1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NAND driver for TI DaVinci based boards. 4 * 5 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net> 6 * 7 * Based on Linux DaVinci NAND driver by TI. Original copyright follows: 8 */ 9 10 /* 11 * 12 * linux/drivers/mtd/nand/raw/nand_davinci.c 13 * 14 * NAND Flash Driver 15 * 16 * Copyright (C) 2006 Texas Instruments. 17 * 18 * ---------------------------------------------------------------------------- 19 * 20 * ---------------------------------------------------------------------------- 21 * 22 * Overview: 23 * This is a device driver for the NAND flash device found on the 24 * DaVinci board which utilizes the Samsung k9k2g08 part. 25 * 26 Modifications: 27 ver. 1.0: Feb 2005, Vinod/Sudhakar 28 - 29 */ 30 31 #include <common.h> 32 #include <asm/io.h> 33 #include <nand.h> 34 #include <asm/ti-common/davinci_nand.h> 35 36 /* Definitions for 4-bit hardware ECC */ 37 #define NAND_TIMEOUT 10240 38 #define NAND_ECC_BUSY 0xC 39 #define NAND_4BITECC_MASK 0x03FF03FF 40 #define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00 41 #define ECC_STATE_NO_ERR 0x0 42 #define ECC_STATE_TOO_MANY_ERRS 0x1 43 #define ECC_STATE_ERR_CORR_COMP_P 0x2 44 #define ECC_STATE_ERR_CORR_COMP_N 0x3 45 46 /* 47 * Exploit the little endianness of the ARM to do multi-byte transfers 48 * per device read. This can perform over twice as quickly as individual 49 * byte transfers when buffer alignment is conducive. 50 * 51 * NOTE: This only works if the NAND is not connected to the 2 LSBs of 52 * the address bus. On Davinci EVM platforms this has always been true. 53 */ 54 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) 55 { 56 struct nand_chip *chip = mtd_to_nand(mtd); 57 const u32 *nand = chip->IO_ADDR_R; 58 59 /* Make sure that buf is 32 bit aligned */ 60 if (((int)buf & 0x3) != 0) { 61 if (((int)buf & 0x1) != 0) { 62 if (len) { 63 *buf = readb(nand); 64 buf += 1; 65 len--; 66 } 67 } 68 69 if (((int)buf & 0x3) != 0) { 70 if (len >= 2) { 71 *(u16 *)buf = readw(nand); 72 buf += 2; 73 len -= 2; 74 } 75 } 76 } 77 78 /* copy aligned data */ 79 while (len >= 4) { 80 *(u32 *)buf = __raw_readl(nand); 81 buf += 4; 82 len -= 4; 83 } 84 85 /* mop up any remaining bytes */ 86 if (len) { 87 if (len >= 2) { 88 *(u16 *)buf = readw(nand); 89 buf += 2; 90 len -= 2; 91 } 92 93 if (len) 94 *buf = readb(nand); 95 } 96 } 97 98 static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf, 99 int len) 100 { 101 struct nand_chip *chip = mtd_to_nand(mtd); 102 const u32 *nand = chip->IO_ADDR_W; 103 104 /* Make sure that buf is 32 bit aligned */ 105 if (((int)buf & 0x3) != 0) { 106 if (((int)buf & 0x1) != 0) { 107 if (len) { 108 writeb(*buf, nand); 109 buf += 1; 110 len--; 111 } 112 } 113 114 if (((int)buf & 0x3) != 0) { 115 if (len >= 2) { 116 writew(*(u16 *)buf, nand); 117 buf += 2; 118 len -= 2; 119 } 120 } 121 } 122 123 /* copy aligned data */ 124 while (len >= 4) { 125 __raw_writel(*(u32 *)buf, nand); 126 buf += 4; 127 len -= 4; 128 } 129 130 /* mop up any remaining bytes */ 131 if (len) { 132 if (len >= 2) { 133 writew(*(u16 *)buf, nand); 134 buf += 2; 135 len -= 2; 136 } 137 138 if (len) 139 writeb(*buf, nand); 140 } 141 } 142 143 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, 144 unsigned int ctrl) 145 { 146 struct nand_chip *this = mtd_to_nand(mtd); 147 u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W; 148 149 if (ctrl & NAND_CTRL_CHANGE) { 150 IO_ADDR_W &= ~(MASK_ALE|MASK_CLE); 151 152 if (ctrl & NAND_CLE) 153 IO_ADDR_W |= MASK_CLE; 154 if (ctrl & NAND_ALE) 155 IO_ADDR_W |= MASK_ALE; 156 this->IO_ADDR_W = (void __iomem *) IO_ADDR_W; 157 } 158 159 if (cmd != NAND_CMD_NONE) 160 writeb(cmd, IO_ADDR_W); 161 } 162 163 #ifdef CONFIG_SYS_NAND_HW_ECC 164 165 static u_int32_t nand_davinci_readecc(struct mtd_info *mtd) 166 { 167 u_int32_t ecc = 0; 168 169 ecc = __raw_readl(&(davinci_emif_regs->nandfecc[ 170 CONFIG_SYS_NAND_CS - 2])); 171 172 return ecc; 173 } 174 175 static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode) 176 { 177 u_int32_t val; 178 179 /* reading the ECC result register resets the ECC calculation */ 180 nand_davinci_readecc(mtd); 181 182 val = __raw_readl(&davinci_emif_regs->nandfcr); 183 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS); 184 val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS); 185 __raw_writel(val, &davinci_emif_regs->nandfcr); 186 } 187 188 static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, 189 u_char *ecc_code) 190 { 191 u_int32_t tmp; 192 193 tmp = nand_davinci_readecc(mtd); 194 195 /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits 196 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */ 197 tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4); 198 199 /* Invert so that erased block ECC is correct */ 200 tmp = ~tmp; 201 202 *ecc_code++ = tmp; 203 *ecc_code++ = tmp >> 8; 204 *ecc_code++ = tmp >> 16; 205 206 /* NOTE: the above code matches mainline Linux: 207 * .PQR.stu ==> ~PQRstu 208 * 209 * MontaVista/TI kernels encode those bytes differently, use 210 * complicated (and allegedly sometimes-wrong) correction code, 211 * and usually shipped with U-Boot that uses software ECC: 212 * .PQR.stu ==> PsQRtu 213 * 214 * If you need MV/TI compatible NAND I/O in U-Boot, it should 215 * be possible to (a) change the mangling above, (b) reverse 216 * that mangling in nand_davinci_correct_data() below. 217 */ 218 219 return 0; 220 } 221 222 static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, 223 u_char *read_ecc, u_char *calc_ecc) 224 { 225 struct nand_chip *this = mtd_to_nand(mtd); 226 u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) | 227 (read_ecc[2] << 16); 228 u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) | 229 (calc_ecc[2] << 16); 230 u_int32_t diff = ecc_calc ^ ecc_nand; 231 232 if (diff) { 233 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { 234 /* Correctable error */ 235 if ((diff >> (12 + 3)) < this->ecc.size) { 236 uint8_t find_bit = 1 << ((diff >> 12) & 7); 237 uint32_t find_byte = diff >> (12 + 3); 238 239 dat[find_byte] ^= find_bit; 240 pr_debug("Correcting single " 241 "bit ECC error at offset: %d, bit: " 242 "%d\n", find_byte, find_bit); 243 return 1; 244 } else { 245 return -EBADMSG; 246 } 247 } else if (!(diff & (diff - 1))) { 248 /* Single bit ECC error in the ECC itself, 249 nothing to fix */ 250 pr_debug("Single bit ECC error in " "ECC.\n"); 251 return 1; 252 } else { 253 /* Uncorrectable error */ 254 pr_debug("ECC UNCORRECTED_ERROR 1\n"); 255 return -EBADMSG; 256 } 257 } 258 return 0; 259 } 260 #endif /* CONFIG_SYS_NAND_HW_ECC */ 261 262 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST 263 static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = { 264 #if defined(CONFIG_SYS_NAND_PAGE_2K) 265 .eccbytes = 40, 266 #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC 267 .eccpos = { 268 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 269 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 270 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 271 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 272 }, 273 .oobfree = { 274 {2, 4}, {16, 6}, {32, 6}, {48, 6}, 275 }, 276 #else 277 .eccpos = { 278 24, 25, 26, 27, 28, 279 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 280 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 281 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 282 59, 60, 61, 62, 63, 283 }, 284 .oobfree = { 285 {.offset = 2, .length = 22, }, 286 }, 287 #endif /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */ 288 #elif defined(CONFIG_SYS_NAND_PAGE_4K) 289 .eccbytes = 80, 290 .eccpos = { 291 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 292 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 293 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 294 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 295 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 296 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 297 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 298 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 299 }, 300 .oobfree = { 301 {.offset = 2, .length = 46, }, 302 }, 303 #endif 304 }; 305 306 #if defined CONFIG_KEYSTONE_RBL_NAND 307 static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = { 308 #if defined(CONFIG_SYS_NAND_PAGE_2K) 309 .eccbytes = 40, 310 .eccpos = { 311 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 312 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 313 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 314 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 315 }, 316 .oobfree = { 317 {.offset = 2, .length = 4, }, 318 {.offset = 16, .length = 6, }, 319 {.offset = 32, .length = 6, }, 320 {.offset = 48, .length = 6, }, 321 }, 322 #elif defined(CONFIG_SYS_NAND_PAGE_4K) 323 .eccbytes = 80, 324 .eccpos = { 325 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 326 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 327 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 328 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 329 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 330 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 331 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 332 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 333 }, 334 .oobfree = { 335 {.offset = 2, .length = 4, }, 336 {.offset = 16, .length = 6, }, 337 {.offset = 32, .length = 6, }, 338 {.offset = 48, .length = 6, }, 339 {.offset = 64, .length = 6, }, 340 {.offset = 80, .length = 6, }, 341 {.offset = 96, .length = 6, }, 342 {.offset = 112, .length = 6, }, 343 }, 344 #endif 345 }; 346 347 #ifdef CONFIG_SYS_NAND_PAGE_2K 348 #define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 11 349 #elif defined(CONFIG_SYS_NAND_PAGE_4K) 350 #define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 12 351 #endif 352 353 /** 354 * nand_davinci_write_page - write one page 355 * @mtd: MTD device structure 356 * @chip: NAND chip descriptor 357 * @buf: the data to write 358 * @oob_required: must write chip->oob_poi to OOB 359 * @page: page number to write 360 * @raw: use _raw version of write_page 361 */ 362 static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip, 363 uint32_t offset, int data_len, 364 const uint8_t *buf, int oob_required, 365 int page, int raw) 366 { 367 int status; 368 int ret = 0; 369 struct nand_ecclayout *saved_ecc_layout; 370 371 /* save current ECC layout and assign Keystone RBL ECC layout */ 372 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { 373 saved_ecc_layout = chip->ecc.layout; 374 chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst; 375 mtd->oobavail = chip->ecc.layout->oobavail; 376 } 377 378 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); 379 380 if (unlikely(raw)) { 381 status = chip->ecc.write_page_raw(mtd, chip, buf, 382 oob_required, page); 383 } else { 384 status = chip->ecc.write_page(mtd, chip, buf, 385 oob_required, page); 386 } 387 388 if (status < 0) { 389 ret = status; 390 goto err; 391 } 392 393 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); 394 status = chip->waitfunc(mtd, chip); 395 396 if (status & NAND_STATUS_FAIL) { 397 ret = -EIO; 398 goto err; 399 } 400 401 err: 402 /* restore ECC layout */ 403 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { 404 chip->ecc.layout = saved_ecc_layout; 405 mtd->oobavail = saved_ecc_layout->oobavail; 406 } 407 408 return ret; 409 } 410 411 /** 412 * nand_davinci_read_page_hwecc - hardware ECC based page read function 413 * @mtd: mtd info structure 414 * @chip: nand chip info structure 415 * @buf: buffer to store read data 416 * @oob_required: caller requires OOB data read to chip->oob_poi 417 * @page: page number to read 418 * 419 * Not for syndrome calculating ECC controllers which need a special oob layout. 420 */ 421 static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, 422 uint8_t *buf, int oob_required, int page) 423 { 424 int i, eccsize = chip->ecc.size; 425 int eccbytes = chip->ecc.bytes; 426 int eccsteps = chip->ecc.steps; 427 uint32_t *eccpos; 428 uint8_t *p = buf; 429 uint8_t *ecc_code = chip->buffers->ecccode; 430 uint8_t *ecc_calc = chip->buffers->ecccalc; 431 struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout; 432 433 /* save current ECC layout and assign Keystone RBL ECC layout */ 434 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { 435 chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst; 436 mtd->oobavail = chip->ecc.layout->oobavail; 437 } 438 439 eccpos = chip->ecc.layout->eccpos; 440 441 /* Read the OOB area first */ 442 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); 443 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); 444 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); 445 446 for (i = 0; i < chip->ecc.total; i++) 447 ecc_code[i] = chip->oob_poi[eccpos[i]]; 448 449 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 450 int stat; 451 452 chip->ecc.hwctl(mtd, NAND_ECC_READ); 453 chip->read_buf(mtd, p, eccsize); 454 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 455 456 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); 457 if (stat < 0) 458 mtd->ecc_stats.failed++; 459 else 460 mtd->ecc_stats.corrected += stat; 461 } 462 463 /* restore ECC layout */ 464 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { 465 chip->ecc.layout = saved_ecc_layout; 466 mtd->oobavail = saved_ecc_layout->oobavail; 467 } 468 469 return 0; 470 } 471 #endif /* CONFIG_KEYSTONE_RBL_NAND */ 472 473 static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode) 474 { 475 u32 val; 476 477 switch (mode) { 478 case NAND_ECC_WRITE: 479 case NAND_ECC_READ: 480 /* 481 * Start a new ECC calculation for reading or writing 512 bytes 482 * of data. 483 */ 484 val = __raw_readl(&davinci_emif_regs->nandfcr); 485 val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK; 486 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS); 487 val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS); 488 val |= DAVINCI_NANDFCR_4BIT_ECC_START; 489 __raw_writel(val, &davinci_emif_regs->nandfcr); 490 break; 491 case NAND_ECC_READSYN: 492 val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]); 493 break; 494 default: 495 break; 496 } 497 } 498 499 static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4]) 500 { 501 int i; 502 503 for (i = 0; i < 4; i++) { 504 ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) & 505 NAND_4BITECC_MASK; 506 } 507 508 return 0; 509 } 510 511 static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd, 512 const uint8_t *dat, 513 uint8_t *ecc_code) 514 { 515 unsigned int hw_4ecc[4]; 516 unsigned int i; 517 518 nand_davinci_4bit_readecc(mtd, hw_4ecc); 519 520 /*Convert 10 bit ecc value to 8 bit */ 521 for (i = 0; i < 2; i++) { 522 unsigned int hw_ecc_low = hw_4ecc[i * 2]; 523 unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1]; 524 525 /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */ 526 *ecc_code++ = hw_ecc_low & 0xFF; 527 528 /* 529 * Take 2 bits as LSB bits from val1 (count1=0) or val5 530 * (count1=1) and 6 bits from val2 (count1=0) or 531 * val5 (count1=1) 532 */ 533 *ecc_code++ = 534 ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC); 535 536 /* 537 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and 538 * 4 bits from val3 (count1=0) or val6 (count1=1) 539 */ 540 *ecc_code++ = 541 ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0); 542 543 /* 544 * Take 6 bits from val3(count1=0) or val6 (count1=1) and 545 * 2 bits from val4 (count1=0) or val7 (count1=1) 546 */ 547 *ecc_code++ = 548 ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0); 549 550 /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */ 551 *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF; 552 } 553 554 return 0; 555 } 556 557 static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat, 558 uint8_t *read_ecc, uint8_t *calc_ecc) 559 { 560 int i; 561 unsigned int hw_4ecc[4]; 562 unsigned int iserror; 563 unsigned short *ecc16; 564 unsigned int numerrors, erroraddress, errorvalue; 565 u32 val; 566 567 /* 568 * Check for an ECC where all bytes are 0xFF. If this is the case, we 569 * will assume we are looking at an erased page and we should ignore 570 * the ECC. 571 */ 572 for (i = 0; i < 10; i++) { 573 if (read_ecc[i] != 0xFF) 574 break; 575 } 576 if (i == 10) 577 return 0; 578 579 /* Convert 8 bit in to 10 bit */ 580 ecc16 = (unsigned short *)&read_ecc[0]; 581 582 /* 583 * Write the parity values in the NAND Flash 4-bit ECC Load register. 584 * Write each parity value one at a time starting from 4bit_ecc_val8 585 * to 4bit_ecc_val1. 586 */ 587 588 /*Take 2 bits from 8th byte and 8 bits from 9th byte */ 589 __raw_writel(((ecc16[4]) >> 6) & 0x3FF, 590 &davinci_emif_regs->nand4biteccload); 591 592 /* Take 4 bits from 7th byte and 6 bits from 8th byte */ 593 __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0), 594 &davinci_emif_regs->nand4biteccload); 595 596 /* Take 6 bits from 6th byte and 4 bits from 7th byte */ 597 __raw_writel((ecc16[3] >> 2) & 0x3FF, 598 &davinci_emif_regs->nand4biteccload); 599 600 /* Take 8 bits from 5th byte and 2 bits from 6th byte */ 601 __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300), 602 &davinci_emif_regs->nand4biteccload); 603 604 /*Take 2 bits from 3rd byte and 8 bits from 4th byte */ 605 __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC), 606 &davinci_emif_regs->nand4biteccload); 607 608 /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */ 609 __raw_writel(((ecc16[1]) >> 4) & 0x3FF, 610 &davinci_emif_regs->nand4biteccload); 611 612 /* Take 6 bits from 1st byte and 4 bits from 2nd byte */ 613 __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0), 614 &davinci_emif_regs->nand4biteccload); 615 616 /* Take 10 bits from 0th and 1st bytes */ 617 __raw_writel((ecc16[0]) & 0x3FF, 618 &davinci_emif_regs->nand4biteccload); 619 620 /* 621 * Perform a dummy read to the EMIF Revision Code and Status register. 622 * This is required to ensure time for syndrome calculation after 623 * writing the ECC values in previous step. 624 */ 625 626 val = __raw_readl(&davinci_emif_regs->nandfsr); 627 628 /* 629 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers. 630 * A syndrome value of 0 means no bit errors. If the syndrome is 631 * non-zero then go further otherwise return. 632 */ 633 nand_davinci_4bit_readecc(mtd, hw_4ecc); 634 635 if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3])) 636 return 0; 637 638 /* 639 * Clear any previous address calculation by doing a dummy read of an 640 * error address register. 641 */ 642 val = __raw_readl(&davinci_emif_regs->nanderradd1); 643 644 /* 645 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control 646 * register to 1. 647 */ 648 __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START, 649 &davinci_emif_regs->nandfcr); 650 651 /* 652 * Wait for the corr_state field (bits 8 to 11) in the 653 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3. 654 * Otherwise ECC calculation has not even begun and the next loop might 655 * fail because of a false positive! 656 */ 657 i = NAND_TIMEOUT; 658 do { 659 val = __raw_readl(&davinci_emif_regs->nandfsr); 660 val &= 0xc00; 661 i--; 662 } while ((i > 0) && !val); 663 664 /* 665 * Wait for the corr_state field (bits 8 to 11) in the 666 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3. 667 */ 668 i = NAND_TIMEOUT; 669 do { 670 val = __raw_readl(&davinci_emif_regs->nandfsr); 671 val &= 0xc00; 672 i--; 673 } while ((i > 0) && val); 674 675 iserror = __raw_readl(&davinci_emif_regs->nandfsr); 676 iserror &= EMIF_NANDFSR_ECC_STATE_MASK; 677 iserror = iserror >> 8; 678 679 /* 680 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be 681 * corrected (five or more errors). The number of errors 682 * calculated (err_num field) differs from the number of errors 683 * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error 684 * correction complete (errors on bit 8 or 9). 685 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction 686 * complete (error exists). 687 */ 688 689 if (iserror == ECC_STATE_NO_ERR) { 690 val = __raw_readl(&davinci_emif_regs->nanderrval1); 691 return 0; 692 } else if (iserror == ECC_STATE_TOO_MANY_ERRS) { 693 val = __raw_readl(&davinci_emif_regs->nanderrval1); 694 return -EBADMSG; 695 } 696 697 numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16) 698 & 0x3) + 1; 699 700 /* Read the error address, error value and correct */ 701 for (i = 0; i < numerrors; i++) { 702 if (i > 1) { 703 erroraddress = 704 ((__raw_readl(&davinci_emif_regs->nanderradd2) >> 705 (16 * (i & 1))) & 0x3FF); 706 erroraddress = ((512 + 7) - erroraddress); 707 errorvalue = 708 ((__raw_readl(&davinci_emif_regs->nanderrval2) >> 709 (16 * (i & 1))) & 0xFF); 710 } else { 711 erroraddress = 712 ((__raw_readl(&davinci_emif_regs->nanderradd1) >> 713 (16 * (i & 1))) & 0x3FF); 714 erroraddress = ((512 + 7) - erroraddress); 715 errorvalue = 716 ((__raw_readl(&davinci_emif_regs->nanderrval1) >> 717 (16 * (i & 1))) & 0xFF); 718 } 719 /* xor the corrupt data with error value */ 720 if (erroraddress < 512) 721 dat[erroraddress] ^= errorvalue; 722 } 723 724 return numerrors; 725 } 726 #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */ 727 728 static int nand_davinci_dev_ready(struct mtd_info *mtd) 729 { 730 return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1; 731 } 732 733 static void nand_flash_init(void) 734 { 735 /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS! 736 * Instead, have your board_init() set EMIF timings, based on its 737 * knowledge of the clocks and what devices are hooked up ... and 738 * don't even do that unless no UBL handled it. 739 */ 740 #ifdef CONFIG_SOC_DM644X 741 u_int32_t acfg1 = 0x3ffffffc; 742 743 /*------------------------------------------------------------------* 744 * NAND FLASH CHIP TIMEOUT @ 459 MHz * 745 * * 746 * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz * 747 * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns * 748 * * 749 *------------------------------------------------------------------*/ 750 acfg1 = 0 751 | (0 << 31) /* selectStrobe */ 752 | (0 << 30) /* extWait */ 753 | (1 << 26) /* writeSetup 10 ns */ 754 | (3 << 20) /* writeStrobe 40 ns */ 755 | (1 << 17) /* writeHold 10 ns */ 756 | (1 << 13) /* readSetup 10 ns */ 757 | (5 << 7) /* readStrobe 60 ns */ 758 | (1 << 4) /* readHold 10 ns */ 759 | (3 << 2) /* turnAround ?? ns */ 760 | (0 << 0) /* asyncSize 8-bit bus */ 761 ; 762 763 __raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */ 764 765 /* NAND flash on CS2 */ 766 __raw_writel(0x00000101, &davinci_emif_regs->nandfcr); 767 #endif 768 } 769 770 void davinci_nand_init(struct nand_chip *nand) 771 { 772 #if defined CONFIG_KEYSTONE_RBL_NAND 773 int i; 774 struct nand_ecclayout *layout; 775 776 layout = &nand_keystone_rbl_4bit_layout_oobfirst; 777 layout->oobavail = 0; 778 for (i = 0; layout->oobfree[i].length && 779 i < ARRAY_SIZE(layout->oobfree); i++) 780 layout->oobavail += layout->oobfree[i].length; 781 782 nand->write_page = nand_davinci_write_page; 783 nand->ecc.read_page = nand_davinci_read_page_hwecc; 784 #endif 785 nand->chip_delay = 0; 786 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT 787 nand->bbt_options |= NAND_BBT_USE_FLASH; 788 #endif 789 #ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE 790 nand->options |= NAND_NO_SUBPAGE_WRITE; 791 #endif 792 #ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT 793 nand->options |= NAND_BUSWIDTH_16; 794 #endif 795 #ifdef CONFIG_SYS_NAND_HW_ECC 796 nand->ecc.mode = NAND_ECC_HW; 797 nand->ecc.size = 512; 798 nand->ecc.bytes = 3; 799 nand->ecc.strength = 1; 800 nand->ecc.calculate = nand_davinci_calculate_ecc; 801 nand->ecc.correct = nand_davinci_correct_data; 802 nand->ecc.hwctl = nand_davinci_enable_hwecc; 803 #else 804 nand->ecc.mode = NAND_ECC_SOFT; 805 #endif /* CONFIG_SYS_NAND_HW_ECC */ 806 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST 807 nand->ecc.mode = NAND_ECC_HW_OOB_FIRST; 808 nand->ecc.size = 512; 809 nand->ecc.bytes = 10; 810 nand->ecc.strength = 4; 811 nand->ecc.calculate = nand_davinci_4bit_calculate_ecc; 812 nand->ecc.correct = nand_davinci_4bit_correct_data; 813 nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc; 814 nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst; 815 #endif 816 /* Set address of hardware control function */ 817 nand->cmd_ctrl = nand_davinci_hwcontrol; 818 819 nand->read_buf = nand_davinci_read_buf; 820 nand->write_buf = nand_davinci_write_buf; 821 822 nand->dev_ready = nand_davinci_dev_ready; 823 824 nand_flash_init(); 825 } 826 827 int board_nand_init(struct nand_chip *chip) __attribute__((weak)); 828 829 int board_nand_init(struct nand_chip *chip) 830 { 831 davinci_nand_init(chip); 832 return 0; 833 } 834