1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright 2007-2008 4 * Stelian Pop <stelian@popies.net> 5 * Lead Tech Design <www.leadtechdesign.com> 6 * 7 * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas 8 * 9 * Add Programmable Multibit ECC support for various AT91 SoC 10 * (C) Copyright 2012 ATMEL, Hong Xu 11 */ 12 13 #include <common.h> 14 #include <asm/gpio.h> 15 #include <asm/arch/gpio.h> 16 17 #include <malloc.h> 18 #include <nand.h> 19 #include <watchdog.h> 20 #include <linux/mtd/nand_ecc.h> 21 22 #ifdef CONFIG_ATMEL_NAND_HWECC 23 24 /* Register access macros */ 25 #define ecc_readl(add, reg) \ 26 readl(add + ATMEL_ECC_##reg) 27 #define ecc_writel(add, reg, value) \ 28 writel((value), add + ATMEL_ECC_##reg) 29 30 #include "atmel_nand_ecc.h" /* Hardware ECC registers */ 31 32 #ifdef CONFIG_ATMEL_NAND_HW_PMECC 33 34 #ifdef CONFIG_SPL_BUILD 35 #undef CONFIG_SYS_NAND_ONFI_DETECTION 36 #endif 37 38 struct atmel_nand_host { 39 struct pmecc_regs __iomem *pmecc; 40 struct pmecc_errloc_regs __iomem *pmerrloc; 41 void __iomem *pmecc_rom_base; 42 43 u8 pmecc_corr_cap; 44 u16 pmecc_sector_size; 45 u32 pmecc_index_table_offset; 46 u32 pmecc_version; 47 48 int pmecc_bytes_per_sector; 49 int pmecc_sector_number; 50 int pmecc_degree; /* Degree of remainders */ 51 int pmecc_cw_len; /* Length of codeword */ 52 53 /* lookup table for alpha_to and index_of */ 54 void __iomem *pmecc_alpha_to; 55 void __iomem *pmecc_index_of; 56 57 /* data for pmecc computation */ 58 int16_t *pmecc_smu; 59 int16_t *pmecc_partial_syn; 60 int16_t *pmecc_si; 61 int16_t *pmecc_lmu; /* polynomal order */ 62 int *pmecc_mu; 63 int *pmecc_dmu; 64 int *pmecc_delta; 65 }; 66 67 static struct atmel_nand_host pmecc_host; 68 static struct nand_ecclayout atmel_pmecc_oobinfo; 69 70 /* 71 * Return number of ecc bytes per sector according to sector size and 72 * correction capability 73 * 74 * Following table shows what at91 PMECC supported: 75 * Correction Capability Sector_512_bytes Sector_1024_bytes 76 * ===================== ================ ================= 77 * 2-bits 4-bytes 4-bytes 78 * 4-bits 7-bytes 7-bytes 79 * 8-bits 13-bytes 14-bytes 80 * 12-bits 20-bytes 21-bytes 81 * 24-bits 39-bytes 42-bytes 82 * 32-bits 52-bytes 56-bytes 83 */ 84 static int pmecc_get_ecc_bytes(int cap, int sector_size) 85 { 86 int m = 12 + sector_size / 512; 87 return (m * cap + 7) / 8; 88 } 89 90 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout, 91 int oobsize, int ecc_len) 92 { 93 int i; 94 95 layout->eccbytes = ecc_len; 96 97 /* ECC will occupy the last ecc_len bytes continuously */ 98 for (i = 0; i < ecc_len; i++) 99 layout->eccpos[i] = oobsize - ecc_len + i; 100 101 layout->oobfree[0].offset = 2; 102 layout->oobfree[0].length = 103 oobsize - ecc_len - layout->oobfree[0].offset; 104 } 105 106 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host) 107 { 108 int table_size; 109 110 table_size = host->pmecc_sector_size == 512 ? 111 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024; 112 113 /* the ALPHA lookup table is right behind the INDEX lookup table. */ 114 return host->pmecc_rom_base + host->pmecc_index_table_offset + 115 table_size * sizeof(int16_t); 116 } 117 118 static void pmecc_data_free(struct atmel_nand_host *host) 119 { 120 free(host->pmecc_partial_syn); 121 free(host->pmecc_si); 122 free(host->pmecc_lmu); 123 free(host->pmecc_smu); 124 free(host->pmecc_mu); 125 free(host->pmecc_dmu); 126 free(host->pmecc_delta); 127 } 128 129 static int pmecc_data_alloc(struct atmel_nand_host *host) 130 { 131 const int cap = host->pmecc_corr_cap; 132 int size; 133 134 size = (2 * cap + 1) * sizeof(int16_t); 135 host->pmecc_partial_syn = malloc(size); 136 host->pmecc_si = malloc(size); 137 host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t)); 138 host->pmecc_smu = malloc((cap + 2) * size); 139 140 size = (cap + 1) * sizeof(int); 141 host->pmecc_mu = malloc(size); 142 host->pmecc_dmu = malloc(size); 143 host->pmecc_delta = malloc(size); 144 145 if (host->pmecc_partial_syn && 146 host->pmecc_si && 147 host->pmecc_lmu && 148 host->pmecc_smu && 149 host->pmecc_mu && 150 host->pmecc_dmu && 151 host->pmecc_delta) 152 return 0; 153 154 /* error happened */ 155 pmecc_data_free(host); 156 return -ENOMEM; 157 158 } 159 160 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector) 161 { 162 struct nand_chip *nand_chip = mtd_to_nand(mtd); 163 struct atmel_nand_host *host = nand_get_controller_data(nand_chip); 164 int i; 165 uint32_t value; 166 167 /* Fill odd syndromes */ 168 for (i = 0; i < host->pmecc_corr_cap; i++) { 169 value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]); 170 if (i & 1) 171 value >>= 16; 172 value &= 0xffff; 173 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value; 174 } 175 } 176 177 static void pmecc_substitute(struct mtd_info *mtd) 178 { 179 struct nand_chip *nand_chip = mtd_to_nand(mtd); 180 struct atmel_nand_host *host = nand_get_controller_data(nand_chip); 181 int16_t __iomem *alpha_to = host->pmecc_alpha_to; 182 int16_t __iomem *index_of = host->pmecc_index_of; 183 int16_t *partial_syn = host->pmecc_partial_syn; 184 const int cap = host->pmecc_corr_cap; 185 int16_t *si; 186 int i, j; 187 188 /* si[] is a table that holds the current syndrome value, 189 * an element of that table belongs to the field 190 */ 191 si = host->pmecc_si; 192 193 memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1)); 194 195 /* Computation 2t syndromes based on S(x) */ 196 /* Odd syndromes */ 197 for (i = 1; i < 2 * cap; i += 2) { 198 for (j = 0; j < host->pmecc_degree; j++) { 199 if (partial_syn[i] & (0x1 << j)) 200 si[i] = readw(alpha_to + i * j) ^ si[i]; 201 } 202 } 203 /* Even syndrome = (Odd syndrome) ** 2 */ 204 for (i = 2, j = 1; j <= cap; i = ++j << 1) { 205 if (si[j] == 0) { 206 si[i] = 0; 207 } else { 208 int16_t tmp; 209 210 tmp = readw(index_of + si[j]); 211 tmp = (tmp * 2) % host->pmecc_cw_len; 212 si[i] = readw(alpha_to + tmp); 213 } 214 } 215 } 216 217 /* 218 * This function defines a Berlekamp iterative procedure for 219 * finding the value of the error location polynomial. 220 * The input is si[], initialize by pmecc_substitute(). 221 * The output is smu[][]. 222 * 223 * This function is written according to chip datasheet Chapter: 224 * Find the Error Location Polynomial Sigma(x) of Section: 225 * Programmable Multibit ECC Control (PMECC). 226 */ 227 static void pmecc_get_sigma(struct mtd_info *mtd) 228 { 229 struct nand_chip *nand_chip = mtd_to_nand(mtd); 230 struct atmel_nand_host *host = nand_get_controller_data(nand_chip); 231 232 int16_t *lmu = host->pmecc_lmu; 233 int16_t *si = host->pmecc_si; 234 int *mu = host->pmecc_mu; 235 int *dmu = host->pmecc_dmu; /* Discrepancy */ 236 int *delta = host->pmecc_delta; /* Delta order */ 237 int cw_len = host->pmecc_cw_len; 238 const int16_t cap = host->pmecc_corr_cap; 239 const int num = 2 * cap + 1; 240 int16_t __iomem *index_of = host->pmecc_index_of; 241 int16_t __iomem *alpha_to = host->pmecc_alpha_to; 242 int i, j, k; 243 uint32_t dmu_0_count, tmp; 244 int16_t *smu = host->pmecc_smu; 245 246 /* index of largest delta */ 247 int ro; 248 int largest; 249 int diff; 250 251 /* Init the Sigma(x) */ 252 memset(smu, 0, sizeof(int16_t) * num * (cap + 2)); 253 254 dmu_0_count = 0; 255 256 /* First Row */ 257 258 /* Mu */ 259 mu[0] = -1; 260 261 smu[0] = 1; 262 263 /* discrepancy set to 1 */ 264 dmu[0] = 1; 265 /* polynom order set to 0 */ 266 lmu[0] = 0; 267 /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */ 268 delta[0] = -1; 269 270 /* Second Row */ 271 272 /* Mu */ 273 mu[1] = 0; 274 /* Sigma(x) set to 1 */ 275 smu[num] = 1; 276 277 /* discrepancy set to S1 */ 278 dmu[1] = si[1]; 279 280 /* polynom order set to 0 */ 281 lmu[1] = 0; 282 283 /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */ 284 delta[1] = 0; 285 286 for (i = 1; i <= cap; i++) { 287 mu[i + 1] = i << 1; 288 /* Begin Computing Sigma (Mu+1) and L(mu) */ 289 /* check if discrepancy is set to 0 */ 290 if (dmu[i] == 0) { 291 dmu_0_count++; 292 293 tmp = ((cap - (lmu[i] >> 1) - 1) / 2); 294 if ((cap - (lmu[i] >> 1) - 1) & 0x1) 295 tmp += 2; 296 else 297 tmp += 1; 298 299 if (dmu_0_count == tmp) { 300 for (j = 0; j <= (lmu[i] >> 1) + 1; j++) 301 smu[(cap + 1) * num + j] = 302 smu[i * num + j]; 303 304 lmu[cap + 1] = lmu[i]; 305 return; 306 } 307 308 /* copy polynom */ 309 for (j = 0; j <= lmu[i] >> 1; j++) 310 smu[(i + 1) * num + j] = smu[i * num + j]; 311 312 /* copy previous polynom order to the next */ 313 lmu[i + 1] = lmu[i]; 314 } else { 315 ro = 0; 316 largest = -1; 317 /* find largest delta with dmu != 0 */ 318 for (j = 0; j < i; j++) { 319 if ((dmu[j]) && (delta[j] > largest)) { 320 largest = delta[j]; 321 ro = j; 322 } 323 } 324 325 /* compute difference */ 326 diff = (mu[i] - mu[ro]); 327 328 /* Compute degree of the new smu polynomial */ 329 if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) 330 lmu[i + 1] = lmu[i]; 331 else 332 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; 333 334 /* Init smu[i+1] with 0 */ 335 for (k = 0; k < num; k++) 336 smu[(i + 1) * num + k] = 0; 337 338 /* Compute smu[i+1] */ 339 for (k = 0; k <= lmu[ro] >> 1; k++) { 340 int16_t a, b, c; 341 342 if (!(smu[ro * num + k] && dmu[i])) 343 continue; 344 a = readw(index_of + dmu[i]); 345 b = readw(index_of + dmu[ro]); 346 c = readw(index_of + smu[ro * num + k]); 347 tmp = a + (cw_len - b) + c; 348 a = readw(alpha_to + tmp % cw_len); 349 smu[(i + 1) * num + (k + diff)] = a; 350 } 351 352 for (k = 0; k <= lmu[i] >> 1; k++) 353 smu[(i + 1) * num + k] ^= smu[i * num + k]; 354 } 355 356 /* End Computing Sigma (Mu+1) and L(mu) */ 357 /* In either case compute delta */ 358 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; 359 360 /* Do not compute discrepancy for the last iteration */ 361 if (i >= cap) 362 continue; 363 364 for (k = 0; k <= (lmu[i + 1] >> 1); k++) { 365 tmp = 2 * (i - 1); 366 if (k == 0) { 367 dmu[i + 1] = si[tmp + 3]; 368 } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { 369 int16_t a, b, c; 370 a = readw(index_of + 371 smu[(i + 1) * num + k]); 372 b = si[2 * (i - 1) + 3 - k]; 373 c = readw(index_of + b); 374 tmp = a + c; 375 tmp %= cw_len; 376 dmu[i + 1] = readw(alpha_to + tmp) ^ 377 dmu[i + 1]; 378 } 379 } 380 } 381 } 382 383 static int pmecc_err_location(struct mtd_info *mtd) 384 { 385 struct nand_chip *nand_chip = mtd_to_nand(mtd); 386 struct atmel_nand_host *host = nand_get_controller_data(nand_chip); 387 const int cap = host->pmecc_corr_cap; 388 const int num = 2 * cap + 1; 389 int sector_size = host->pmecc_sector_size; 390 int err_nbr = 0; /* number of error */ 391 int roots_nbr; /* number of roots */ 392 int i; 393 uint32_t val; 394 int16_t *smu = host->pmecc_smu; 395 int timeout = PMECC_MAX_TIMEOUT_US; 396 397 pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE); 398 399 for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) { 400 pmecc_writel(host->pmerrloc, sigma[i], 401 smu[(cap + 1) * num + i]); 402 err_nbr++; 403 } 404 405 val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1); 406 if (sector_size == 1024) 407 val |= PMERRLOC_ELCFG_SECTOR_1024; 408 409 pmecc_writel(host->pmerrloc, elcfg, val); 410 pmecc_writel(host->pmerrloc, elen, 411 sector_size * 8 + host->pmecc_degree * cap); 412 413 while (--timeout) { 414 if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE) 415 break; 416 WATCHDOG_RESET(); 417 udelay(1); 418 } 419 420 if (!timeout) { 421 dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n"); 422 return -1; 423 } 424 425 roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK) 426 >> 8; 427 /* Number of roots == degree of smu hence <= cap */ 428 if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1) 429 return err_nbr - 1; 430 431 /* Number of roots does not match the degree of smu 432 * unable to correct error */ 433 return -1; 434 } 435 436 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc, 437 int sector_num, int extra_bytes, int err_nbr) 438 { 439 struct nand_chip *nand_chip = mtd_to_nand(mtd); 440 struct atmel_nand_host *host = nand_get_controller_data(nand_chip); 441 int i = 0; 442 int byte_pos, bit_pos, sector_size, pos; 443 uint32_t tmp; 444 uint8_t err_byte; 445 446 sector_size = host->pmecc_sector_size; 447 448 while (err_nbr) { 449 tmp = pmecc_readl(host->pmerrloc, el[i]) - 1; 450 byte_pos = tmp / 8; 451 bit_pos = tmp % 8; 452 453 if (byte_pos >= (sector_size + extra_bytes)) 454 BUG(); /* should never happen */ 455 456 if (byte_pos < sector_size) { 457 err_byte = *(buf + byte_pos); 458 *(buf + byte_pos) ^= (1 << bit_pos); 459 460 pos = sector_num * host->pmecc_sector_size + byte_pos; 461 dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", 462 pos, bit_pos, err_byte, *(buf + byte_pos)); 463 } else { 464 /* Bit flip in OOB area */ 465 tmp = sector_num * host->pmecc_bytes_per_sector 466 + (byte_pos - sector_size); 467 err_byte = ecc[tmp]; 468 ecc[tmp] ^= (1 << bit_pos); 469 470 pos = tmp + nand_chip->ecc.layout->eccpos[0]; 471 dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", 472 pos, bit_pos, err_byte, ecc[tmp]); 473 } 474 475 i++; 476 err_nbr--; 477 } 478 479 return; 480 } 481 482 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf, 483 u8 *ecc) 484 { 485 struct nand_chip *nand_chip = mtd_to_nand(mtd); 486 struct atmel_nand_host *host = nand_get_controller_data(nand_chip); 487 int i, err_nbr, eccbytes; 488 uint8_t *buf_pos; 489 490 /* SAMA5D4 PMECC IP can correct errors for all 0xff page */ 491 if (host->pmecc_version >= PMECC_VERSION_SAMA5D4) 492 goto normal_check; 493 494 eccbytes = nand_chip->ecc.bytes; 495 for (i = 0; i < eccbytes; i++) 496 if (ecc[i] != 0xff) 497 goto normal_check; 498 /* Erased page, return OK */ 499 return 0; 500 501 normal_check: 502 for (i = 0; i < host->pmecc_sector_number; i++) { 503 err_nbr = 0; 504 if (pmecc_stat & 0x1) { 505 buf_pos = buf + i * host->pmecc_sector_size; 506 507 pmecc_gen_syndrome(mtd, i); 508 pmecc_substitute(mtd); 509 pmecc_get_sigma(mtd); 510 511 err_nbr = pmecc_err_location(mtd); 512 if (err_nbr == -1) { 513 dev_err(host->dev, "PMECC: Too many errors\n"); 514 mtd->ecc_stats.failed++; 515 return -EBADMSG; 516 } else { 517 pmecc_correct_data(mtd, buf_pos, ecc, i, 518 host->pmecc_bytes_per_sector, err_nbr); 519 mtd->ecc_stats.corrected += err_nbr; 520 } 521 } 522 pmecc_stat >>= 1; 523 } 524 525 return 0; 526 } 527 528 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, 529 struct nand_chip *chip, uint8_t *buf, int oob_required, int page) 530 { 531 struct atmel_nand_host *host = nand_get_controller_data(chip); 532 int eccsize = chip->ecc.size; 533 uint8_t *oob = chip->oob_poi; 534 uint32_t *eccpos = chip->ecc.layout->eccpos; 535 uint32_t stat; 536 int timeout = PMECC_MAX_TIMEOUT_US; 537 538 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); 539 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); 540 pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg)) 541 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE); 542 543 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); 544 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA); 545 546 chip->read_buf(mtd, buf, eccsize); 547 chip->read_buf(mtd, oob, mtd->oobsize); 548 549 while (--timeout) { 550 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY)) 551 break; 552 WATCHDOG_RESET(); 553 udelay(1); 554 } 555 556 if (!timeout) { 557 dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n"); 558 return -1; 559 } 560 561 stat = pmecc_readl(host->pmecc, isr); 562 if (stat != 0) 563 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0) 564 return -EBADMSG; 565 566 return 0; 567 } 568 569 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, 570 struct nand_chip *chip, const uint8_t *buf, 571 int oob_required, int page) 572 { 573 struct atmel_nand_host *host = nand_get_controller_data(chip); 574 uint32_t *eccpos = chip->ecc.layout->eccpos; 575 int i, j; 576 int timeout = PMECC_MAX_TIMEOUT_US; 577 578 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); 579 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); 580 581 pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) | 582 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE); 583 584 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); 585 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA); 586 587 chip->write_buf(mtd, (u8 *)buf, mtd->writesize); 588 589 while (--timeout) { 590 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY)) 591 break; 592 WATCHDOG_RESET(); 593 udelay(1); 594 } 595 596 if (!timeout) { 597 dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n"); 598 goto out; 599 } 600 601 for (i = 0; i < host->pmecc_sector_number; i++) { 602 for (j = 0; j < host->pmecc_bytes_per_sector; j++) { 603 int pos; 604 605 pos = i * host->pmecc_bytes_per_sector + j; 606 chip->oob_poi[eccpos[pos]] = 607 pmecc_readb(host->pmecc, ecc_port[i].ecc[j]); 608 } 609 } 610 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); 611 out: 612 return 0; 613 } 614 615 static void atmel_pmecc_core_init(struct mtd_info *mtd) 616 { 617 struct nand_chip *nand_chip = mtd_to_nand(mtd); 618 struct atmel_nand_host *host = nand_get_controller_data(nand_chip); 619 uint32_t val = 0; 620 struct nand_ecclayout *ecc_layout; 621 622 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); 623 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); 624 625 switch (host->pmecc_corr_cap) { 626 case 2: 627 val = PMECC_CFG_BCH_ERR2; 628 break; 629 case 4: 630 val = PMECC_CFG_BCH_ERR4; 631 break; 632 case 8: 633 val = PMECC_CFG_BCH_ERR8; 634 break; 635 case 12: 636 val = PMECC_CFG_BCH_ERR12; 637 break; 638 case 24: 639 val = PMECC_CFG_BCH_ERR24; 640 break; 641 case 32: 642 val = PMECC_CFG_BCH_ERR32; 643 break; 644 } 645 646 if (host->pmecc_sector_size == 512) 647 val |= PMECC_CFG_SECTOR512; 648 else if (host->pmecc_sector_size == 1024) 649 val |= PMECC_CFG_SECTOR1024; 650 651 switch (host->pmecc_sector_number) { 652 case 1: 653 val |= PMECC_CFG_PAGE_1SECTOR; 654 break; 655 case 2: 656 val |= PMECC_CFG_PAGE_2SECTORS; 657 break; 658 case 4: 659 val |= PMECC_CFG_PAGE_4SECTORS; 660 break; 661 case 8: 662 val |= PMECC_CFG_PAGE_8SECTORS; 663 break; 664 } 665 666 val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE 667 | PMECC_CFG_AUTO_DISABLE); 668 pmecc_writel(host->pmecc, cfg, val); 669 670 ecc_layout = nand_chip->ecc.layout; 671 pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1); 672 pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]); 673 pmecc_writel(host->pmecc, eaddr, 674 ecc_layout->eccpos[ecc_layout->eccbytes - 1]); 675 /* See datasheet about PMECC Clock Control Register */ 676 pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ); 677 pmecc_writel(host->pmecc, idr, 0xff); 678 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); 679 } 680 681 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION 682 /* 683 * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If 684 * pmecc_corr_cap or pmecc_sector_size is 0, then set it as 685 * ONFI ECC parameters. 686 * @host: point to an atmel_nand_host structure. 687 * if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits. 688 * if host->pmecc_sector_size is 0 then set it as the ONFI sector_size. 689 * @chip: point to an nand_chip structure. 690 * @cap: store the ONFI ECC correct bits capbility 691 * @sector_size: in how many bytes that ONFI require to correct @ecc_bits 692 * 693 * Return 0 if success. otherwise return the error code. 694 */ 695 static int pmecc_choose_ecc(struct atmel_nand_host *host, 696 struct nand_chip *chip, 697 int *cap, int *sector_size) 698 { 699 /* Get ECC requirement from ONFI parameters */ 700 *cap = *sector_size = 0; 701 if (chip->onfi_version) { 702 *cap = chip->ecc_strength_ds; 703 *sector_size = chip->ecc_step_ds; 704 pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n", 705 *cap, *sector_size); 706 } 707 708 if (*cap == 0 && *sector_size == 0) { 709 /* Non-ONFI compliant */ 710 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n"); 711 *cap = 2; 712 *sector_size = 512; 713 } 714 715 /* If head file doesn't specify then use the one in ONFI parameters */ 716 if (host->pmecc_corr_cap == 0) { 717 /* use the most fitable ecc bits (the near bigger one ) */ 718 if (*cap <= 2) 719 host->pmecc_corr_cap = 2; 720 else if (*cap <= 4) 721 host->pmecc_corr_cap = 4; 722 else if (*cap <= 8) 723 host->pmecc_corr_cap = 8; 724 else if (*cap <= 12) 725 host->pmecc_corr_cap = 12; 726 else if (*cap <= 24) 727 host->pmecc_corr_cap = 24; 728 else 729 #ifdef CONFIG_SAMA5D2 730 host->pmecc_corr_cap = 32; 731 #else 732 host->pmecc_corr_cap = 24; 733 #endif 734 } 735 if (host->pmecc_sector_size == 0) { 736 /* use the most fitable sector size (the near smaller one ) */ 737 if (*sector_size >= 1024) 738 host->pmecc_sector_size = 1024; 739 else if (*sector_size >= 512) 740 host->pmecc_sector_size = 512; 741 else 742 return -EINVAL; 743 } 744 return 0; 745 } 746 #endif 747 748 #if defined(NO_GALOIS_TABLE_IN_ROM) 749 static uint16_t *pmecc_galois_table; 750 static inline int deg(unsigned int poly) 751 { 752 /* polynomial degree is the most-significant bit index */ 753 return fls(poly) - 1; 754 } 755 756 static int build_gf_tables(int mm, unsigned int poly, 757 int16_t *index_of, int16_t *alpha_to) 758 { 759 unsigned int i, x = 1; 760 const unsigned int k = 1 << deg(poly); 761 unsigned int nn = (1 << mm) - 1; 762 763 /* primitive polynomial must be of degree m */ 764 if (k != (1u << mm)) 765 return -EINVAL; 766 767 for (i = 0; i < nn; i++) { 768 alpha_to[i] = x; 769 index_of[x] = i; 770 if (i && (x == 1)) 771 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ 772 return -EINVAL; 773 x <<= 1; 774 if (x & k) 775 x ^= poly; 776 } 777 778 alpha_to[nn] = 1; 779 index_of[0] = 0; 780 781 return 0; 782 } 783 784 static uint16_t *create_lookup_table(int sector_size) 785 { 786 int degree = (sector_size == 512) ? 787 PMECC_GF_DIMENSION_13 : 788 PMECC_GF_DIMENSION_14; 789 unsigned int poly = (sector_size == 512) ? 790 PMECC_GF_13_PRIMITIVE_POLY : 791 PMECC_GF_14_PRIMITIVE_POLY; 792 int table_size = (sector_size == 512) ? 793 PMECC_INDEX_TABLE_SIZE_512 : 794 PMECC_INDEX_TABLE_SIZE_1024; 795 796 int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL); 797 if (addr && build_gf_tables(degree, poly, addr, addr + table_size)) 798 return NULL; 799 800 return (uint16_t *)addr; 801 } 802 #endif 803 804 static int atmel_pmecc_nand_init_params(struct nand_chip *nand, 805 struct mtd_info *mtd) 806 { 807 struct atmel_nand_host *host; 808 int cap, sector_size; 809 810 host = &pmecc_host; 811 nand_set_controller_data(nand, host); 812 813 nand->ecc.mode = NAND_ECC_HW; 814 nand->ecc.calculate = NULL; 815 nand->ecc.correct = NULL; 816 nand->ecc.hwctl = NULL; 817 818 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION 819 host->pmecc_corr_cap = host->pmecc_sector_size = 0; 820 821 #ifdef CONFIG_PMECC_CAP 822 host->pmecc_corr_cap = CONFIG_PMECC_CAP; 823 #endif 824 #ifdef CONFIG_PMECC_SECTOR_SIZE 825 host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE; 826 #endif 827 /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or 828 * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size 829 * from ONFI. 830 */ 831 if (pmecc_choose_ecc(host, nand, &cap, §or_size)) { 832 dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n", 833 cap, sector_size); 834 return -EINVAL; 835 } 836 837 if (cap > host->pmecc_corr_cap) 838 dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n", 839 host->pmecc_corr_cap, cap); 840 if (sector_size < host->pmecc_sector_size) 841 dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n", 842 host->pmecc_sector_size, sector_size); 843 #else /* CONFIG_SYS_NAND_ONFI_DETECTION */ 844 host->pmecc_corr_cap = CONFIG_PMECC_CAP; 845 host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE; 846 #endif 847 848 cap = host->pmecc_corr_cap; 849 sector_size = host->pmecc_sector_size; 850 851 /* TODO: need check whether cap & sector_size is validate */ 852 #if defined(NO_GALOIS_TABLE_IN_ROM) 853 /* 854 * As pmecc_rom_base is the begin of the gallois field table, So the 855 * index offset just set as 0. 856 */ 857 host->pmecc_index_table_offset = 0; 858 #else 859 if (host->pmecc_sector_size == 512) 860 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512; 861 else 862 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024; 863 #endif 864 865 pr_debug("Initialize PMECC params, cap: %d, sector: %d\n", 866 cap, sector_size); 867 868 host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC; 869 host->pmerrloc = (struct pmecc_errloc_regs __iomem *) 870 ATMEL_BASE_PMERRLOC; 871 #if defined(NO_GALOIS_TABLE_IN_ROM) 872 pmecc_galois_table = create_lookup_table(host->pmecc_sector_size); 873 if (!pmecc_galois_table) { 874 dev_err(host->dev, "out of memory\n"); 875 return -ENOMEM; 876 } 877 878 host->pmecc_rom_base = (void __iomem *)pmecc_galois_table; 879 #else 880 host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM; 881 #endif 882 883 /* ECC is calculated for the whole page (1 step) */ 884 nand->ecc.size = mtd->writesize; 885 886 /* set ECC page size and oob layout */ 887 switch (mtd->writesize) { 888 case 2048: 889 case 4096: 890 case 8192: 891 host->pmecc_degree = (sector_size == 512) ? 892 PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14; 893 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1; 894 host->pmecc_sector_number = mtd->writesize / sector_size; 895 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes( 896 cap, sector_size); 897 host->pmecc_alpha_to = pmecc_get_alpha_to(host); 898 host->pmecc_index_of = host->pmecc_rom_base + 899 host->pmecc_index_table_offset; 900 901 nand->ecc.steps = 1; 902 nand->ecc.bytes = host->pmecc_bytes_per_sector * 903 host->pmecc_sector_number; 904 905 if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) { 906 dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n", 907 MTD_MAX_ECCPOS_ENTRIES_LARGE); 908 return -EINVAL; 909 } 910 911 if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) { 912 dev_err(host->dev, "No room for ECC bytes\n"); 913 return -EINVAL; 914 } 915 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, 916 mtd->oobsize, 917 nand->ecc.bytes); 918 nand->ecc.layout = &atmel_pmecc_oobinfo; 919 break; 920 case 512: 921 case 1024: 922 /* TODO */ 923 dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n"); 924 default: 925 /* page size not handled by HW ECC */ 926 /* switching back to soft ECC */ 927 nand->ecc.mode = NAND_ECC_SOFT; 928 nand->ecc.read_page = NULL; 929 nand->ecc.postpad = 0; 930 nand->ecc.prepad = 0; 931 nand->ecc.bytes = 0; 932 return 0; 933 } 934 935 /* Allocate data for PMECC computation */ 936 if (pmecc_data_alloc(host)) { 937 dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n"); 938 return -ENOMEM; 939 } 940 941 nand->options |= NAND_NO_SUBPAGE_WRITE; 942 nand->ecc.read_page = atmel_nand_pmecc_read_page; 943 nand->ecc.write_page = atmel_nand_pmecc_write_page; 944 nand->ecc.strength = cap; 945 946 /* Check the PMECC ip version */ 947 host->pmecc_version = pmecc_readl(host->pmerrloc, version); 948 dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version); 949 950 atmel_pmecc_core_init(mtd); 951 952 return 0; 953 } 954 955 #else 956 957 /* oob layout for large page size 958 * bad block info is on bytes 0 and 1 959 * the bytes have to be consecutives to avoid 960 * several NAND_CMD_RNDOUT during read 961 */ 962 static struct nand_ecclayout atmel_oobinfo_large = { 963 .eccbytes = 4, 964 .eccpos = {60, 61, 62, 63}, 965 .oobfree = { 966 {2, 58} 967 }, 968 }; 969 970 /* oob layout for small page size 971 * bad block info is on bytes 4 and 5 972 * the bytes have to be consecutives to avoid 973 * several NAND_CMD_RNDOUT during read 974 */ 975 static struct nand_ecclayout atmel_oobinfo_small = { 976 .eccbytes = 4, 977 .eccpos = {0, 1, 2, 3}, 978 .oobfree = { 979 {6, 10} 980 }, 981 }; 982 983 /* 984 * Calculate HW ECC 985 * 986 * function called after a write 987 * 988 * mtd: MTD block structure 989 * dat: raw data (unused) 990 * ecc_code: buffer for ECC 991 */ 992 static int atmel_nand_calculate(struct mtd_info *mtd, 993 const u_char *dat, unsigned char *ecc_code) 994 { 995 unsigned int ecc_value; 996 997 /* get the first 2 ECC bytes */ 998 ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR); 999 1000 ecc_code[0] = ecc_value & 0xFF; 1001 ecc_code[1] = (ecc_value >> 8) & 0xFF; 1002 1003 /* get the last 2 ECC bytes */ 1004 ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY; 1005 1006 ecc_code[2] = ecc_value & 0xFF; 1007 ecc_code[3] = (ecc_value >> 8) & 0xFF; 1008 1009 return 0; 1010 } 1011 1012 /* 1013 * HW ECC read page function 1014 * 1015 * mtd: mtd info structure 1016 * chip: nand chip info structure 1017 * buf: buffer to store read data 1018 * oob_required: caller expects OOB data read to chip->oob_poi 1019 */ 1020 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, 1021 uint8_t *buf, int oob_required, int page) 1022 { 1023 int eccsize = chip->ecc.size; 1024 int eccbytes = chip->ecc.bytes; 1025 uint32_t *eccpos = chip->ecc.layout->eccpos; 1026 uint8_t *p = buf; 1027 uint8_t *oob = chip->oob_poi; 1028 uint8_t *ecc_pos; 1029 int stat; 1030 1031 /* read the page */ 1032 chip->read_buf(mtd, p, eccsize); 1033 1034 /* move to ECC position if needed */ 1035 if (eccpos[0] != 0) { 1036 /* This only works on large pages 1037 * because the ECC controller waits for 1038 * NAND_CMD_RNDOUTSTART after the 1039 * NAND_CMD_RNDOUT. 1040 * anyway, for small pages, the eccpos[0] == 0 1041 */ 1042 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 1043 mtd->writesize + eccpos[0], -1); 1044 } 1045 1046 /* the ECC controller needs to read the ECC just after the data */ 1047 ecc_pos = oob + eccpos[0]; 1048 chip->read_buf(mtd, ecc_pos, eccbytes); 1049 1050 /* check if there's an error */ 1051 stat = chip->ecc.correct(mtd, p, oob, NULL); 1052 1053 if (stat < 0) 1054 mtd->ecc_stats.failed++; 1055 else 1056 mtd->ecc_stats.corrected += stat; 1057 1058 /* get back to oob start (end of page) */ 1059 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); 1060 1061 /* read the oob */ 1062 chip->read_buf(mtd, oob, mtd->oobsize); 1063 1064 return 0; 1065 } 1066 1067 /* 1068 * HW ECC Correction 1069 * 1070 * function called after a read 1071 * 1072 * mtd: MTD block structure 1073 * dat: raw data read from the chip 1074 * read_ecc: ECC from the chip (unused) 1075 * isnull: unused 1076 * 1077 * Detect and correct a 1 bit error for a page 1078 */ 1079 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat, 1080 u_char *read_ecc, u_char *isnull) 1081 { 1082 struct nand_chip *nand_chip = mtd_to_nand(mtd); 1083 unsigned int ecc_status; 1084 unsigned int ecc_word, ecc_bit; 1085 1086 /* get the status from the Status Register */ 1087 ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR); 1088 1089 /* if there's no error */ 1090 if (likely(!(ecc_status & ATMEL_ECC_RECERR))) 1091 return 0; 1092 1093 /* get error bit offset (4 bits) */ 1094 ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR; 1095 /* get word address (12 bits) */ 1096 ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR; 1097 ecc_word >>= 4; 1098 1099 /* if there are multiple errors */ 1100 if (ecc_status & ATMEL_ECC_MULERR) { 1101 /* check if it is a freshly erased block 1102 * (filled with 0xff) */ 1103 if ((ecc_bit == ATMEL_ECC_BITADDR) 1104 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) { 1105 /* the block has just been erased, return OK */ 1106 return 0; 1107 } 1108 /* it doesn't seems to be a freshly 1109 * erased block. 1110 * We can't correct so many errors */ 1111 dev_warn(host->dev, "atmel_nand : multiple errors detected." 1112 " Unable to correct.\n"); 1113 return -EBADMSG; 1114 } 1115 1116 /* if there's a single bit error : we can correct it */ 1117 if (ecc_status & ATMEL_ECC_ECCERR) { 1118 /* there's nothing much to do here. 1119 * the bit error is on the ECC itself. 1120 */ 1121 dev_warn(host->dev, "atmel_nand : one bit error on ECC code." 1122 " Nothing to correct\n"); 1123 return 0; 1124 } 1125 1126 dev_warn(host->dev, "atmel_nand : one bit error on data." 1127 " (word offset in the page :" 1128 " 0x%x bit offset : 0x%x)\n", 1129 ecc_word, ecc_bit); 1130 /* correct the error */ 1131 if (nand_chip->options & NAND_BUSWIDTH_16) { 1132 /* 16 bits words */ 1133 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit); 1134 } else { 1135 /* 8 bits words */ 1136 dat[ecc_word] ^= (1 << ecc_bit); 1137 } 1138 dev_warn(host->dev, "atmel_nand : error corrected\n"); 1139 return 1; 1140 } 1141 1142 /* 1143 * Enable HW ECC : unused on most chips 1144 */ 1145 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) 1146 { 1147 } 1148 1149 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd) 1150 { 1151 nand->ecc.mode = NAND_ECC_HW; 1152 nand->ecc.calculate = atmel_nand_calculate; 1153 nand->ecc.correct = atmel_nand_correct; 1154 nand->ecc.hwctl = atmel_nand_hwctl; 1155 nand->ecc.read_page = atmel_nand_read_page; 1156 nand->ecc.bytes = 4; 1157 nand->ecc.strength = 4; 1158 1159 if (nand->ecc.mode == NAND_ECC_HW) { 1160 /* ECC is calculated for the whole page (1 step) */ 1161 nand->ecc.size = mtd->writesize; 1162 1163 /* set ECC page size and oob layout */ 1164 switch (mtd->writesize) { 1165 case 512: 1166 nand->ecc.layout = &atmel_oobinfo_small; 1167 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, 1168 ATMEL_ECC_PAGESIZE_528); 1169 break; 1170 case 1024: 1171 nand->ecc.layout = &atmel_oobinfo_large; 1172 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, 1173 ATMEL_ECC_PAGESIZE_1056); 1174 break; 1175 case 2048: 1176 nand->ecc.layout = &atmel_oobinfo_large; 1177 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, 1178 ATMEL_ECC_PAGESIZE_2112); 1179 break; 1180 case 4096: 1181 nand->ecc.layout = &atmel_oobinfo_large; 1182 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, 1183 ATMEL_ECC_PAGESIZE_4224); 1184 break; 1185 default: 1186 /* page size not handled by HW ECC */ 1187 /* switching back to soft ECC */ 1188 nand->ecc.mode = NAND_ECC_SOFT; 1189 nand->ecc.calculate = NULL; 1190 nand->ecc.correct = NULL; 1191 nand->ecc.hwctl = NULL; 1192 nand->ecc.read_page = NULL; 1193 nand->ecc.postpad = 0; 1194 nand->ecc.prepad = 0; 1195 nand->ecc.bytes = 0; 1196 break; 1197 } 1198 } 1199 1200 return 0; 1201 } 1202 1203 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */ 1204 1205 #endif /* CONFIG_ATMEL_NAND_HWECC */ 1206 1207 static void at91_nand_hwcontrol(struct mtd_info *mtd, 1208 int cmd, unsigned int ctrl) 1209 { 1210 struct nand_chip *this = mtd_to_nand(mtd); 1211 1212 if (ctrl & NAND_CTRL_CHANGE) { 1213 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W; 1214 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE 1215 | CONFIG_SYS_NAND_MASK_CLE); 1216 1217 if (ctrl & NAND_CLE) 1218 IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE; 1219 if (ctrl & NAND_ALE) 1220 IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE; 1221 1222 #ifdef CONFIG_SYS_NAND_ENABLE_PIN 1223 at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN, 1224 !(ctrl & NAND_NCE)); 1225 #endif 1226 this->IO_ADDR_W = (void *) IO_ADDR_W; 1227 } 1228 1229 if (cmd != NAND_CMD_NONE) 1230 writeb(cmd, this->IO_ADDR_W); 1231 } 1232 1233 #ifdef CONFIG_SYS_NAND_READY_PIN 1234 static int at91_nand_ready(struct mtd_info *mtd) 1235 { 1236 return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN); 1237 } 1238 #endif 1239 1240 #ifdef CONFIG_SPL_BUILD 1241 /* The following code is for SPL */ 1242 static struct mtd_info *mtd; 1243 static struct nand_chip nand_chip; 1244 1245 static int nand_command(int block, int page, uint32_t offs, u8 cmd) 1246 { 1247 struct nand_chip *this = mtd_to_nand(mtd); 1248 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT; 1249 void (*hwctrl)(struct mtd_info *mtd, int cmd, 1250 unsigned int ctrl) = this->cmd_ctrl; 1251 1252 while (!this->dev_ready(mtd)) 1253 ; 1254 1255 if (cmd == NAND_CMD_READOOB) { 1256 offs += CONFIG_SYS_NAND_PAGE_SIZE; 1257 cmd = NAND_CMD_READ0; 1258 } 1259 1260 hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE); 1261 1262 if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd)) 1263 offs >>= 1; 1264 1265 hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE); 1266 hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); 1267 hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); 1268 hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE); 1269 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE 1270 hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE); 1271 #endif 1272 hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 1273 1274 hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE); 1275 hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 1276 1277 while (!this->dev_ready(mtd)) 1278 ; 1279 1280 return 0; 1281 } 1282 1283 static int nand_is_bad_block(int block) 1284 { 1285 struct nand_chip *this = mtd_to_nand(mtd); 1286 1287 nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB); 1288 1289 if (this->options & NAND_BUSWIDTH_16) { 1290 if (readw(this->IO_ADDR_R) != 0xffff) 1291 return 1; 1292 } else { 1293 if (readb(this->IO_ADDR_R) != 0xff) 1294 return 1; 1295 } 1296 1297 return 0; 1298 } 1299 1300 #ifdef CONFIG_SPL_NAND_ECC 1301 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS; 1302 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \ 1303 CONFIG_SYS_NAND_ECCSIZE) 1304 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES) 1305 1306 static int nand_read_page(int block, int page, void *dst) 1307 { 1308 struct nand_chip *this = mtd_to_nand(mtd); 1309 u_char ecc_calc[ECCTOTAL]; 1310 u_char ecc_code[ECCTOTAL]; 1311 u_char oob_data[CONFIG_SYS_NAND_OOBSIZE]; 1312 int eccsize = CONFIG_SYS_NAND_ECCSIZE; 1313 int eccbytes = CONFIG_SYS_NAND_ECCBYTES; 1314 int eccsteps = ECCSTEPS; 1315 int i; 1316 uint8_t *p = dst; 1317 nand_command(block, page, 0, NAND_CMD_READ0); 1318 1319 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 1320 if (this->ecc.mode != NAND_ECC_SOFT) 1321 this->ecc.hwctl(mtd, NAND_ECC_READ); 1322 this->read_buf(mtd, p, eccsize); 1323 this->ecc.calculate(mtd, p, &ecc_calc[i]); 1324 } 1325 this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE); 1326 1327 for (i = 0; i < ECCTOTAL; i++) 1328 ecc_code[i] = oob_data[nand_ecc_pos[i]]; 1329 1330 eccsteps = ECCSTEPS; 1331 p = dst; 1332 1333 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 1334 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); 1335 1336 return 0; 1337 } 1338 1339 int spl_nand_erase_one(int block, int page) 1340 { 1341 struct nand_chip *this = mtd_to_nand(mtd); 1342 void (*hwctrl)(struct mtd_info *mtd, int cmd, 1343 unsigned int ctrl) = this->cmd_ctrl; 1344 int page_addr; 1345 1346 if (nand_chip.select_chip) 1347 nand_chip.select_chip(mtd, 0); 1348 1349 page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT; 1350 hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE); 1351 /* Row address */ 1352 hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE); 1353 hwctrl(mtd, ((page_addr >> 8) & 0xff), 1354 NAND_CTRL_ALE | NAND_CTRL_CHANGE); 1355 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE 1356 /* One more address cycle for devices > 128MiB */ 1357 hwctrl(mtd, (page_addr >> 16) & 0x0f, 1358 NAND_CTRL_ALE | NAND_CTRL_CHANGE); 1359 #endif 1360 hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE); 1361 1362 while (!this->dev_ready(mtd)) 1363 ; 1364 1365 nand_deselect(); 1366 1367 return 0; 1368 } 1369 #else 1370 static int nand_read_page(int block, int page, void *dst) 1371 { 1372 struct nand_chip *this = mtd_to_nand(mtd); 1373 1374 nand_command(block, page, 0, NAND_CMD_READ0); 1375 atmel_nand_pmecc_read_page(mtd, this, dst, 0, page); 1376 1377 return 0; 1378 } 1379 #endif /* CONFIG_SPL_NAND_ECC */ 1380 1381 int at91_nand_wait_ready(struct mtd_info *mtd) 1382 { 1383 struct nand_chip *this = mtd_to_nand(mtd); 1384 1385 udelay(this->chip_delay); 1386 1387 return 1; 1388 } 1389 1390 int board_nand_init(struct nand_chip *nand) 1391 { 1392 int ret = 0; 1393 1394 nand->ecc.mode = NAND_ECC_SOFT; 1395 #ifdef CONFIG_SYS_NAND_DBW_16 1396 nand->options = NAND_BUSWIDTH_16; 1397 nand->read_buf = nand_read_buf16; 1398 #else 1399 nand->read_buf = nand_read_buf; 1400 #endif 1401 nand->cmd_ctrl = at91_nand_hwcontrol; 1402 #ifdef CONFIG_SYS_NAND_READY_PIN 1403 nand->dev_ready = at91_nand_ready; 1404 #else 1405 nand->dev_ready = at91_nand_wait_ready; 1406 #endif 1407 nand->chip_delay = 20; 1408 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT 1409 nand->bbt_options |= NAND_BBT_USE_FLASH; 1410 #endif 1411 1412 #ifdef CONFIG_ATMEL_NAND_HWECC 1413 #ifdef CONFIG_ATMEL_NAND_HW_PMECC 1414 ret = atmel_pmecc_nand_init_params(nand, mtd); 1415 #endif 1416 #endif 1417 1418 return ret; 1419 } 1420 1421 void nand_init(void) 1422 { 1423 mtd = nand_to_mtd(&nand_chip); 1424 mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE; 1425 mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE; 1426 nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE; 1427 nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE; 1428 board_nand_init(&nand_chip); 1429 1430 #ifdef CONFIG_SPL_NAND_ECC 1431 if (nand_chip.ecc.mode == NAND_ECC_SOFT) { 1432 nand_chip.ecc.calculate = nand_calculate_ecc; 1433 nand_chip.ecc.correct = nand_correct_data; 1434 } 1435 #endif 1436 1437 if (nand_chip.select_chip) 1438 nand_chip.select_chip(mtd, 0); 1439 } 1440 1441 void nand_deselect(void) 1442 { 1443 if (nand_chip.select_chip) 1444 nand_chip.select_chip(mtd, -1); 1445 } 1446 1447 #include "nand_spl_loaders.c" 1448 1449 #else 1450 1451 #ifndef CONFIG_SYS_NAND_BASE_LIST 1452 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE } 1453 #endif 1454 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE]; 1455 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST; 1456 1457 int atmel_nand_chip_init(int devnum, ulong base_addr) 1458 { 1459 int ret; 1460 struct nand_chip *nand = &nand_chip[devnum]; 1461 struct mtd_info *mtd = nand_to_mtd(nand); 1462 1463 nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr; 1464 1465 #ifdef CONFIG_NAND_ECC_BCH 1466 nand->ecc.mode = NAND_ECC_SOFT_BCH; 1467 #else 1468 nand->ecc.mode = NAND_ECC_SOFT; 1469 #endif 1470 #ifdef CONFIG_SYS_NAND_DBW_16 1471 nand->options = NAND_BUSWIDTH_16; 1472 #endif 1473 nand->cmd_ctrl = at91_nand_hwcontrol; 1474 #ifdef CONFIG_SYS_NAND_READY_PIN 1475 nand->dev_ready = at91_nand_ready; 1476 #endif 1477 nand->chip_delay = 75; 1478 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT 1479 nand->bbt_options |= NAND_BBT_USE_FLASH; 1480 #endif 1481 1482 ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL); 1483 if (ret) 1484 return ret; 1485 1486 #ifdef CONFIG_ATMEL_NAND_HWECC 1487 #ifdef CONFIG_ATMEL_NAND_HW_PMECC 1488 ret = atmel_pmecc_nand_init_params(nand, mtd); 1489 #else 1490 ret = atmel_hwecc_nand_init_param(nand, mtd); 1491 #endif 1492 if (ret) 1493 return ret; 1494 #endif 1495 1496 ret = nand_scan_tail(mtd); 1497 if (!ret) 1498 nand_register(devnum, mtd); 1499 1500 return ret; 1501 } 1502 1503 void board_nand_init(void) 1504 { 1505 int i; 1506 for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) 1507 if (atmel_nand_chip_init(i, base_addr[i])) 1508 dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip", 1509 i); 1510 } 1511 #endif /* CONFIG_SPL_BUILD */ 1512