xref: /openbmc/u-boot/drivers/mtd/nand/raw/denali.c (revision 2ca471379b471dc0d31459974d7cc4b54c824956)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2014       Panasonic Corporation
4  * Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
5  * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
6  */
7 
8 #include <dm.h>
9 #include <nand.h>
10 #include <linux/bitfield.h>
11 #include <linux/dma-direction.h>
12 #include <linux/errno.h>
13 #include <linux/io.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/rawnand.h>
16 
17 #include "denali.h"
18 
19 static dma_addr_t dma_map_single(void *dev, void *ptr, size_t size,
20 				 enum dma_data_direction dir)
21 {
22 	unsigned long addr = (unsigned long)ptr;
23 
24 	size = ALIGN(size, ARCH_DMA_MINALIGN);
25 
26 	if (dir == DMA_FROM_DEVICE)
27 		invalidate_dcache_range(addr, addr + size);
28 	else
29 		flush_dcache_range(addr, addr + size);
30 
31 	return addr;
32 }
33 
34 static void dma_unmap_single(void *dev, dma_addr_t addr, size_t size,
35 			     enum dma_data_direction dir)
36 {
37 	size = ALIGN(size, ARCH_DMA_MINALIGN);
38 
39 	if (dir != DMA_TO_DEVICE)
40 		invalidate_dcache_range(addr, addr + size);
41 }
42 
43 static int dma_mapping_error(void *dev, dma_addr_t addr)
44 {
45 	return 0;
46 }
47 
48 #define DENALI_NAND_NAME    "denali-nand"
49 
50 /* for Indexed Addressing */
51 #define DENALI_INDEXED_CTRL	0x00
52 #define DENALI_INDEXED_DATA	0x10
53 
54 #define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
55 #define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
56 #define DENALI_MAP10		(2 << 26)	/* high-level control plane */
57 #define DENALI_MAP11		(3 << 26)	/* direct controller access */
58 
59 /* MAP11 access cycle type */
60 #define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
61 #define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
62 #define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
63 
64 /* MAP10 commands */
65 #define DENALI_ERASE		0x01
66 
67 #define DENALI_BANK(denali)	((denali)->active_bank << 24)
68 
69 #define DENALI_INVALID_BANK	-1
70 #define DENALI_NR_BANKS		4
71 
72 static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
73 {
74 	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
75 }
76 
77 /*
78  * Direct Addressing - the slave address forms the control information (command
79  * type, bank, block, and page address).  The slave data is the actual data to
80  * be transferred.  This mode requires 28 bits of address region allocated.
81  */
82 static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
83 {
84 	return ioread32(denali->host + addr);
85 }
86 
87 static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
88 				u32 data)
89 {
90 	iowrite32(data, denali->host + addr);
91 }
92 
93 /*
94  * Indexed Addressing - address translation module intervenes in passing the
95  * control information.  This mode reduces the required address range.  The
96  * control information and transferred data are latched by the registers in
97  * the translation module.
98  */
99 static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
100 {
101 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
102 	return ioread32(denali->host + DENALI_INDEXED_DATA);
103 }
104 
105 static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
106 				 u32 data)
107 {
108 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
109 	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
110 }
111 
112 /*
113  * Use the configuration feature register to determine the maximum number of
114  * banks that the hardware supports.
115  */
116 static void denali_detect_max_banks(struct denali_nand_info *denali)
117 {
118 	uint32_t features = ioread32(denali->reg + FEATURES);
119 
120 	denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
121 
122 	/* the encoding changed from rev 5.0 to 5.1 */
123 	if (denali->revision < 0x0501)
124 		denali->max_banks <<= 1;
125 }
126 
127 static void __maybe_unused denali_enable_irq(struct denali_nand_info *denali)
128 {
129 	int i;
130 
131 	for (i = 0; i < DENALI_NR_BANKS; i++)
132 		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
133 	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
134 }
135 
136 static void __maybe_unused denali_disable_irq(struct denali_nand_info *denali)
137 {
138 	int i;
139 
140 	for (i = 0; i < DENALI_NR_BANKS; i++)
141 		iowrite32(0, denali->reg + INTR_EN(i));
142 	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
143 }
144 
145 static void denali_clear_irq(struct denali_nand_info *denali,
146 			     int bank, uint32_t irq_status)
147 {
148 	/* write one to clear bits */
149 	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
150 }
151 
152 static void denali_clear_irq_all(struct denali_nand_info *denali)
153 {
154 	int i;
155 
156 	for (i = 0; i < DENALI_NR_BANKS; i++)
157 		denali_clear_irq(denali, i, U32_MAX);
158 }
159 
160 static void __denali_check_irq(struct denali_nand_info *denali)
161 {
162 	uint32_t irq_status;
163 	int i;
164 
165 	for (i = 0; i < DENALI_NR_BANKS; i++) {
166 		irq_status = ioread32(denali->reg + INTR_STATUS(i));
167 		denali_clear_irq(denali, i, irq_status);
168 
169 		if (i != denali->active_bank)
170 			continue;
171 
172 		denali->irq_status |= irq_status;
173 	}
174 }
175 
176 static void denali_reset_irq(struct denali_nand_info *denali)
177 {
178 	denali->irq_status = 0;
179 	denali->irq_mask = 0;
180 }
181 
182 static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
183 				    uint32_t irq_mask)
184 {
185 	unsigned long time_left = 1000000;
186 
187 	while (time_left) {
188 		__denali_check_irq(denali);
189 
190 		if (irq_mask & denali->irq_status)
191 			return denali->irq_status;
192 		udelay(1);
193 		time_left--;
194 	}
195 
196 	if (!time_left) {
197 		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
198 			irq_mask);
199 		return 0;
200 	}
201 
202 	return denali->irq_status;
203 }
204 
205 static uint32_t denali_check_irq(struct denali_nand_info *denali)
206 {
207 	__denali_check_irq(denali);
208 
209 	return denali->irq_status;
210 }
211 
212 static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
213 {
214 	struct denali_nand_info *denali = mtd_to_denali(mtd);
215 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
216 	int i;
217 
218 	for (i = 0; i < len; i++)
219 		buf[i] = denali->host_read(denali, addr);
220 }
221 
222 static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
223 {
224 	struct denali_nand_info *denali = mtd_to_denali(mtd);
225 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
226 	int i;
227 
228 	for (i = 0; i < len; i++)
229 		denali->host_write(denali, addr, buf[i]);
230 }
231 
232 static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
233 {
234 	struct denali_nand_info *denali = mtd_to_denali(mtd);
235 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
236 	uint16_t *buf16 = (uint16_t *)buf;
237 	int i;
238 
239 	for (i = 0; i < len / 2; i++)
240 		buf16[i] = denali->host_read(denali, addr);
241 }
242 
243 static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
244 			       int len)
245 {
246 	struct denali_nand_info *denali = mtd_to_denali(mtd);
247 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
248 	const uint16_t *buf16 = (const uint16_t *)buf;
249 	int i;
250 
251 	for (i = 0; i < len / 2; i++)
252 		denali->host_write(denali, addr, buf16[i]);
253 }
254 
255 static uint8_t denali_read_byte(struct mtd_info *mtd)
256 {
257 	uint8_t byte;
258 
259 	denali_read_buf(mtd, &byte, 1);
260 
261 	return byte;
262 }
263 
264 static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
265 {
266 	denali_write_buf(mtd, &byte, 1);
267 }
268 
269 static uint16_t denali_read_word(struct mtd_info *mtd)
270 {
271 	uint16_t word;
272 
273 	denali_read_buf16(mtd, (uint8_t *)&word, 2);
274 
275 	return word;
276 }
277 
278 static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
279 {
280 	struct denali_nand_info *denali = mtd_to_denali(mtd);
281 	uint32_t type;
282 
283 	if (ctrl & NAND_CLE)
284 		type = DENALI_MAP11_CMD;
285 	else if (ctrl & NAND_ALE)
286 		type = DENALI_MAP11_ADDR;
287 	else
288 		return;
289 
290 	/*
291 	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
292 	 * irq_status must be cleared here to catch the R/B# interrupt later.
293 	 */
294 	if (ctrl & NAND_CTRL_CHANGE)
295 		denali_reset_irq(denali);
296 
297 	denali->host_write(denali, DENALI_BANK(denali) | type, dat);
298 }
299 
300 static int denali_dev_ready(struct mtd_info *mtd)
301 {
302 	struct denali_nand_info *denali = mtd_to_denali(mtd);
303 
304 	return !!(denali_check_irq(denali) & INTR__INT_ACT);
305 }
306 
307 static int denali_check_erased_page(struct mtd_info *mtd,
308 				    struct nand_chip *chip, uint8_t *buf,
309 				    unsigned long uncor_ecc_flags,
310 				    unsigned int max_bitflips)
311 {
312 	uint8_t *ecc_code = chip->buffers->ecccode;
313 	int ecc_steps = chip->ecc.steps;
314 	int ecc_size = chip->ecc.size;
315 	int ecc_bytes = chip->ecc.bytes;
316 	int i, ret, stat;
317 
318 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
319 					 chip->ecc.total);
320 	if (ret)
321 		return ret;
322 
323 	for (i = 0; i < ecc_steps; i++) {
324 		if (!(uncor_ecc_flags & BIT(i)))
325 			continue;
326 
327 		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
328 						  ecc_code, ecc_bytes,
329 						  NULL, 0,
330 						  chip->ecc.strength);
331 		if (stat < 0) {
332 			mtd->ecc_stats.failed++;
333 		} else {
334 			mtd->ecc_stats.corrected += stat;
335 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
336 		}
337 
338 		buf += ecc_size;
339 		ecc_code += ecc_bytes;
340 	}
341 
342 	return max_bitflips;
343 }
344 
345 static int denali_hw_ecc_fixup(struct mtd_info *mtd,
346 			       struct denali_nand_info *denali,
347 			       unsigned long *uncor_ecc_flags)
348 {
349 	struct nand_chip *chip = mtd_to_nand(mtd);
350 	int bank = denali->active_bank;
351 	uint32_t ecc_cor;
352 	unsigned int max_bitflips;
353 
354 	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
355 	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
356 
357 	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
358 		/*
359 		 * This flag is set when uncorrectable error occurs at least in
360 		 * one ECC sector.  We can not know "how many sectors", or
361 		 * "which sector(s)".  We need erase-page check for all sectors.
362 		 */
363 		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
364 		return 0;
365 	}
366 
367 	max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
368 
369 	/*
370 	 * The register holds the maximum of per-sector corrected bitflips.
371 	 * This is suitable for the return value of the ->read_page() callback.
372 	 * Unfortunately, we can not know the total number of corrected bits in
373 	 * the page.  Increase the stats by max_bitflips. (compromised solution)
374 	 */
375 	mtd->ecc_stats.corrected += max_bitflips;
376 
377 	return max_bitflips;
378 }
379 
380 static int denali_sw_ecc_fixup(struct mtd_info *mtd,
381 			       struct denali_nand_info *denali,
382 			       unsigned long *uncor_ecc_flags, uint8_t *buf)
383 {
384 	unsigned int ecc_size = denali->nand.ecc.size;
385 	unsigned int bitflips = 0;
386 	unsigned int max_bitflips = 0;
387 	uint32_t err_addr, err_cor_info;
388 	unsigned int err_byte, err_sector, err_device;
389 	uint8_t err_cor_value;
390 	unsigned int prev_sector = 0;
391 	uint32_t irq_status;
392 
393 	denali_reset_irq(denali);
394 
395 	do {
396 		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
397 		err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
398 		err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
399 
400 		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
401 		err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
402 					  err_cor_info);
403 		err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
404 				       err_cor_info);
405 
406 		/* reset the bitflip counter when crossing ECC sector */
407 		if (err_sector != prev_sector)
408 			bitflips = 0;
409 
410 		if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
411 			/*
412 			 * Check later if this is a real ECC error, or
413 			 * an erased sector.
414 			 */
415 			*uncor_ecc_flags |= BIT(err_sector);
416 		} else if (err_byte < ecc_size) {
417 			/*
418 			 * If err_byte is larger than ecc_size, means error
419 			 * happened in OOB, so we ignore it. It's no need for
420 			 * us to correct it err_device is represented the NAND
421 			 * error bits are happened in if there are more than
422 			 * one NAND connected.
423 			 */
424 			int offset;
425 			unsigned int flips_in_byte;
426 
427 			offset = (err_sector * ecc_size + err_byte) *
428 					denali->devs_per_cs + err_device;
429 
430 			/* correct the ECC error */
431 			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
432 			buf[offset] ^= err_cor_value;
433 			mtd->ecc_stats.corrected += flips_in_byte;
434 			bitflips += flips_in_byte;
435 
436 			max_bitflips = max(max_bitflips, bitflips);
437 		}
438 
439 		prev_sector = err_sector;
440 	} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
441 
442 	/*
443 	 * Once handle all ECC errors, controller will trigger an
444 	 * ECC_TRANSACTION_DONE interrupt.
445 	 */
446 	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
447 	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
448 		return -EIO;
449 
450 	return max_bitflips;
451 }
452 
453 static void denali_setup_dma64(struct denali_nand_info *denali,
454 			       dma_addr_t dma_addr, int page, int write)
455 {
456 	uint32_t mode;
457 	const int page_count = 1;
458 
459 	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
460 
461 	/* DMA is a three step process */
462 
463 	/*
464 	 * 1. setup transfer type, interrupt when complete,
465 	 *    burst len = 64 bytes, the number of pages
466 	 */
467 	denali->host_write(denali, mode,
468 			   0x01002000 | (64 << 16) | (write << 8) | page_count);
469 
470 	/* 2. set memory low address */
471 	denali->host_write(denali, mode, lower_32_bits(dma_addr));
472 
473 	/* 3. set memory high address */
474 	denali->host_write(denali, mode, upper_32_bits(dma_addr));
475 }
476 
477 static void denali_setup_dma32(struct denali_nand_info *denali,
478 			       dma_addr_t dma_addr, int page, int write)
479 {
480 	uint32_t mode;
481 	const int page_count = 1;
482 
483 	mode = DENALI_MAP10 | DENALI_BANK(denali);
484 
485 	/* DMA is a four step process */
486 
487 	/* 1. setup transfer type and # of pages */
488 	denali->host_write(denali, mode | page,
489 			   0x2000 | (write << 8) | page_count);
490 
491 	/* 2. set memory high address bits 23:8 */
492 	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
493 
494 	/* 3. set memory low address bits 23:8 */
495 	denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
496 
497 	/* 4. interrupt when complete, burst len = 64 bytes */
498 	denali->host_write(denali, mode | 0x14000, 0x2400);
499 }
500 
501 static int denali_pio_read(struct denali_nand_info *denali, void *buf,
502 			   size_t size, int page, int raw)
503 {
504 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
505 	uint32_t *buf32 = (uint32_t *)buf;
506 	uint32_t irq_status, ecc_err_mask;
507 	int i;
508 
509 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
510 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
511 	else
512 		ecc_err_mask = INTR__ECC_ERR;
513 
514 	denali_reset_irq(denali);
515 
516 	for (i = 0; i < size / 4; i++)
517 		*buf32++ = denali->host_read(denali, addr);
518 
519 	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
520 	if (!(irq_status & INTR__PAGE_XFER_INC))
521 		return -EIO;
522 
523 	if (irq_status & INTR__ERASED_PAGE)
524 		memset(buf, 0xff, size);
525 
526 	return irq_status & ecc_err_mask ? -EBADMSG : 0;
527 }
528 
529 static int denali_pio_write(struct denali_nand_info *denali,
530 			    const void *buf, size_t size, int page, int raw)
531 {
532 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
533 	const uint32_t *buf32 = (uint32_t *)buf;
534 	uint32_t irq_status;
535 	int i;
536 
537 	denali_reset_irq(denali);
538 
539 	for (i = 0; i < size / 4; i++)
540 		denali->host_write(denali, addr, *buf32++);
541 
542 	irq_status = denali_wait_for_irq(denali,
543 				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
544 	if (!(irq_status & INTR__PROGRAM_COMP))
545 		return -EIO;
546 
547 	return 0;
548 }
549 
550 static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
551 			   size_t size, int page, int raw, int write)
552 {
553 	if (write)
554 		return denali_pio_write(denali, buf, size, page, raw);
555 	else
556 		return denali_pio_read(denali, buf, size, page, raw);
557 }
558 
559 static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
560 			   size_t size, int page, int raw, int write)
561 {
562 	dma_addr_t dma_addr;
563 	uint32_t irq_mask, irq_status, ecc_err_mask;
564 	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
565 	int ret = 0;
566 
567 	dma_addr = dma_map_single(denali->dev, buf, size, dir);
568 	if (dma_mapping_error(denali->dev, dma_addr)) {
569 		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
570 		return denali_pio_xfer(denali, buf, size, page, raw, write);
571 	}
572 
573 	if (write) {
574 		/*
575 		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
576 		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
577 		 * when the page program is completed.
578 		 */
579 		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
580 		ecc_err_mask = 0;
581 	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
582 		irq_mask = INTR__DMA_CMD_COMP;
583 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
584 	} else {
585 		irq_mask = INTR__DMA_CMD_COMP;
586 		ecc_err_mask = INTR__ECC_ERR;
587 	}
588 
589 	iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
590 	/*
591 	 * The ->setup_dma() hook kicks DMA by using the data/command
592 	 * interface, which belongs to a different AXI port from the
593 	 * register interface.  Read back the register to avoid a race.
594 	 */
595 	ioread32(denali->reg + DMA_ENABLE);
596 
597 	denali_reset_irq(denali);
598 	denali->setup_dma(denali, dma_addr, page, write);
599 
600 	irq_status = denali_wait_for_irq(denali, irq_mask);
601 	if (!(irq_status & INTR__DMA_CMD_COMP))
602 		ret = -EIO;
603 	else if (irq_status & ecc_err_mask)
604 		ret = -EBADMSG;
605 
606 	iowrite32(0, denali->reg + DMA_ENABLE);
607 
608 	dma_unmap_single(denali->dev, dma_addr, size, dir);
609 
610 	if (irq_status & INTR__ERASED_PAGE)
611 		memset(buf, 0xff, size);
612 
613 	return ret;
614 }
615 
616 static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
617 			    size_t size, int page, int raw, int write)
618 {
619 	iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
620 	iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
621 		  denali->reg + TRANSFER_SPARE_REG);
622 
623 	if (denali->dma_avail)
624 		return denali_dma_xfer(denali, buf, size, page, raw, write);
625 	else
626 		return denali_pio_xfer(denali, buf, size, page, raw, write);
627 }
628 
629 static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
630 			    int page, int write)
631 {
632 	struct denali_nand_info *denali = mtd_to_denali(mtd);
633 	unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
634 	unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
635 	int writesize = mtd->writesize;
636 	int oobsize = mtd->oobsize;
637 	uint8_t *bufpoi = chip->oob_poi;
638 	int ecc_steps = chip->ecc.steps;
639 	int ecc_size = chip->ecc.size;
640 	int ecc_bytes = chip->ecc.bytes;
641 	int oob_skip = denali->oob_skip_bytes;
642 	size_t size = writesize + oobsize;
643 	int i, pos, len;
644 
645 	/* BBM at the beginning of the OOB area */
646 	chip->cmdfunc(mtd, start_cmd, writesize, page);
647 	if (write)
648 		chip->write_buf(mtd, bufpoi, oob_skip);
649 	else
650 		chip->read_buf(mtd, bufpoi, oob_skip);
651 	bufpoi += oob_skip;
652 
653 	/* OOB ECC */
654 	for (i = 0; i < ecc_steps; i++) {
655 		pos = ecc_size + i * (ecc_size + ecc_bytes);
656 		len = ecc_bytes;
657 
658 		if (pos >= writesize)
659 			pos += oob_skip;
660 		else if (pos + len > writesize)
661 			len = writesize - pos;
662 
663 		chip->cmdfunc(mtd, rnd_cmd, pos, -1);
664 		if (write)
665 			chip->write_buf(mtd, bufpoi, len);
666 		else
667 			chip->read_buf(mtd, bufpoi, len);
668 		bufpoi += len;
669 		if (len < ecc_bytes) {
670 			len = ecc_bytes - len;
671 			chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
672 			if (write)
673 				chip->write_buf(mtd, bufpoi, len);
674 			else
675 				chip->read_buf(mtd, bufpoi, len);
676 			bufpoi += len;
677 		}
678 	}
679 
680 	/* OOB free */
681 	len = oobsize - (bufpoi - chip->oob_poi);
682 	chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
683 	if (write)
684 		chip->write_buf(mtd, bufpoi, len);
685 	else
686 		chip->read_buf(mtd, bufpoi, len);
687 }
688 
689 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
690 				uint8_t *buf, int oob_required, int page)
691 {
692 	struct denali_nand_info *denali = mtd_to_denali(mtd);
693 	int writesize = mtd->writesize;
694 	int oobsize = mtd->oobsize;
695 	int ecc_steps = chip->ecc.steps;
696 	int ecc_size = chip->ecc.size;
697 	int ecc_bytes = chip->ecc.bytes;
698 	void *tmp_buf = denali->buf;
699 	int oob_skip = denali->oob_skip_bytes;
700 	size_t size = writesize + oobsize;
701 	int ret, i, pos, len;
702 
703 	ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
704 	if (ret)
705 		return ret;
706 
707 	/* Arrange the buffer for syndrome payload/ecc layout */
708 	if (buf) {
709 		for (i = 0; i < ecc_steps; i++) {
710 			pos = i * (ecc_size + ecc_bytes);
711 			len = ecc_size;
712 
713 			if (pos >= writesize)
714 				pos += oob_skip;
715 			else if (pos + len > writesize)
716 				len = writesize - pos;
717 
718 			memcpy(buf, tmp_buf + pos, len);
719 			buf += len;
720 			if (len < ecc_size) {
721 				len = ecc_size - len;
722 				memcpy(buf, tmp_buf + writesize + oob_skip,
723 				       len);
724 				buf += len;
725 			}
726 		}
727 	}
728 
729 	if (oob_required) {
730 		uint8_t *oob = chip->oob_poi;
731 
732 		/* BBM at the beginning of the OOB area */
733 		memcpy(oob, tmp_buf + writesize, oob_skip);
734 		oob += oob_skip;
735 
736 		/* OOB ECC */
737 		for (i = 0; i < ecc_steps; i++) {
738 			pos = ecc_size + i * (ecc_size + ecc_bytes);
739 			len = ecc_bytes;
740 
741 			if (pos >= writesize)
742 				pos += oob_skip;
743 			else if (pos + len > writesize)
744 				len = writesize - pos;
745 
746 			memcpy(oob, tmp_buf + pos, len);
747 			oob += len;
748 			if (len < ecc_bytes) {
749 				len = ecc_bytes - len;
750 				memcpy(oob, tmp_buf + writesize + oob_skip,
751 				       len);
752 				oob += len;
753 			}
754 		}
755 
756 		/* OOB free */
757 		len = oobsize - (oob - chip->oob_poi);
758 		memcpy(oob, tmp_buf + size - len, len);
759 	}
760 
761 	return 0;
762 }
763 
764 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
765 			   int page)
766 {
767 	denali_oob_xfer(mtd, chip, page, 0);
768 
769 	return 0;
770 }
771 
772 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
773 			    int page)
774 {
775 	struct denali_nand_info *denali = mtd_to_denali(mtd);
776 	int status;
777 
778 	denali_reset_irq(denali);
779 
780 	denali_oob_xfer(mtd, chip, page, 1);
781 
782 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
783 	status = chip->waitfunc(mtd, chip);
784 
785 	return status & NAND_STATUS_FAIL ? -EIO : 0;
786 }
787 
788 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
789 			    uint8_t *buf, int oob_required, int page)
790 {
791 	struct denali_nand_info *denali = mtd_to_denali(mtd);
792 	unsigned long uncor_ecc_flags = 0;
793 	int stat = 0;
794 	int ret;
795 
796 	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
797 	if (ret && ret != -EBADMSG)
798 		return ret;
799 
800 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
801 		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
802 	else if (ret == -EBADMSG)
803 		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
804 
805 	if (stat < 0)
806 		return stat;
807 
808 	if (uncor_ecc_flags) {
809 		ret = denali_read_oob(mtd, chip, page);
810 		if (ret)
811 			return ret;
812 
813 		stat = denali_check_erased_page(mtd, chip, buf,
814 						uncor_ecc_flags, stat);
815 	}
816 
817 	return stat;
818 }
819 
820 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
821 				 const uint8_t *buf, int oob_required, int page)
822 {
823 	struct denali_nand_info *denali = mtd_to_denali(mtd);
824 	int writesize = mtd->writesize;
825 	int oobsize = mtd->oobsize;
826 	int ecc_steps = chip->ecc.steps;
827 	int ecc_size = chip->ecc.size;
828 	int ecc_bytes = chip->ecc.bytes;
829 	void *tmp_buf = denali->buf;
830 	int oob_skip = denali->oob_skip_bytes;
831 	size_t size = writesize + oobsize;
832 	int i, pos, len;
833 
834 	/*
835 	 * Fill the buffer with 0xff first except the full page transfer.
836 	 * This simplifies the logic.
837 	 */
838 	if (!buf || !oob_required)
839 		memset(tmp_buf, 0xff, size);
840 
841 	/* Arrange the buffer for syndrome payload/ecc layout */
842 	if (buf) {
843 		for (i = 0; i < ecc_steps; i++) {
844 			pos = i * (ecc_size + ecc_bytes);
845 			len = ecc_size;
846 
847 			if (pos >= writesize)
848 				pos += oob_skip;
849 			else if (pos + len > writesize)
850 				len = writesize - pos;
851 
852 			memcpy(tmp_buf + pos, buf, len);
853 			buf += len;
854 			if (len < ecc_size) {
855 				len = ecc_size - len;
856 				memcpy(tmp_buf + writesize + oob_skip, buf,
857 				       len);
858 				buf += len;
859 			}
860 		}
861 	}
862 
863 	if (oob_required) {
864 		const uint8_t *oob = chip->oob_poi;
865 
866 		/* BBM at the beginning of the OOB area */
867 		memcpy(tmp_buf + writesize, oob, oob_skip);
868 		oob += oob_skip;
869 
870 		/* OOB ECC */
871 		for (i = 0; i < ecc_steps; i++) {
872 			pos = ecc_size + i * (ecc_size + ecc_bytes);
873 			len = ecc_bytes;
874 
875 			if (pos >= writesize)
876 				pos += oob_skip;
877 			else if (pos + len > writesize)
878 				len = writesize - pos;
879 
880 			memcpy(tmp_buf + pos, oob, len);
881 			oob += len;
882 			if (len < ecc_bytes) {
883 				len = ecc_bytes - len;
884 				memcpy(tmp_buf + writesize + oob_skip, oob,
885 				       len);
886 				oob += len;
887 			}
888 		}
889 
890 		/* OOB free */
891 		len = oobsize - (oob - chip->oob_poi);
892 		memcpy(tmp_buf + size - len, oob, len);
893 	}
894 
895 	return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
896 }
897 
898 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
899 			     const uint8_t *buf, int oob_required, int page)
900 {
901 	struct denali_nand_info *denali = mtd_to_denali(mtd);
902 
903 	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
904 				page, 0, 1);
905 }
906 
907 static void denali_select_chip(struct mtd_info *mtd, int chip)
908 {
909 	struct denali_nand_info *denali = mtd_to_denali(mtd);
910 
911 	denali->active_bank = chip;
912 }
913 
914 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
915 {
916 	struct denali_nand_info *denali = mtd_to_denali(mtd);
917 	uint32_t irq_status;
918 
919 	/* R/B# pin transitioned from low to high? */
920 	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
921 
922 	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
923 }
924 
925 static int denali_erase(struct mtd_info *mtd, int page)
926 {
927 	struct denali_nand_info *denali = mtd_to_denali(mtd);
928 	uint32_t irq_status;
929 
930 	denali_reset_irq(denali);
931 
932 	denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
933 			   DENALI_ERASE);
934 
935 	/* wait for erase to complete or failure to occur */
936 	irq_status = denali_wait_for_irq(denali,
937 					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
938 
939 	return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
940 }
941 
942 static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
943 				       const struct nand_data_interface *conf)
944 {
945 	struct denali_nand_info *denali = mtd_to_denali(mtd);
946 	const struct nand_sdr_timings *timings;
947 	unsigned long t_x, mult_x;
948 	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
949 	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
950 	int addr_2_data_mask;
951 	uint32_t tmp;
952 
953 	timings = nand_get_sdr_timings(conf);
954 	if (IS_ERR(timings))
955 		return PTR_ERR(timings);
956 
957 	/* clk_x period in picoseconds */
958 	t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
959 	if (!t_x)
960 		return -EINVAL;
961 
962 	/*
963 	 * The bus interface clock, clk_x, is phase aligned with the core clock.
964 	 * The clk_x is an integral multiple N of the core clk.  The value N is
965 	 * configured at IP delivery time, and its available value is 4, 5, 6.
966 	 */
967 	mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
968 	if (mult_x < 4 || mult_x > 6)
969 		return -EINVAL;
970 
971 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
972 		return 0;
973 
974 	/* tREA -> ACC_CLKS */
975 	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x);
976 	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
977 
978 	tmp = ioread32(denali->reg + ACC_CLKS);
979 	tmp &= ~ACC_CLKS__VALUE;
980 	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
981 	iowrite32(tmp, denali->reg + ACC_CLKS);
982 
983 	/* tRWH -> RE_2_WE */
984 	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
985 	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
986 
987 	tmp = ioread32(denali->reg + RE_2_WE);
988 	tmp &= ~RE_2_WE__VALUE;
989 	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
990 	iowrite32(tmp, denali->reg + RE_2_WE);
991 
992 	/* tRHZ -> RE_2_RE */
993 	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
994 	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
995 
996 	tmp = ioread32(denali->reg + RE_2_RE);
997 	tmp &= ~RE_2_RE__VALUE;
998 	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
999 	iowrite32(tmp, denali->reg + RE_2_RE);
1000 
1001 	/*
1002 	 * tCCS, tWHR -> WE_2_RE
1003 	 *
1004 	 * With WE_2_RE properly set, the Denali controller automatically takes
1005 	 * care of the delay; the driver need not set NAND_WAIT_TCCS.
1006 	 */
1007 	we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
1008 	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
1009 
1010 	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
1011 	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
1012 	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
1013 	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
1014 
1015 	/* tADL -> ADDR_2_DATA */
1016 
1017 	/* for older versions, ADDR_2_DATA is only 6 bit wide */
1018 	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
1019 	if (denali->revision < 0x0501)
1020 		addr_2_data_mask >>= 1;
1021 
1022 	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
1023 	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
1024 
1025 	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
1026 	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
1027 	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
1028 	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
1029 
1030 	/* tREH, tWH -> RDWR_EN_HI_CNT */
1031 	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
1032 				  t_x);
1033 	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
1034 
1035 	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
1036 	tmp &= ~RDWR_EN_HI_CNT__VALUE;
1037 	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
1038 	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
1039 
1040 	/* tRP, tWP -> RDWR_EN_LO_CNT */
1041 	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
1042 	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
1043 				     t_x);
1044 	rdwr_en_lo_hi = max_t(int, rdwr_en_lo_hi, mult_x);
1045 	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
1046 	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
1047 
1048 	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
1049 	tmp &= ~RDWR_EN_LO_CNT__VALUE;
1050 	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
1051 	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
1052 
1053 	/* tCS, tCEA -> CS_SETUP_CNT */
1054 	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
1055 			(int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
1056 			0);
1057 	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
1058 
1059 	tmp = ioread32(denali->reg + CS_SETUP_CNT);
1060 	tmp &= ~CS_SETUP_CNT__VALUE;
1061 	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
1062 	iowrite32(tmp, denali->reg + CS_SETUP_CNT);
1063 
1064 	return 0;
1065 }
1066 
1067 static void denali_reset_banks(struct denali_nand_info *denali)
1068 {
1069 	u32 irq_status;
1070 	int i;
1071 
1072 	for (i = 0; i < denali->max_banks; i++) {
1073 		denali->active_bank = i;
1074 
1075 		denali_reset_irq(denali);
1076 
1077 		iowrite32(DEVICE_RESET__BANK(i),
1078 			  denali->reg + DEVICE_RESET);
1079 
1080 		irq_status = denali_wait_for_irq(denali,
1081 			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
1082 		if (!(irq_status & INTR__INT_ACT))
1083 			break;
1084 	}
1085 
1086 	dev_dbg(denali->dev, "%d chips connected\n", i);
1087 	denali->max_banks = i;
1088 }
1089 
1090 static void denali_hw_init(struct denali_nand_info *denali)
1091 {
1092 	/*
1093 	 * The REVISION register may not be reliable.  Platforms are allowed to
1094 	 * override it.
1095 	 */
1096 	if (!denali->revision)
1097 		denali->revision = swab16(ioread32(denali->reg + REVISION));
1098 
1099 	/*
1100 	 * tell driver how many bit controller will skip before writing
1101 	 * ECC code in OOB. This is normally used for bad block marker
1102 	 */
1103 	denali->oob_skip_bytes = CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES;
1104 	iowrite32(denali->oob_skip_bytes, denali->reg + SPARE_AREA_SKIP_BYTES);
1105 	denali_detect_max_banks(denali);
1106 	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
1107 	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1108 
1109 	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1110 }
1111 
1112 int denali_calc_ecc_bytes(int step_size, int strength)
1113 {
1114 	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
1115 	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
1116 }
1117 EXPORT_SYMBOL(denali_calc_ecc_bytes);
1118 
1119 static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
1120 			    struct denali_nand_info *denali)
1121 {
1122 	int oobavail = mtd->oobsize - denali->oob_skip_bytes;
1123 	int ret;
1124 
1125 	/*
1126 	 * If .size and .strength are already set (usually by DT),
1127 	 * check if they are supported by this controller.
1128 	 */
1129 	if (chip->ecc.size && chip->ecc.strength)
1130 		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
1131 
1132 	/*
1133 	 * We want .size and .strength closest to the chip's requirement
1134 	 * unless NAND_ECC_MAXIMIZE is requested.
1135 	 */
1136 	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
1137 		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
1138 		if (!ret)
1139 			return 0;
1140 	}
1141 
1142 	/* Max ECC strength is the last thing we can do */
1143 	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
1144 }
1145 
1146 static struct nand_ecclayout nand_oob;
1147 
1148 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
1149 				struct mtd_oob_region *oobregion)
1150 {
1151 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1152 	struct nand_chip *chip = mtd_to_nand(mtd);
1153 
1154 	if (section)
1155 		return -ERANGE;
1156 
1157 	oobregion->offset = denali->oob_skip_bytes;
1158 	oobregion->length = chip->ecc.total;
1159 
1160 	return 0;
1161 }
1162 
1163 static int denali_ooblayout_free(struct mtd_info *mtd, int section,
1164 				 struct mtd_oob_region *oobregion)
1165 {
1166 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1167 	struct nand_chip *chip = mtd_to_nand(mtd);
1168 
1169 	if (section)
1170 		return -ERANGE;
1171 
1172 	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
1173 	oobregion->length = mtd->oobsize - oobregion->offset;
1174 
1175 	return 0;
1176 }
1177 
1178 static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
1179 	.ecc = denali_ooblayout_ecc,
1180 	.free = denali_ooblayout_free,
1181 };
1182 
1183 static int denali_multidev_fixup(struct denali_nand_info *denali)
1184 {
1185 	struct nand_chip *chip = &denali->nand;
1186 	struct mtd_info *mtd = nand_to_mtd(chip);
1187 
1188 	/*
1189 	 * Support for multi device:
1190 	 * When the IP configuration is x16 capable and two x8 chips are
1191 	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
1192 	 * In this case, the core framework knows nothing about this fact,
1193 	 * so we should tell it the _logical_ pagesize and anything necessary.
1194 	 */
1195 	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
1196 
1197 	/*
1198 	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
1199 	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
1200 	 */
1201 	if (denali->devs_per_cs == 0) {
1202 		denali->devs_per_cs = 1;
1203 		iowrite32(1, denali->reg + DEVICES_CONNECTED);
1204 	}
1205 
1206 	if (denali->devs_per_cs == 1)
1207 		return 0;
1208 
1209 	if (denali->devs_per_cs != 2) {
1210 		dev_err(denali->dev, "unsupported number of devices %d\n",
1211 			denali->devs_per_cs);
1212 		return -EINVAL;
1213 	}
1214 
1215 	/* 2 chips in parallel */
1216 	mtd->size <<= 1;
1217 	mtd->erasesize <<= 1;
1218 	mtd->writesize <<= 1;
1219 	mtd->oobsize <<= 1;
1220 	chip->chipsize <<= 1;
1221 	chip->page_shift += 1;
1222 	chip->phys_erase_shift += 1;
1223 	chip->bbt_erase_shift += 1;
1224 	chip->chip_shift += 1;
1225 	chip->pagemask <<= 1;
1226 	chip->ecc.size <<= 1;
1227 	chip->ecc.bytes <<= 1;
1228 	chip->ecc.strength <<= 1;
1229 	denali->oob_skip_bytes <<= 1;
1230 
1231 	return 0;
1232 }
1233 
1234 int denali_init(struct denali_nand_info *denali)
1235 {
1236 	struct nand_chip *chip = &denali->nand;
1237 	struct mtd_info *mtd = nand_to_mtd(chip);
1238 	u32 features = ioread32(denali->reg + FEATURES);
1239 	int ret;
1240 
1241 	denali_hw_init(denali);
1242 
1243 	denali_clear_irq_all(denali);
1244 
1245 	denali_reset_banks(denali);
1246 
1247 	denali->active_bank = DENALI_INVALID_BANK;
1248 
1249 	chip->flash_node = dev_of_offset(denali->dev);
1250 	/* Fallback to the default name if DT did not give "label" property */
1251 	if (!mtd->name)
1252 		mtd->name = "denali-nand";
1253 
1254 	chip->select_chip = denali_select_chip;
1255 	chip->read_byte = denali_read_byte;
1256 	chip->write_byte = denali_write_byte;
1257 	chip->read_word = denali_read_word;
1258 	chip->cmd_ctrl = denali_cmd_ctrl;
1259 	chip->dev_ready = denali_dev_ready;
1260 	chip->waitfunc = denali_waitfunc;
1261 
1262 	if (features & FEATURES__INDEX_ADDR) {
1263 		denali->host_read = denali_indexed_read;
1264 		denali->host_write = denali_indexed_write;
1265 	} else {
1266 		denali->host_read = denali_direct_read;
1267 		denali->host_write = denali_direct_write;
1268 	}
1269 
1270 	/* clk rate info is needed for setup_data_interface */
1271 	if (denali->clk_x_rate)
1272 		chip->setup_data_interface = denali_setup_data_interface;
1273 
1274 	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
1275 	if (ret)
1276 		return ret;
1277 
1278 	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
1279 		denali->dma_avail = 1;
1280 
1281 	if (denali->dma_avail) {
1282 		chip->buf_align = ARCH_DMA_MINALIGN;
1283 		if (denali->caps & DENALI_CAP_DMA_64BIT)
1284 			denali->setup_dma = denali_setup_dma64;
1285 		else
1286 			denali->setup_dma = denali_setup_dma32;
1287 	} else {
1288 		chip->buf_align = 4;
1289 	}
1290 
1291 	chip->options |= NAND_USE_BOUNCE_BUFFER;
1292 	chip->bbt_options |= NAND_BBT_USE_FLASH;
1293 	chip->bbt_options |= NAND_BBT_NO_OOB;
1294 	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1295 
1296 	/* no subpage writes on denali */
1297 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1298 
1299 	ret = denali_ecc_setup(mtd, chip, denali);
1300 	if (ret) {
1301 		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1302 		return ret;
1303 	}
1304 
1305 	dev_dbg(denali->dev,
1306 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1307 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1308 
1309 	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
1310 		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
1311 		  denali->reg + ECC_CORRECTION);
1312 	iowrite32(mtd->erasesize / mtd->writesize,
1313 		  denali->reg + PAGES_PER_BLOCK);
1314 	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
1315 		  denali->reg + DEVICE_WIDTH);
1316 	iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
1317 		  denali->reg + TWO_ROW_ADDR_CYCLES);
1318 	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
1319 	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
1320 
1321 	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
1322 	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
1323 	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
1324 	iowrite32(mtd->writesize / chip->ecc.size,
1325 		  denali->reg + CFG_NUM_DATA_BLOCKS);
1326 
1327 	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1328 
1329 	nand_oob.eccbytes = denali->nand.ecc.bytes;
1330 	denali->nand.ecc.layout = &nand_oob;
1331 
1332 	if (chip->options & NAND_BUSWIDTH_16) {
1333 		chip->read_buf = denali_read_buf16;
1334 		chip->write_buf = denali_write_buf16;
1335 	} else {
1336 		chip->read_buf = denali_read_buf;
1337 		chip->write_buf = denali_write_buf;
1338 	}
1339 	chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
1340 	chip->ecc.read_page = denali_read_page;
1341 	chip->ecc.read_page_raw = denali_read_page_raw;
1342 	chip->ecc.write_page = denali_write_page;
1343 	chip->ecc.write_page_raw = denali_write_page_raw;
1344 	chip->ecc.read_oob = denali_read_oob;
1345 	chip->ecc.write_oob = denali_write_oob;
1346 	chip->erase = denali_erase;
1347 
1348 	ret = denali_multidev_fixup(denali);
1349 	if (ret)
1350 		return ret;
1351 
1352 	/*
1353 	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
1354 	 * use devm_kmalloc() because the memory allocated by devm_ does not
1355 	 * guarantee DMA-safe alignment.
1356 	 */
1357 	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
1358 	if (!denali->buf)
1359 		return -ENOMEM;
1360 
1361 	ret = nand_scan_tail(mtd);
1362 	if (ret)
1363 		goto free_buf;
1364 
1365 	ret = nand_register(0, mtd);
1366 	if (ret) {
1367 		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1368 		goto free_buf;
1369 	}
1370 	return 0;
1371 
1372 free_buf:
1373 	kfree(denali->buf);
1374 
1375 	return ret;
1376 }
1377