1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 * 10 */ 11 12 #define __UBOOT__ 13 #ifndef __UBOOT__ 14 #include <linux/module.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/list.h> 19 #include <linux/kmod.h> 20 #endif 21 22 #include <common.h> 23 #include <malloc.h> 24 #include <asm/errno.h> 25 #include <linux/compat.h> 26 #include <ubi_uboot.h> 27 28 #include <linux/mtd/mtd.h> 29 #include <linux/mtd/partitions.h> 30 #include <linux/err.h> 31 32 #include "mtdcore.h" 33 34 /* Our partition linked list */ 35 static LIST_HEAD(mtd_partitions); 36 #ifndef __UBOOT__ 37 static DEFINE_MUTEX(mtd_partitions_mutex); 38 #else 39 DEFINE_MUTEX(mtd_partitions_mutex); 40 #endif 41 42 /* Our partition node structure */ 43 struct mtd_part { 44 struct mtd_info mtd; 45 struct mtd_info *master; 46 uint64_t offset; 47 struct list_head list; 48 }; 49 50 /* 51 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 52 * the pointer to that structure with this macro. 53 */ 54 #define PART(x) ((struct mtd_part *)(x)) 55 56 57 #ifdef __UBOOT__ 58 /* from mm/util.c */ 59 60 /** 61 * kstrdup - allocate space for and copy an existing string 62 * @s: the string to duplicate 63 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 64 */ 65 char *kstrdup(const char *s, gfp_t gfp) 66 { 67 size_t len; 68 char *buf; 69 70 if (!s) 71 return NULL; 72 73 len = strlen(s) + 1; 74 buf = kmalloc(len, gfp); 75 if (buf) 76 memcpy(buf, s, len); 77 return buf; 78 } 79 #endif 80 81 /* 82 * MTD methods which simply translate the effective address and pass through 83 * to the _real_ device. 84 */ 85 86 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 87 size_t *retlen, u_char *buf) 88 { 89 struct mtd_part *part = PART(mtd); 90 struct mtd_ecc_stats stats; 91 int res; 92 93 stats = part->master->ecc_stats; 94 res = part->master->_read(part->master, from + part->offset, len, 95 retlen, buf); 96 if (unlikely(mtd_is_eccerr(res))) 97 mtd->ecc_stats.failed += 98 part->master->ecc_stats.failed - stats.failed; 99 else 100 mtd->ecc_stats.corrected += 101 part->master->ecc_stats.corrected - stats.corrected; 102 return res; 103 } 104 105 #ifndef __UBOOT__ 106 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 107 size_t *retlen, void **virt, resource_size_t *phys) 108 { 109 struct mtd_part *part = PART(mtd); 110 111 return part->master->_point(part->master, from + part->offset, len, 112 retlen, virt, phys); 113 } 114 115 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 116 { 117 struct mtd_part *part = PART(mtd); 118 119 return part->master->_unpoint(part->master, from + part->offset, len); 120 } 121 #endif 122 123 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 124 unsigned long len, 125 unsigned long offset, 126 unsigned long flags) 127 { 128 struct mtd_part *part = PART(mtd); 129 130 offset += part->offset; 131 return part->master->_get_unmapped_area(part->master, len, offset, 132 flags); 133 } 134 135 static int part_read_oob(struct mtd_info *mtd, loff_t from, 136 struct mtd_oob_ops *ops) 137 { 138 struct mtd_part *part = PART(mtd); 139 int res; 140 141 if (from >= mtd->size) 142 return -EINVAL; 143 if (ops->datbuf && from + ops->len > mtd->size) 144 return -EINVAL; 145 146 /* 147 * If OOB is also requested, make sure that we do not read past the end 148 * of this partition. 149 */ 150 if (ops->oobbuf) { 151 size_t len, pages; 152 153 if (ops->mode == MTD_OPS_AUTO_OOB) 154 len = mtd->oobavail; 155 else 156 len = mtd->oobsize; 157 pages = mtd_div_by_ws(mtd->size, mtd); 158 pages -= mtd_div_by_ws(from, mtd); 159 if (ops->ooboffs + ops->ooblen > pages * len) 160 return -EINVAL; 161 } 162 163 res = part->master->_read_oob(part->master, from + part->offset, ops); 164 if (unlikely(res)) { 165 if (mtd_is_bitflip(res)) 166 mtd->ecc_stats.corrected++; 167 if (mtd_is_eccerr(res)) 168 mtd->ecc_stats.failed++; 169 } 170 return res; 171 } 172 173 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 174 size_t len, size_t *retlen, u_char *buf) 175 { 176 struct mtd_part *part = PART(mtd); 177 return part->master->_read_user_prot_reg(part->master, from, len, 178 retlen, buf); 179 } 180 181 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, 182 size_t *retlen, struct otp_info *buf) 183 { 184 struct mtd_part *part = PART(mtd); 185 return part->master->_get_user_prot_info(part->master, len, retlen, 186 buf); 187 } 188 189 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 190 size_t len, size_t *retlen, u_char *buf) 191 { 192 struct mtd_part *part = PART(mtd); 193 return part->master->_read_fact_prot_reg(part->master, from, len, 194 retlen, buf); 195 } 196 197 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, 198 size_t *retlen, struct otp_info *buf) 199 { 200 struct mtd_part *part = PART(mtd); 201 return part->master->_get_fact_prot_info(part->master, len, retlen, 202 buf); 203 } 204 205 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 206 size_t *retlen, const u_char *buf) 207 { 208 struct mtd_part *part = PART(mtd); 209 return part->master->_write(part->master, to + part->offset, len, 210 retlen, buf); 211 } 212 213 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 214 size_t *retlen, const u_char *buf) 215 { 216 struct mtd_part *part = PART(mtd); 217 return part->master->_panic_write(part->master, to + part->offset, len, 218 retlen, buf); 219 } 220 221 static int part_write_oob(struct mtd_info *mtd, loff_t to, 222 struct mtd_oob_ops *ops) 223 { 224 struct mtd_part *part = PART(mtd); 225 226 if (to >= mtd->size) 227 return -EINVAL; 228 if (ops->datbuf && to + ops->len > mtd->size) 229 return -EINVAL; 230 return part->master->_write_oob(part->master, to + part->offset, ops); 231 } 232 233 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 234 size_t len, size_t *retlen, u_char *buf) 235 { 236 struct mtd_part *part = PART(mtd); 237 return part->master->_write_user_prot_reg(part->master, from, len, 238 retlen, buf); 239 } 240 241 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 242 size_t len) 243 { 244 struct mtd_part *part = PART(mtd); 245 return part->master->_lock_user_prot_reg(part->master, from, len); 246 } 247 248 #ifndef __UBOOT__ 249 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 250 unsigned long count, loff_t to, size_t *retlen) 251 { 252 struct mtd_part *part = PART(mtd); 253 return part->master->_writev(part->master, vecs, count, 254 to + part->offset, retlen); 255 } 256 #endif 257 258 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 259 { 260 struct mtd_part *part = PART(mtd); 261 int ret; 262 263 instr->addr += part->offset; 264 ret = part->master->_erase(part->master, instr); 265 if (ret) { 266 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 267 instr->fail_addr -= part->offset; 268 instr->addr -= part->offset; 269 } 270 return ret; 271 } 272 273 void mtd_erase_callback(struct erase_info *instr) 274 { 275 if (instr->mtd->_erase == part_erase) { 276 struct mtd_part *part = PART(instr->mtd); 277 278 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 279 instr->fail_addr -= part->offset; 280 instr->addr -= part->offset; 281 } 282 if (instr->callback) 283 instr->callback(instr); 284 } 285 EXPORT_SYMBOL_GPL(mtd_erase_callback); 286 287 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 288 { 289 struct mtd_part *part = PART(mtd); 290 return part->master->_lock(part->master, ofs + part->offset, len); 291 } 292 293 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 294 { 295 struct mtd_part *part = PART(mtd); 296 return part->master->_unlock(part->master, ofs + part->offset, len); 297 } 298 299 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 300 { 301 struct mtd_part *part = PART(mtd); 302 return part->master->_is_locked(part->master, ofs + part->offset, len); 303 } 304 305 static void part_sync(struct mtd_info *mtd) 306 { 307 struct mtd_part *part = PART(mtd); 308 part->master->_sync(part->master); 309 } 310 311 #ifndef __UBOOT__ 312 static int part_suspend(struct mtd_info *mtd) 313 { 314 struct mtd_part *part = PART(mtd); 315 return part->master->_suspend(part->master); 316 } 317 318 static void part_resume(struct mtd_info *mtd) 319 { 320 struct mtd_part *part = PART(mtd); 321 part->master->_resume(part->master); 322 } 323 #endif 324 325 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 326 { 327 struct mtd_part *part = PART(mtd); 328 ofs += part->offset; 329 return part->master->_block_isbad(part->master, ofs); 330 } 331 332 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 333 { 334 struct mtd_part *part = PART(mtd); 335 int res; 336 337 ofs += part->offset; 338 res = part->master->_block_markbad(part->master, ofs); 339 if (!res) 340 mtd->ecc_stats.badblocks++; 341 return res; 342 } 343 344 static inline void free_partition(struct mtd_part *p) 345 { 346 kfree(p->mtd.name); 347 kfree(p); 348 } 349 350 /* 351 * This function unregisters and destroy all slave MTD objects which are 352 * attached to the given master MTD object. 353 */ 354 355 int del_mtd_partitions(struct mtd_info *master) 356 { 357 struct mtd_part *slave, *next; 358 int ret, err = 0; 359 360 mutex_lock(&mtd_partitions_mutex); 361 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 362 if (slave->master == master) { 363 ret = del_mtd_device(&slave->mtd); 364 if (ret < 0) { 365 err = ret; 366 continue; 367 } 368 list_del(&slave->list); 369 free_partition(slave); 370 } 371 mutex_unlock(&mtd_partitions_mutex); 372 373 return err; 374 } 375 376 static struct mtd_part *allocate_partition(struct mtd_info *master, 377 const struct mtd_partition *part, int partno, 378 uint64_t cur_offset) 379 { 380 struct mtd_part *slave; 381 char *name; 382 383 /* allocate the partition structure */ 384 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 385 name = kstrdup(part->name, GFP_KERNEL); 386 if (!name || !slave) { 387 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 388 master->name); 389 kfree(name); 390 kfree(slave); 391 return ERR_PTR(-ENOMEM); 392 } 393 394 /* set up the MTD object for this partition */ 395 slave->mtd.type = master->type; 396 slave->mtd.flags = master->flags & ~part->mask_flags; 397 slave->mtd.size = part->size; 398 slave->mtd.writesize = master->writesize; 399 slave->mtd.writebufsize = master->writebufsize; 400 slave->mtd.oobsize = master->oobsize; 401 slave->mtd.oobavail = master->oobavail; 402 slave->mtd.subpage_sft = master->subpage_sft; 403 404 slave->mtd.name = name; 405 slave->mtd.owner = master->owner; 406 #ifndef __UBOOT__ 407 slave->mtd.backing_dev_info = master->backing_dev_info; 408 409 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone 410 * to have the same data be in two different partitions. 411 */ 412 slave->mtd.dev.parent = master->dev.parent; 413 #endif 414 415 slave->mtd._read = part_read; 416 slave->mtd._write = part_write; 417 418 if (master->_panic_write) 419 slave->mtd._panic_write = part_panic_write; 420 421 #ifndef __UBOOT__ 422 if (master->_point && master->_unpoint) { 423 slave->mtd._point = part_point; 424 slave->mtd._unpoint = part_unpoint; 425 } 426 #endif 427 428 if (master->_get_unmapped_area) 429 slave->mtd._get_unmapped_area = part_get_unmapped_area; 430 if (master->_read_oob) 431 slave->mtd._read_oob = part_read_oob; 432 if (master->_write_oob) 433 slave->mtd._write_oob = part_write_oob; 434 if (master->_read_user_prot_reg) 435 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 436 if (master->_read_fact_prot_reg) 437 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 438 if (master->_write_user_prot_reg) 439 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 440 if (master->_lock_user_prot_reg) 441 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 442 if (master->_get_user_prot_info) 443 slave->mtd._get_user_prot_info = part_get_user_prot_info; 444 if (master->_get_fact_prot_info) 445 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 446 if (master->_sync) 447 slave->mtd._sync = part_sync; 448 #ifndef __UBOOT__ 449 if (!partno && !master->dev.class && master->_suspend && 450 master->_resume) { 451 slave->mtd._suspend = part_suspend; 452 slave->mtd._resume = part_resume; 453 } 454 if (master->_writev) 455 slave->mtd._writev = part_writev; 456 #endif 457 if (master->_lock) 458 slave->mtd._lock = part_lock; 459 if (master->_unlock) 460 slave->mtd._unlock = part_unlock; 461 if (master->_is_locked) 462 slave->mtd._is_locked = part_is_locked; 463 if (master->_block_isbad) 464 slave->mtd._block_isbad = part_block_isbad; 465 if (master->_block_markbad) 466 slave->mtd._block_markbad = part_block_markbad; 467 slave->mtd._erase = part_erase; 468 slave->master = master; 469 slave->offset = part->offset; 470 471 if (slave->offset == MTDPART_OFS_APPEND) 472 slave->offset = cur_offset; 473 if (slave->offset == MTDPART_OFS_NXTBLK) { 474 slave->offset = cur_offset; 475 if (mtd_mod_by_eb(cur_offset, master) != 0) { 476 /* Round up to next erasesize */ 477 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 478 debug("Moving partition %d: " 479 "0x%012llx -> 0x%012llx\n", partno, 480 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 481 } 482 } 483 if (slave->offset == MTDPART_OFS_RETAIN) { 484 slave->offset = cur_offset; 485 if (master->size - slave->offset >= slave->mtd.size) { 486 slave->mtd.size = master->size - slave->offset 487 - slave->mtd.size; 488 } else { 489 debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 490 part->name, master->size - slave->offset, 491 slave->mtd.size); 492 /* register to preserve ordering */ 493 goto out_register; 494 } 495 } 496 if (slave->mtd.size == MTDPART_SIZ_FULL) 497 slave->mtd.size = master->size - slave->offset; 498 499 debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 500 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 501 502 /* let's do some sanity checks */ 503 if (slave->offset >= master->size) { 504 /* let's register it anyway to preserve ordering */ 505 slave->offset = 0; 506 slave->mtd.size = 0; 507 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 508 part->name); 509 goto out_register; 510 } 511 if (slave->offset + slave->mtd.size > master->size) { 512 slave->mtd.size = master->size - slave->offset; 513 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 514 part->name, master->name, (unsigned long long)slave->mtd.size); 515 } 516 if (master->numeraseregions > 1) { 517 /* Deal with variable erase size stuff */ 518 int i, max = master->numeraseregions; 519 u64 end = slave->offset + slave->mtd.size; 520 struct mtd_erase_region_info *regions = master->eraseregions; 521 522 /* Find the first erase regions which is part of this 523 * partition. */ 524 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 525 ; 526 /* The loop searched for the region _behind_ the first one */ 527 if (i > 0) 528 i--; 529 530 /* Pick biggest erasesize */ 531 for (; i < max && regions[i].offset < end; i++) { 532 if (slave->mtd.erasesize < regions[i].erasesize) { 533 slave->mtd.erasesize = regions[i].erasesize; 534 } 535 } 536 BUG_ON(slave->mtd.erasesize == 0); 537 } else { 538 /* Single erase size */ 539 slave->mtd.erasesize = master->erasesize; 540 } 541 542 if ((slave->mtd.flags & MTD_WRITEABLE) && 543 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 544 /* Doesn't start on a boundary of major erase size */ 545 /* FIXME: Let it be writable if it is on a boundary of 546 * _minor_ erase size though */ 547 slave->mtd.flags &= ~MTD_WRITEABLE; 548 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 549 part->name); 550 } 551 if ((slave->mtd.flags & MTD_WRITEABLE) && 552 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 553 slave->mtd.flags &= ~MTD_WRITEABLE; 554 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 555 part->name); 556 } 557 558 slave->mtd.ecclayout = master->ecclayout; 559 slave->mtd.ecc_step_size = master->ecc_step_size; 560 slave->mtd.ecc_strength = master->ecc_strength; 561 slave->mtd.bitflip_threshold = master->bitflip_threshold; 562 563 if (master->_block_isbad) { 564 uint64_t offs = 0; 565 566 while (offs < slave->mtd.size) { 567 if (mtd_block_isbad(master, offs + slave->offset)) 568 slave->mtd.ecc_stats.badblocks++; 569 offs += slave->mtd.erasesize; 570 } 571 } 572 573 out_register: 574 return slave; 575 } 576 577 #ifndef __UBOOT__ 578 int mtd_add_partition(struct mtd_info *master, const char *name, 579 long long offset, long long length) 580 { 581 struct mtd_partition part; 582 struct mtd_part *p, *new; 583 uint64_t start, end; 584 int ret = 0; 585 586 /* the direct offset is expected */ 587 if (offset == MTDPART_OFS_APPEND || 588 offset == MTDPART_OFS_NXTBLK) 589 return -EINVAL; 590 591 if (length == MTDPART_SIZ_FULL) 592 length = master->size - offset; 593 594 if (length <= 0) 595 return -EINVAL; 596 597 part.name = name; 598 part.size = length; 599 part.offset = offset; 600 part.mask_flags = 0; 601 part.ecclayout = NULL; 602 603 new = allocate_partition(master, &part, -1, offset); 604 if (IS_ERR(new)) 605 return PTR_ERR(new); 606 607 start = offset; 608 end = offset + length; 609 610 mutex_lock(&mtd_partitions_mutex); 611 list_for_each_entry(p, &mtd_partitions, list) 612 if (p->master == master) { 613 if ((start >= p->offset) && 614 (start < (p->offset + p->mtd.size))) 615 goto err_inv; 616 617 if ((end >= p->offset) && 618 (end < (p->offset + p->mtd.size))) 619 goto err_inv; 620 } 621 622 list_add(&new->list, &mtd_partitions); 623 mutex_unlock(&mtd_partitions_mutex); 624 625 add_mtd_device(&new->mtd); 626 627 return ret; 628 err_inv: 629 mutex_unlock(&mtd_partitions_mutex); 630 free_partition(new); 631 return -EINVAL; 632 } 633 EXPORT_SYMBOL_GPL(mtd_add_partition); 634 635 int mtd_del_partition(struct mtd_info *master, int partno) 636 { 637 struct mtd_part *slave, *next; 638 int ret = -EINVAL; 639 640 mutex_lock(&mtd_partitions_mutex); 641 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 642 if ((slave->master == master) && 643 (slave->mtd.index == partno)) { 644 ret = del_mtd_device(&slave->mtd); 645 if (ret < 0) 646 break; 647 648 list_del(&slave->list); 649 free_partition(slave); 650 break; 651 } 652 mutex_unlock(&mtd_partitions_mutex); 653 654 return ret; 655 } 656 EXPORT_SYMBOL_GPL(mtd_del_partition); 657 #endif 658 659 /* 660 * This function, given a master MTD object and a partition table, creates 661 * and registers slave MTD objects which are bound to the master according to 662 * the partition definitions. 663 * 664 * We don't register the master, or expect the caller to have done so, 665 * for reasons of data integrity. 666 */ 667 668 int add_mtd_partitions(struct mtd_info *master, 669 const struct mtd_partition *parts, 670 int nbparts) 671 { 672 struct mtd_part *slave; 673 uint64_t cur_offset = 0; 674 int i; 675 676 #ifdef __UBOOT__ 677 /* 678 * Need to init the list here, since LIST_INIT() does not 679 * work on platforms where relocation has problems (like MIPS 680 * & PPC). 681 */ 682 if (mtd_partitions.next == NULL) 683 INIT_LIST_HEAD(&mtd_partitions); 684 #endif 685 686 debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 687 688 for (i = 0; i < nbparts; i++) { 689 slave = allocate_partition(master, parts + i, i, cur_offset); 690 if (IS_ERR(slave)) 691 return PTR_ERR(slave); 692 693 mutex_lock(&mtd_partitions_mutex); 694 list_add(&slave->list, &mtd_partitions); 695 mutex_unlock(&mtd_partitions_mutex); 696 697 add_mtd_device(&slave->mtd); 698 699 cur_offset = slave->offset + slave->mtd.size; 700 } 701 702 return 0; 703 } 704 705 #ifndef __UBOOT__ 706 static DEFINE_SPINLOCK(part_parser_lock); 707 static LIST_HEAD(part_parsers); 708 709 static struct mtd_part_parser *get_partition_parser(const char *name) 710 { 711 struct mtd_part_parser *p, *ret = NULL; 712 713 spin_lock(&part_parser_lock); 714 715 list_for_each_entry(p, &part_parsers, list) 716 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 717 ret = p; 718 break; 719 } 720 721 spin_unlock(&part_parser_lock); 722 723 return ret; 724 } 725 726 #define put_partition_parser(p) do { module_put((p)->owner); } while (0) 727 728 void register_mtd_parser(struct mtd_part_parser *p) 729 { 730 spin_lock(&part_parser_lock); 731 list_add(&p->list, &part_parsers); 732 spin_unlock(&part_parser_lock); 733 } 734 EXPORT_SYMBOL_GPL(register_mtd_parser); 735 736 void deregister_mtd_parser(struct mtd_part_parser *p) 737 { 738 spin_lock(&part_parser_lock); 739 list_del(&p->list); 740 spin_unlock(&part_parser_lock); 741 } 742 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 743 744 /* 745 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 746 * are changing this array! 747 */ 748 static const char * const default_mtd_part_types[] = { 749 "cmdlinepart", 750 "ofpart", 751 NULL 752 }; 753 754 /** 755 * parse_mtd_partitions - parse MTD partitions 756 * @master: the master partition (describes whole MTD device) 757 * @types: names of partition parsers to try or %NULL 758 * @pparts: array of partitions found is returned here 759 * @data: MTD partition parser-specific data 760 * 761 * This function tries to find partition on MTD device @master. It uses MTD 762 * partition parsers, specified in @types. However, if @types is %NULL, then 763 * the default list of parsers is used. The default list contains only the 764 * "cmdlinepart" and "ofpart" parsers ATM. 765 * Note: If there are more then one parser in @types, the kernel only takes the 766 * partitions parsed out by the first parser. 767 * 768 * This function may return: 769 * o a negative error code in case of failure 770 * o zero if no partitions were found 771 * o a positive number of found partitions, in which case on exit @pparts will 772 * point to an array containing this number of &struct mtd_info objects. 773 */ 774 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 775 struct mtd_partition **pparts, 776 struct mtd_part_parser_data *data) 777 { 778 struct mtd_part_parser *parser; 779 int ret = 0; 780 781 if (!types) 782 types = default_mtd_part_types; 783 784 for ( ; ret <= 0 && *types; types++) { 785 parser = get_partition_parser(*types); 786 if (!parser && !request_module("%s", *types)) 787 parser = get_partition_parser(*types); 788 if (!parser) 789 continue; 790 ret = (*parser->parse_fn)(master, pparts, data); 791 put_partition_parser(parser); 792 if (ret > 0) { 793 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 794 ret, parser->name, master->name); 795 break; 796 } 797 } 798 return ret; 799 } 800 #endif 801 802 int mtd_is_partition(const struct mtd_info *mtd) 803 { 804 struct mtd_part *part; 805 int ispart = 0; 806 807 mutex_lock(&mtd_partitions_mutex); 808 list_for_each_entry(part, &mtd_partitions, list) 809 if (&part->mtd == mtd) { 810 ispart = 1; 811 break; 812 } 813 mutex_unlock(&mtd_partitions_mutex); 814 815 return ispart; 816 } 817 EXPORT_SYMBOL_GPL(mtd_is_partition); 818 819 /* Returns the size of the entire flash chip */ 820 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 821 { 822 if (!mtd_is_partition(mtd)) 823 return mtd->size; 824 825 return PART(mtd)->master->size; 826 } 827 EXPORT_SYMBOL_GPL(mtd_get_device_size); 828