare_area[0][i * 16];
190 			void __iomem *dst = &host->regs->spare_area[i][0];
191 
192 			mxc_nand_memcpy32(dst, src, 16);
193 		}
194 	}
195 
196 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
197 	writenfc(buf_id, &host->regs->buf_addr);
198 #elif defined(MXC_NFC_V3_2)
199 	uint32_t tmp = readnfc(&host->regs->config1);
200 	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
201 	tmp |= NFC_V3_CONFIG1_RBA(buf_id);
202 	writenfc(tmp, &host->regs->config1);
203 #endif
204 
205 	/* Configure spare or page+spare access */
206 	if (!host->pagesize_2k) {
207 		uint32_t config1 = readnfc(&host->regs->config1);
208 		if (spare_only)
209 			config1 |= NFC_CONFIG1_SP_EN;
210 		else
211 			config1 &= ~NFC_CONFIG1_SP_EN;
212 		writenfc(config1, &host->regs->config1);
213 	}
214 
215 	writenfc(NFC_INPUT, &host->regs->operation);
216 
217 	/* Wait for operation to complete */
218 	wait_op_done(host, TROP_US_DELAY, spare_only);
219 }
220 
221 /*
222  * Requests NANDFC to initiate the transfer of data from the
223  * NAND device into in the NANDFC ram buffer.
224  */
225 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
226 		int spare_only)
227 {
228 	pr_debug("send_read_page (%d)\n", spare_only);
229 
230 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
231 	writenfc(buf_id, &host->regs->buf_addr);
232 #elif defined(MXC_NFC_V3_2)
233 	uint32_t tmp = readnfc(&host->regs->config1);
234 	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
235 	tmp |= NFC_V3_CONFIG1_RBA(buf_id);
236 	writenfc(tmp, &host->regs->config1);
237 #endif
238 
239 	/* Configure spare or page+spare access */
240 	if (!host->pagesize_2k) {
241 		uint32_t config1 = readnfc(&host->regs->config1);
242 		if (spare_only)
243 			config1 |= NFC_CONFIG1_SP_EN;
244 		else
245 			config1 &= ~NFC_CONFIG1_SP_EN;
246 		writenfc(config1, &host->regs->config1);
247 	}
248 
249 	writenfc(NFC_OUTPUT, &host->regs->operation);
250 
251 	/* Wait for operation to complete */
252 	wait_op_done(host, TROP_US_DELAY, spare_only);
253 
254 	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
255 		int i;
256 
257 		/*
258 		 *  The controller copies the 64 bytes of spare data to
259 		 *  the first 16 bytes of each of the 4 spare buffers.
260 		 *  Make the data contiguous starting in spare_area[0].
261 		 */
262 		for (i = 1; i < 4; i++) {
263 			void __iomem *src = &host->regs->spare_area[i][0];
264 			void __iomem *dst = &host->regs->spare_area[0][i * 16];
265 
266 			mxc_nand_memcpy32(dst, src, 16);
267 		}
268 	}
269 }
270 
271 /* Request the NANDFC to perform a read of the NAND device ID. */
272 static void send_read_id(struct mxc_nand_host *host)
273 {
274 	uint32_t tmp;
275 
276 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
277 	/* NANDFC buffer 0 is used for device ID output */
278 	writenfc(0x0, &host->regs->buf_addr);
279 #elif defined(MXC_NFC_V3_2)
280 	tmp = readnfc(&host->regs->config1);
281 	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
282 	writenfc(tmp, &host->regs->config1);
283 #endif
284 
285 	/* Read ID into main buffer */
286 	tmp = readnfc(&host->regs->config1);
287 	tmp &= ~NFC_CONFIG1_SP_EN;
288 	writenfc(tmp, &host->regs->config1);
289 
290 	writenfc(NFC_ID, &host->regs->operation);
291 
292 	/* Wait for operation to complete */
293 	wait_op_done(host, TROP_US_DELAY, 0);
294 }
295 
296 /*
297  * This function requests the NANDFC to perform a read of the
298  * NAND device status and returns the current status.
299  */
300 static uint16_t get_dev_status(struct mxc_nand_host *host)
301 {
302 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
303 	void __iomem *main_buf = host->regs->main_area[1];
304 	uint32_t store;
305 #endif
306 	uint32_t ret, tmp;
307 	/* Issue status request to NAND device */
308 
309 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
310 	/* store the main area1 first word, later do recovery */
311 	store = readl(main_buf);
312 	/* NANDFC buffer 1 is used for device status */
313 	writenfc(1, &host->regs->buf_addr);
314 #endif
315 
316 	/* Read status into main buffer */
317 	tmp = readnfc(&host->regs->config1);
318 	tmp &= ~NFC_CONFIG1_SP_EN;
319 	writenfc(tmp, &host->regs->config1);
320 
321 	writenfc(NFC_STATUS, &host->regs->operation);
322 
323 	/* Wait for operation to complete */
324 	wait_op_done(host, TROP_US_DELAY, 0);
325 
326 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
327 	/*
328 	 *  Status is placed in first word of main buffer
329 	 * get status, then recovery area 1 data
330 	 */
331 	ret = readw(main_buf);
332 	writel(store, main_buf);
333 #elif defined(MXC_NFC_V3_2)
334 	ret = readnfc(&host->regs->config1) >> 16;
335 #endif
336 
337 	return ret;
338 }
339 
340 /* This function is used by upper layer to checks if device is ready */
341 static int mxc_nand_dev_ready(struct mtd_info *mtd)
342 {
343 	/*
344 	 * NFC handles R/B internally. Therefore, this function
345 	 * always returns status as ready.
346 	 */
347 	return 1;
348 }
349 
350 static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
351 {
352 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
353 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
354 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
355 	uint16_t tmp = readnfc(&host->regs->config1);
356 
357 	if (on)
358 		tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
359 	else
360 		tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
361 	writenfc(tmp, &host->regs->config1);
362 #elif defined(MXC_NFC_V3_2)
363 	uint32_t tmp = readnfc(&host->ip_regs->config2);
364 
365 	if (on)
366 		tmp |= NFC_V3_CONFIG2_ECC_EN;
367 	else
368 		tmp &= ~NFC_V3_CONFIG2_ECC_EN;
369 	writenfc(tmp, &host->ip_regs->config2);
370 #endif
371 }
372 
373 #ifdef CONFIG_MXC_NAND_HWECC
374 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
375 {
376 	/*
377 	 * If HW ECC is enabled, we turn it on during init. There is
378 	 * no need to enable again here.
379 	 */
380 }
381 
382 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
383 static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
384 				      struct nand_chip *chip,
385 				      int page)
386 {
387 	struct mxc_nand_host *host = nand_get_controller_data(chip);
388 	uint8_t *buf = chip->oob_poi;
389 	int length = mtd->oobsize;
390 	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
391 	uint8_t *bufpoi = buf;
392 	int i, toread;
393 
394 	pr_debug("%s: Reading OOB area of page %u to oob %p\n",
395 			 __func__, page, buf);
396 
397 	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
398 	for (i = 0; i < chip->ecc.steps; i++) {
399 		toread = min_t(int, length, chip->ecc.prepad);
400 		if (toread) {
401 			chip->read_buf(mtd, bufpoi, toread);
402 			bufpoi += toread;
403 			length -= toread;
404 		}
405 		bufpoi += chip->ecc.bytes;
406 		host->col_addr += chip->ecc.bytes;
407 		length -= chip->ecc.bytes;
408 
409 		toread = min_t(int, length, chip->ecc.postpad);
410 		if (toread) {
411 			chip->read_buf(mtd, bufpoi, toread);
412 			bufpoi += toread;
413 			length -= toread;
414 		}
415 	}
416 	if (length > 0)
417 		chip->read_buf(mtd, bufpoi, length);
418 
419 	_mxc_nand_enable_hwecc(mtd, 0);
420 	chip->cmdfunc(mtd, NAND_CMD_READOOB,
421 			mtd->writesize + chip->ecc.prepad, page);
422 	bufpoi = buf + chip->ecc.prepad;
423 	length = mtd->oobsize - chip->ecc.prepad;
424 	for (i = 0; i < chip->ecc.steps; i++) {
425 		toread = min_t(int, length, chip->ecc.bytes);
426 		chip->read_buf(mtd, bufpoi, toread);
427 		bufpoi += eccpitch;
428 		length -= eccpitch;
429 		host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
430 	}
431 	_mxc_nand_enable_hwecc(mtd, 1);
432 	return 1;
433 }
434 
435 static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
436 					   struct nand_chip *chip,
437 					   uint8_t *buf,
438 					   int oob_required,
439 					   int page)
440 {
441 	struct mxc_nand_host *host = nand_get_controller_data(chip);
442 	int eccsize = chip->ecc.size;
443 	int eccbytes = chip->ecc.bytes;
444 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
445 	uint8_t *oob = chip->oob_poi;
446 	int steps, size;
447 	int n;
448 
449 	_mxc_nand_enable_hwecc(mtd, 0);
450 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
451 
452 	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
453 		host->col_addr = n * eccsize;
454 		chip->read_buf(mtd, buf, eccsize);
455 		buf += eccsize;
456 
457 		host->col_addr = mtd->writesize + n * eccpitch;
458 		if (chip->ecc.prepad) {
459 			chip->read_buf(mtd, oob, chip->ecc.prepad);
460 			oob += chip->ecc.prepad;
461 		}
462 
463 		chip->read_buf(mtd, oob, eccbytes);
464 		oob += eccbytes;
465 
466 		if (chip->ecc.postpad) {
467 			chip->read_buf(mtd, oob, chip->ecc.postpad);
468 			oob += chip->ecc.postpad;
469 		}
470 	}
471 
472 	size = mtd->oobsize - (oob - chip->oob_poi);
473 	if (size)
474 		chip->read_buf(mtd, oob, size);
475 	_mxc_nand_enable_hwecc(mtd, 1);
476 
477 	return 0;
478 }
479 
480 static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
481 				       struct nand_chip *chip,
482 				       uint8_t *buf,
483 				       int oob_required,
484 				       int page)
485 {
486 	struct mxc_nand_host *host = nand_get_controller_data(chip);
487 	int n, eccsize = chip->ecc.size;
488 	int eccbytes = chip->ecc.bytes;
489 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
490 	int eccsteps = chip->ecc.steps;
491 	uint8_t *p = buf;
492 	uint8_t *oob = chip->oob_poi;
493 
494 	pr_debug("Reading page %u to buf %p oob %p\n",
495 		 page, buf, oob);
496 
497 	/* first read the data area and the available portion of OOB */
498 	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
499 		int stat;
500 
501 		host->col_addr = n * eccsize;
502 
503 		chip->read_buf(mtd, p, eccsize);
504 
505 		host->col_addr = mtd->writesize + n * eccpitch;
506 
507 		if (chip->ecc.prepad) {
508 			chip->read_buf(mtd, oob, chip->ecc.prepad);
509 			oob += chip->ecc.prepad;
510 		}
511 
512 		stat = chip->ecc.correct(mtd, p, oob, NULL);
513 
514 		if (stat < 0)
515 			mtd->ecc_stats.failed++;
516 		else
517 			mtd->ecc_stats.corrected += stat;
518 		oob += eccbytes;
519 
520 		if (chip->ecc.postpad) {
521 			chip->read_buf(mtd, oob, chip->ecc.postpad);
522 			oob += chip->ecc.postpad;
523 		}
524 	}
525 
526 	/* Calculate remaining oob bytes */
527 	n = mtd->oobsize - (oob - chip->oob_poi);
528 	if (n)
529 		chip->read_buf(mtd, oob, n);
530 
531 	/* Then switch ECC off and read the OOB area to get the ECC code */
532 	_mxc_nand_enable_hwecc(mtd, 0);
533 	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
534 	eccsteps = chip->ecc.steps;
535 	oob = chip->oob_poi + chip->ecc.prepad;
536 	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
537 		host->col_addr = mtd->writesize +
538 				 n * eccpitch +
539 				 chip->ecc.prepad;
540 		chip->read_buf(mtd, oob, eccbytes);
541 		oob += eccbytes + chip->ecc.postpad;
542 	}
543 	_mxc_nand_enable_hwecc(mtd, 1);
544 	return 0;
545 }
546 
547 static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
548 				       struct nand_chip *chip, int page)
549 {
550 	struct mxc_nand_host *host = nand_get_controller_data(chip);
551 	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
552 	int length = mtd->oobsize;
553 	int i, len, status, steps = chip->ecc.steps;
554 	const uint8_t *bufpoi = chip->oob_poi;
555 
556 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
557 	for (i = 0; i < steps; i++) {
558 		len = min_t(int, length, eccpitch);
559 
560 		chip->write_buf(mtd, bufpoi, len);
561 		bufpoi += len;
562 		length -= len;
563 		host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
564 	}
565 	if (length > 0)
566 		chip->write_buf(mtd, bufpoi, length);
567 
568 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
569 	status = chip->waitfunc(mtd, chip);
570 	return status & NAND_STATUS_FAIL ? -EIO : 0;
571 }
572 
573 static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
574 					     struct nand_chip *chip,
575 					     const uint8_t *buf,
576 					     int oob_required, int page)
577 {
578 	struct mxc_nand_host *host = nand_get_controller_data(chip);
579 	int eccsize = chip->ecc.size;
580 	int eccbytes = chip->ecc.bytes;
581 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
582 	uint8_t *oob = chip->oob_poi;
583 	int steps, size;
584 	int n;
585 
586 	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
587 		host->col_addr = n * eccsize;
588 		chip->write_buf(mtd, buf, eccsize);
589 		buf += eccsize;
590 
591 		host->col_addr = mtd->writesize + n * eccpitch;
592 
593 		if (chip->ecc.prepad) {
594 			chip->write_buf(mtd, oob, chip->ecc.prepad);
595 			oob += chip->ecc.prepad;
596 		}
597 
598 		host->col_addr += eccbytes;
599 		oob += eccbytes;
600 
601 		if (chip->ecc.postpad) {
602 			chip->write_buf(mtd, oob, chip->ecc.postpad);
603 			oob += chip->ecc.postpad;
604 		}
605 	}
606 
607 	size = mtd->oobsize - (oob - chip->oob_poi);
608 	if (size)
609 		chip->write_buf(mtd, oob, size);
610 	return 0;
611 }
612 
613 static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
614 					 struct nand_chip *chip,
615 					 const uint8_t *buf,
616 					 int oob_required, int page)
617 {
618 	struct mxc_nand_host *host = nand_get_controller_data(chip);
619 	int i, n, eccsize = chip->ecc.size;
620 	int eccbytes = chip->ecc.bytes;
621 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
622 	int eccsteps = chip->ecc.steps;
623 	const uint8_t *p = buf;
624 	uint8_t *oob = chip->oob_poi;
625 
626 	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
627 
628 	for (i = n = 0;
629 	     eccsteps;
630 	     n++, eccsteps--, i += eccbytes, p += eccsize) {
631 		host->col_addr = n * eccsize;
632 
633 		chip->write_buf(mtd, p, eccsize);
634 
635 		host->col_addr = mtd->writesize + n * eccpitch;
636 
637 		if (chip->ecc.prepad) {
638 			chip->write_buf(mtd, oob, chip->ecc.prepad);
639 			oob += chip->ecc.prepad;
640 		}
641 
642 		chip->write_buf(mtd, oob, eccbytes);
643 		oob += eccbytes;
644 
645 		if (chip->ecc.postpad) {
646 			chip->write_buf(mtd, oob, chip->ecc.postpad);
647 			oob += chip->ecc.postpad;
648 		}
649 	}
650 
651 	/* Calculate remaining oob bytes */
652 	i = mtd->oobsize - (oob - chip->oob_poi);
653 	if (i)
654 		chip->write_buf(mtd, oob, i);
655 	return 0;
656 }
657 
658 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
659 				 u_char *read_ecc, u_char *calc_ecc)
660 {
661 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
662 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
663 	uint32_t ecc_status = readl(&host->regs->ecc_status_result);
664 	int subpages = mtd->writesize / nand_chip->subpagesize;
665 	int pg2blk_shift = nand_chip->phys_erase_shift -
666 			   nand_chip->page_shift;
667 
668 	do {
669 		if ((ecc_status & 0xf) > 4) {
670 			static int last_bad = -1;
671 
672 			if (last_bad != host->page_addr >> pg2blk_shift) {
673 				last_bad = host->page_addr >> pg2blk_shift;
674 				printk(KERN_DEBUG
675 				       "MXC_NAND: HWECC uncorrectable ECC error"
676 				       " in block %u page %u subpage %d\n",
677 				       last_bad, host->page_addr,
678 				       mtd->writesize / nand_chip->subpagesize
679 					    - subpages);
680 			}
681 			return -EBADMSG;
682 		}
683 		ecc_status >>= 4;
684 		subpages--;
685 	} while (subpages > 0);
686 
687 	return 0;
688 }
689 #else
690 #define mxc_nand_read_page_syndrome NULL
691 #define mxc_nand_read_page_raw_syndrome NULL
692 #define mxc_nand_read_oob_syndrome NULL
693 #define mxc_nand_write_page_syndrome NULL
694 #define mxc_nand_write_page_raw_syndrome NULL
695 #define mxc_nand_write_oob_syndrome NULL
696 
697 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
698 				 u_char *read_ecc, u_char *calc_ecc)
699 {
700 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
701 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
702 
703 	/*
704 	 * 1-Bit errors are automatically corrected in HW.  No need for
705 	 * additional correction.  2-Bit errors cannot be corrected by
706 	 * HW ECC, so we need to return failure
707 	 */
708 	uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
709 
710 	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
711 		pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
712 		return -EBADMSG;
713 	}
714 
715 	return 0;
716 }
717 #endif
718 
719 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
720 				  u_char *ecc_code)
721 {
722 	return 0;
723 }
724 #endif
725 
726 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
727 {
728 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
729 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
730 	uint8_t ret = 0;
731 	uint16_t col;
732 	uint16_t __iomem *main_buf =
733 		(uint16_t __iomem *)host->regs->main_area[0];
734 	uint16_t __iomem *spare_buf =
735 		(uint16_t __iomem *)host->regs->spare_area[0];
736 	union {
737 		uint16_t word;
738 		uint8_t bytes[2];
739 	} nfc_word;
740 
741 	/* Check for status request */
742 	if (host->status_request)
743 		return get_dev_status(host) & 0xFF;
744 
745 	/* Get column for 16-bit access */
746 	col = host->col_addr >> 1;
747 
748 	/* If we are accessing the spare region */
749 	if (host->spare_only)
750 		nfc_word.word = readw(&spare_buf[col]);
751 	else
752 		nfc_word.word = readw(&main_buf[col]);
753 
754 	/* Pick upper/lower byte of word from RAM buffer */
755 	ret = nfc_word.bytes[host->col_addr & 0x1];
756 
757 	/* Update saved column address */
758 	if (nand_chip->options & NAND_BUSWIDTH_16)
759 		host->col_addr += 2;
760 	else
761 		host->col_addr++;
762 
763 	return ret;
764 }
765 
766 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
767 {
768 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
769 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
770 	uint16_t col, ret;
771 	uint16_t __iomem *p;
772 
773 	pr_debug("mxc_nand_read_word(col = %d)\n", host->col_addr);
774 
775 	col = host->col_addr;
776 	/* Adjust saved column address */
777 	if (col < mtd->writesize && host->spare_only)
778 		col += mtd->writesize;
779 
780 	if (col < mtd->writesize) {
781 		p = (uint16_t __iomem *)(host->regs->main_area[0] +
782 				(col >> 1));
783 	} else {
784 		p = (uint16_t __iomem *)(host->regs->spare_area[0] +
785 				((col - mtd->writesize) >> 1));
786 	}
787 
788 	if (col & 1) {
789 		union {
790 			uint16_t word;
791 			uint8_t bytes[2];
792 		} nfc_word[3];
793 
794 		nfc_word[0].word = readw(p);
795 		nfc_word[1].word = readw(p + 1);
796 
797 		nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
798 		nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
799 
800 		ret = nfc_word[2].word;
801 	} else {
802 		ret = readw(p);
803 	}
804 
805 	/* Update saved column address */
806 	host->col_addr = col + 2;
807 
808 	return ret;
809 }
810 
811 /*
812  * Write data of length len to buffer buf. The data to be
813  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
814  * Operation by the NFC, the data is written to NAND Flash
815  */
816 static void mxc_nand_write_buf(struct mtd_info *mtd,
817 				const u_char *buf, int len)
818 {
819 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
820 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
821 	int n, col, i = 0;
822 
823 	pr_debug("mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
824 		 len);
825 
826 	col = host->col_addr;
827 
828 	/* Adjust saved column address */
829 	if (col < mtd->writesize && host->spare_only)
830 		col += mtd->writesize;
831 
832 	n = mtd->writesize + mtd->oobsize - col;
833 	n = min(len, n);
834 
835 	pr_debug("%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
836 
837 	while (n > 0) {
838 		void __iomem *p;
839 
840 		if (col < mtd->writesize) {
841 			p = host->regs->main_area[0] + (col & ~3);
842 		} else {
843 			p = host->regs->spare_area[0] -
844 						mtd->writesize + (col & ~3);
845 		}
846 
847 		pr_debug("%s:%d: p = %p\n", __func__,
848 			 __LINE__, p);
849 
850 		if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
851 			union {
852 				uint32_t word;
853 				uint8_t bytes[4];
854 			} nfc_word;
855 
856 			nfc_word.word = readl(p);
857 			nfc_word.bytes[col & 3] = buf[i++];
858 			n--;
859 			col++;
860 
861 			writel(nfc_word.word, p);
862 		} else {
863 			int m = mtd->writesize - col;
864 
865 			if (col >= mtd->writesize)
866 				m += mtd->oobsize;
867 
868 			m = min(n, m) & ~3;
869 
870 			pr_debug("%s:%d: n = %d, m = %d, i = %d, col = %d\n",
871 				 __func__,  __LINE__, n, m, i, col);
872 
873 			mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
874 			col += m;
875 			i += m;
876 			n -= m;
877 		}
878 	}
879 	/* Update saved column address */
880 	host->col_addr = col;
881 }
882 
883 /*
884  * Read the data buffer from the NAND Flash. To read the data from NAND
885  * Flash first the data output cycle is initiated by the NFC, which copies
886  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
887  */
888 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
889 {
890 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
891 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
892 	int n, col, i = 0;
893 
894 	pr_debug("mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr,
895 		 len);
896 
897 	col = host->col_addr;
898 
899 	/* Adjust saved column address */
900 	if (col < mtd->writesize && host->spare_only)
901 		col += mtd->writesize;
902 
903 	n = mtd->writesize + mtd->oobsize - col;
904 	n = min(len, n);
905 
906 	while (n > 0) {
907 		void __iomem *p;
908 
909 		if (col < mtd->writesize) {
910 			p = host->regs->main_area[0] + (col & ~3);
911 		} else {
912 			p = host->regs->spare_area[0] -
913 					mtd->writesize + (col & ~3);
914 		}
915 
916 		if (((col | (int)&buf[i]) & 3) || n < 4) {
917 			union {
918 				uint32_t word;
919 				uint8_t bytes[4];
920 			} nfc_word;
921 
922 			nfc_word.word = readl(p);
923 			buf[i++] = nfc_word.bytes[col & 3];
924 			n--;
925 			col++;
926 		} else {
927 			int m = mtd->writesize - col;
928 
929 			if (col >= mtd->writesize)
930 				m += mtd->oobsize;
931 
932 			m = min(n, m) & ~3;
933 			mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
934 
935 			col += m;
936 			i += m;
937 			n -= m;
938 		}
939 	}
940 	/* Update saved column address */
941 	host->col_addr = col;
942 }
943 
944 /*
945  * This function is used by upper layer for select and
946  * deselect of the NAND chip
947  */
948 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
949 {
950 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
951 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
952 
953 	switch (chip) {
954 	case -1:
955 		/* TODO: Disable the NFC clock */
956 		if (host->clk_act)
957 			host->clk_act = 0;
958 		break;
959 	case 0:
960 		/* TODO: Enable the NFC clock */
961 		if (!host->clk_act)
962 			host->clk_act = 1;
963 		break;
964 
965 	default:
966 		break;
967 	}
968 }
969 
970 /*
971  * Used by the upper layer to write command to NAND Flash for
972  * different operations to be carried out on NAND Flash
973  */
974 void mxc_nand_command(struct mtd_info *mtd, unsigned command,
975 				int column, int page_addr)
976 {
977 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
978 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
979 
980 	pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
981 		 command, column, page_addr);
982 
983 	/* Reset command state information */
984 	host->status_request = false;
985 
986 	/* Command pre-processing step */
987 	switch (command) {
988 
989 	case NAND_CMD_STATUS:
990 		host->col_addr = 0;
991 		host->status_request = true;
992 		break;
993 
994 	case NAND_CMD_READ0:
995 		host->page_addr = page_addr;
996 		host->col_addr = column;
997 		host->spare_only = false;
998 		break;
999 
1000 	case NAND_CMD_READOOB:
1001 		host->col_addr = column;
1002 		host->spare_only = true;
1003 		if (host->pagesize_2k)
1004 			command = NAND_CMD_READ0; /* only READ0 is valid */
1005 		break;
1006 
1007 	case NAND_CMD_SEQIN:
1008 		if (column >= mtd->writesize) {
1009 			/*
1010 			 * before sending SEQIN command for partial write,
1011 			 * we need read one page out. FSL NFC does not support
1012 			 * partial write. It always sends out 512+ecc+512+ecc
1013 			 * for large page nand flash. But for small page nand
1014 			 * flash, it does support SPARE ONLY operation.
1015 			 */
1016 			if (host->pagesize_2k) {
1017 				/* call ourself to read a page */
1018 				mxc_nand_command(mtd, NAND_CMD_READ0, 0,
1019 						page_addr);
1020 			}
1021 
1022 			host->col_addr = column - mtd->writesize;
1023 			host->spare_only = true;
1024 
1025 			/* Set program pointer to spare region */
1026 			if (!host->pagesize_2k)
1027 				send_cmd(host, NAND_CMD_READOOB);
1028 		} else {
1029 			host->spare_only = false;
1030 			host->col_addr = column;
1031 
1032 			/* Set program pointer to page start */
1033 			if (!host->pagesize_2k)
1034 				send_cmd(host, NAND_CMD_READ0);
1035 		}
1036 		break;
1037 
1038 	case NAND_CMD_PAGEPROG:
1039 		send_prog_page(host, 0, host->spare_only);
1040 
1041 		if (host->pagesize_2k && is_mxc_nfc_1()) {
1042 			/* data in 4 areas */
1043 			send_prog_page(host, 1, host->spare_only);
1044 			send_prog_page(host, 2, host->spare_only);
1045 			send_prog_page(host, 3, host->spare_only);
1046 		}
1047 
1048 		break;
1049 	}
1050 
1051 	/* Write out the command to the device. */
1052 	send_cmd(host, command);
1053 
1054 	/* Write out column address, if necessary */
1055 	if (column != -1) {
1056 		/*
1057 		 * MXC NANDFC can only perform full page+spare or
1058 		 * spare-only read/write. When the upper layers perform
1059 		 * a read/write buffer operation, we will use the saved
1060 		 * column address to index into the full page.
1061 		 */
1062 		send_addr(host, 0);
1063 		if (host->pagesize_2k)
1064 			/* another col addr cycle for 2k page */
1065 			send_addr(host, 0);
1066 	}
1067 
1068 	/* Write out page address, if necessary */
1069 	if (page_addr != -1) {
1070 		u32 page_mask = nand_chip->pagemask;
1071 		do {
1072 			send_addr(host, page_addr & 0xFF);
1073 			page_addr >>= 8;
1074 			page_mask >>= 8;
1075 		} while (page_mask);
1076 	}
1077 
1078 	/* Command post-processing step */
1079 	switch (command) {
1080 
1081 	case NAND_CMD_RESET:
1082 		break;
1083 
1084 	case NAND_CMD_READOOB:
1085 	case NAND_CMD_READ0:
1086 		if (host->pagesize_2k) {
1087 			/* send read confirm command */
1088 			send_cmd(host, NAND_CMD_READSTART);
1089 			/* read for each AREA */
1090 			send_read_page(host, 0, host->spare_only);
1091 			if (is_mxc_nfc_1()) {
1092 				send_read_page(host, 1, host->spare_only);
1093 				send_read_page(host, 2, host->spare_only);
1094 				send_read_page(host, 3, host->spare_only);
1095 			}
1096 		} else {
1097 			send_read_page(host, 0, host->spare_only);
1098 		}
1099 		break;
1100 
1101 	case NAND_CMD_READID:
1102 		host->col_addr = 0;
1103 		send_read_id(host);
1104 		break;
1105 
1106 	case NAND_CMD_PAGEPROG:
1107 		break;
1108 
1109 	case NAND_CMD_STATUS:
1110 		break;
1111 
1112 	case NAND_CMD_ERASE2:
1113 		break;
1114 	}
1115 }
1116 
1117 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1118 
1119 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
1120 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
1121 
1122 static struct nand_bbt_descr bbt_main_descr = {
1123 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1124 		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1125 	.offs =	0,
1126 	.len = 4,
1127 	.veroffs = 4,
1128 	.maxblocks = 4,
1129 	.pattern = bbt_pattern,
1130 };
1131 
1132 static struct nand_bbt_descr bbt_mirror_descr = {
1133 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1134 		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1135 	.offs =	0,
1136 	.len = 4,
1137 	.veroffs = 4,
1138 	.maxblocks = 4,
1139 	.pattern = mirror_pattern,
1140 };
1141 
1142 #endif
1143 
1144 int board_nand_init(struct nand_chip *this)
1145 {
1146 	struct mtd_info *mtd;
1147 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
1148 	uint32_t tmp;
1149 #endif
1150 
1151 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1152 	this->bbt_options |= NAND_BBT_USE_FLASH;
1153 	this->bbt_td = &bbt_main_descr;
1154 	this->bbt_md = &bbt_mirror_descr;
1155 #endif
1156 
1157 	/* structures must be linked */
1158 	mtd = &this->mtd;
1159 	host->nand = this;
1160 
1161 	/* 5 us command delay time */
1162 	this->chip_delay = 5;
1163 
1164 	nand_set_controller_data(this, host);
1165 	this->dev_ready = mxc_nand_dev_ready;
1166 	this->cmdfunc = mxc_nand_command;
1167 	this->select_chip = mxc_nand_select_chip;
1168 	this->read_byte = mxc_nand_read_byte;
1169 	this->read_word = mxc_nand_read_word;
1170 	this->write_buf = mxc_nand_write_buf;
1171 	this->read_buf = mxc_nand_read_buf;
1172 
1173 	host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
1174 #ifdef MXC_NFC_V3_2
1175 	host->ip_regs =
1176 		(struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
1177 #endif
1178 	host->clk_act = 1;
1179 
1180 #ifdef CONFIG_MXC_NAND_HWECC
1181 	this->ecc.calculate = mxc_nand_calculate_ecc;
1182 	this->ecc.hwctl = mxc_nand_enable_hwecc;
1183 	this->ecc.correct = mxc_nand_correct_data;
1184 	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
1185 		this->ecc.mode = NAND_ECC_HW_SYNDROME;
1186 		this->ecc.read_page = mxc_nand_read_page_syndrome;
1187 		this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
1188 		this->ecc.read_oob = mxc_nand_read_oob_syndrome;
1189 		this->ecc.write_page = mxc_nand_write_page_syndrome;
1190 		this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
1191 		this->ecc.write_oob = mxc_nand_write_oob_syndrome;
1192 		this->ecc.bytes = 9;
1193 		this->ecc.prepad = 7;
1194 	} else {
1195 		this->ecc.mode = NAND_ECC_HW;
1196 	}
1197 
1198 	if (is_mxc_nfc_1())
1199 		this->ecc.strength = 1;
1200 	else
1201 		this->ecc.strength = 4;
1202 
1203 	host->pagesize_2k = 0;
1204 
1205 	this->ecc.size = 512;
1206 	_mxc_nand_enable_hwecc(mtd, 1);
1207 #else
1208 	this->ecc.layout = &nand_soft_eccoob;
1209 	this->ecc.mode = NAND_ECC_SOFT;
1210 	_mxc_nand_enable_hwecc(mtd, 0);
1211 #endif
1212 	/* Reset NAND */
1213 	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1214 
1215 	/* NAND bus width determines access functions used by upper layer */
1216 	if (is_16bit_nand())
1217 		this->options |= NAND_BUSWIDTH_16;
1218 
1219 #ifdef CONFIG_SYS_NAND_LARGEPAGE
1220 	host->pagesize_2k = 1;
1221 	this->ecc.layout = &nand_hw_eccoob2k;
1222 #else
1223 	host->pagesize_2k = 0;
1224 	this->ecc.layout = &nand_hw_eccoob;
1225 #endif
1226 
1227 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
1228 #ifdef MXC_NFC_V2_1
1229 	tmp = readnfc(&host->regs->config1);
1230 	tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
1231 	tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
1232 	writenfc(tmp, &host->regs->config1);
1233 	if (host->pagesize_2k)
1234 		writenfc(64/2, &host->regs->spare_area_size);
1235 	else
1236 		writenfc(16/2, &host->regs->spare_area_size);
1237 #endif
1238 
1239 	/*
1240 	 * preset operation
1241 	 * Unlock the internal RAM Buffer
1242 	 */
1243 	writenfc(0x2, &host->regs->config);
1244 
1245 	/* Blocks to be unlocked */
1246 	writenfc(0x0, &host->regs->unlockstart_blkaddr);
1247 	/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
1248 	 * unlockend_blkaddr, but the magic 0x4000 does not always work
1249 	 * when writing more than some 32 megabytes (on 2k page nands)
1250 	 * However 0xFFFF doesn't seem to have this kind
1251 	 * of limitation (tried it back and forth several times).
1252 	 * The linux kernel driver sets this to 0xFFFF for the v2 controller
1253 	 * only, but probably this was not tested there for v1.
1254 	 * The very same limitation seems to apply to this kernel driver.
1255 	 * This might be NAND chip specific and the i.MX31 datasheet is
1256 	 * extremely vague about the semantics of this register.
1257 	 */
1258 	writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
1259 
1260 	/* Unlock Block Command for given address range */
1261 	writenfc(0x4, &host->regs->wrprot);
1262 #elif defined(MXC_NFC_V3_2)
1263 	writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
1264 	writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
1265 
1266 	/* Unlock the internal RAM Buffer */
1267 	writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1268 			&host->ip_regs->wrprot);
1269 
1270 	/* Blocks to be unlocked */
1271 	for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
1272 		writenfc(0x0 | 0xFFFF << 16,
1273 				&host->ip_regs->wrprot_unlock_blkaddr[tmp]);
1274 
1275 	writenfc(0, &host->ip_regs->ipc);
1276 
1277 	tmp = readnfc(&host->ip_regs->config2);
1278 	tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
1279 			NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
1280 	tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
1281 
1282 	if (host->pagesize_2k) {
1283 		tmp |= NFC_V3_CONFIG2_SPAS(64/2);
1284 		tmp |= NFC_V3_CONFIG2_PS_2048;
1285 	} else {
1286 		tmp |= NFC_V3_CONFIG2_SPAS(16/2);
1287 		tmp |= NFC_V3_CONFIG2_PS_512;
1288 	}
1289 
1290 	writenfc(tmp, &host->ip_regs->config2);
1291 
1292 	tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
1293 			NFC_V3_CONFIG3_NO_SDMA |
1294 			NFC_V3_CONFIG3_RBB_MODE |
1295 			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1296 			NFC_V3_CONFIG3_ADD_OP(0);
1297 
1298 	if (!(this->options & NAND_BUSWIDTH_16))
1299 		tmp |= NFC_V3_CONFIG3_FW8;
1300 
1301 	writenfc(tmp, &host->ip_regs->config3);
1302 
1303 	writenfc(0, &host->ip_regs->delay_line);
1304 #endif
1305 
1306 	return 0;
1307 }
1308