1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Simple MTD partitioning layer 4 * 5 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 6 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 7 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 8 * 9 */ 10 11 #ifndef __UBOOT__ 12 #include <linux/module.h> 13 #include <linux/types.h> 14 #include <linux/kernel.h> 15 #include <linux/slab.h> 16 #include <linux/list.h> 17 #include <linux/kmod.h> 18 #endif 19 20 #include <common.h> 21 #include <malloc.h> 22 #include <linux/errno.h> 23 #include <linux/compat.h> 24 #include <ubi_uboot.h> 25 26 #include <linux/mtd/mtd.h> 27 #include <linux/mtd/partitions.h> 28 #include <linux/err.h> 29 30 #include "mtdcore.h" 31 32 /* Our partition linked list */ 33 static LIST_HEAD(mtd_partitions); 34 #ifndef __UBOOT__ 35 static DEFINE_MUTEX(mtd_partitions_mutex); 36 #else 37 DEFINE_MUTEX(mtd_partitions_mutex); 38 #endif 39 40 /* Our partition node structure */ 41 struct mtd_part { 42 struct mtd_info mtd; 43 struct mtd_info *master; 44 uint64_t offset; 45 struct list_head list; 46 }; 47 48 /* 49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 50 * the pointer to that structure with this macro. 51 */ 52 #define PART(x) ((struct mtd_part *)(x)) 53 54 55 #ifdef __UBOOT__ 56 /* from mm/util.c */ 57 58 /** 59 * kstrdup - allocate space for and copy an existing string 60 * @s: the string to duplicate 61 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 62 */ 63 char *kstrdup(const char *s, gfp_t gfp) 64 { 65 size_t len; 66 char *buf; 67 68 if (!s) 69 return NULL; 70 71 len = strlen(s) + 1; 72 buf = kmalloc(len, gfp); 73 if (buf) 74 memcpy(buf, s, len); 75 return buf; 76 } 77 #endif 78 79 /* 80 * MTD methods which simply translate the effective address and pass through 81 * to the _real_ device. 82 */ 83 84 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 85 size_t *retlen, u_char *buf) 86 { 87 struct mtd_part *part = PART(mtd); 88 struct mtd_ecc_stats stats; 89 int res; 90 91 stats = part->master->ecc_stats; 92 res = part->master->_read(part->master, from + part->offset, len, 93 retlen, buf); 94 if (unlikely(mtd_is_eccerr(res))) 95 mtd->ecc_stats.failed += 96 part->master->ecc_stats.failed - stats.failed; 97 else 98 mtd->ecc_stats.corrected += 99 part->master->ecc_stats.corrected - stats.corrected; 100 return res; 101 } 102 103 #ifndef __UBOOT__ 104 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 105 size_t *retlen, void **virt, resource_size_t *phys) 106 { 107 struct mtd_part *part = PART(mtd); 108 109 return part->master->_point(part->master, from + part->offset, len, 110 retlen, virt, phys); 111 } 112 113 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 114 { 115 struct mtd_part *part = PART(mtd); 116 117 return part->master->_unpoint(part->master, from + part->offset, len); 118 } 119 #endif 120 121 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 122 unsigned long len, 123 unsigned long offset, 124 unsigned long flags) 125 { 126 struct mtd_part *part = PART(mtd); 127 128 offset += part->offset; 129 return part->master->_get_unmapped_area(part->master, len, offset, 130 flags); 131 } 132 133 static int part_read_oob(struct mtd_info *mtd, loff_t from, 134 struct mtd_oob_ops *ops) 135 { 136 struct mtd_part *part = PART(mtd); 137 int res; 138 139 if (from >= mtd->size) 140 return -EINVAL; 141 if (ops->datbuf && from + ops->len > mtd->size) 142 return -EINVAL; 143 144 /* 145 * If OOB is also requested, make sure that we do not read past the end 146 * of this partition. 147 */ 148 if (ops->oobbuf) { 149 size_t len, pages; 150 151 if (ops->mode == MTD_OPS_AUTO_OOB) 152 len = mtd->oobavail; 153 else 154 len = mtd->oobsize; 155 pages = mtd_div_by_ws(mtd->size, mtd); 156 pages -= mtd_div_by_ws(from, mtd); 157 if (ops->ooboffs + ops->ooblen > pages * len) 158 return -EINVAL; 159 } 160 161 res = part->master->_read_oob(part->master, from + part->offset, ops); 162 if (unlikely(res)) { 163 if (mtd_is_bitflip(res)) 164 mtd->ecc_stats.corrected++; 165 if (mtd_is_eccerr(res)) 166 mtd->ecc_stats.failed++; 167 } 168 return res; 169 } 170 171 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 172 size_t len, size_t *retlen, u_char *buf) 173 { 174 struct mtd_part *part = PART(mtd); 175 return part->master->_read_user_prot_reg(part->master, from, len, 176 retlen, buf); 177 } 178 179 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, 180 size_t *retlen, struct otp_info *buf) 181 { 182 struct mtd_part *part = PART(mtd); 183 return part->master->_get_user_prot_info(part->master, len, retlen, 184 buf); 185 } 186 187 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 188 size_t len, size_t *retlen, u_char *buf) 189 { 190 struct mtd_part *part = PART(mtd); 191 return part->master->_read_fact_prot_reg(part->master, from, len, 192 retlen, buf); 193 } 194 195 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, 196 size_t *retlen, struct otp_info *buf) 197 { 198 struct mtd_part *part = PART(mtd); 199 return part->master->_get_fact_prot_info(part->master, len, retlen, 200 buf); 201 } 202 203 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 204 size_t *retlen, const u_char *buf) 205 { 206 struct mtd_part *part = PART(mtd); 207 return part->master->_write(part->master, to + part->offset, len, 208 retlen, buf); 209 } 210 211 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 212 size_t *retlen, const u_char *buf) 213 { 214 struct mtd_part *part = PART(mtd); 215 return part->master->_panic_write(part->master, to + part->offset, len, 216 retlen, buf); 217 } 218 219 static int part_write_oob(struct mtd_info *mtd, loff_t to, 220 struct mtd_oob_ops *ops) 221 { 222 struct mtd_part *part = PART(mtd); 223 224 if (to >= mtd->size) 225 return -EINVAL; 226 if (ops->datbuf && to + ops->len > mtd->size) 227 return -EINVAL; 228 return part->master->_write_oob(part->master, to + part->offset, ops); 229 } 230 231 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 232 size_t len, size_t *retlen, u_char *buf) 233 { 234 struct mtd_part *part = PART(mtd); 235 return part->master->_write_user_prot_reg(part->master, from, len, 236 retlen, buf); 237 } 238 239 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 240 size_t len) 241 { 242 struct mtd_part *part = PART(mtd); 243 return part->master->_lock_user_prot_reg(part->master, from, len); 244 } 245 246 #ifndef __UBOOT__ 247 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 248 unsigned long count, loff_t to, size_t *retlen) 249 { 250 struct mtd_part *part = PART(mtd); 251 return part->master->_writev(part->master, vecs, count, 252 to + part->offset, retlen); 253 } 254 #endif 255 256 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 257 { 258 struct mtd_part *part = PART(mtd); 259 int ret; 260 261 instr->addr += part->offset; 262 ret = part->master->_erase(part->master, instr); 263 if (ret) { 264 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 265 instr->fail_addr -= part->offset; 266 instr->addr -= part->offset; 267 } 268 return ret; 269 } 270 271 void mtd_erase_callback(struct erase_info *instr) 272 { 273 if (instr->mtd->_erase == part_erase) { 274 struct mtd_part *part = PART(instr->mtd); 275 276 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 277 instr->fail_addr -= part->offset; 278 instr->addr -= part->offset; 279 } 280 if (instr->callback) 281 instr->callback(instr); 282 } 283 EXPORT_SYMBOL_GPL(mtd_erase_callback); 284 285 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 286 { 287 struct mtd_part *part = PART(mtd); 288 return part->master->_lock(part->master, ofs + part->offset, len); 289 } 290 291 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 292 { 293 struct mtd_part *part = PART(mtd); 294 return part->master->_unlock(part->master, ofs + part->offset, len); 295 } 296 297 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 298 { 299 struct mtd_part *part = PART(mtd); 300 return part->master->_is_locked(part->master, ofs + part->offset, len); 301 } 302 303 static void part_sync(struct mtd_info *mtd) 304 { 305 struct mtd_part *part = PART(mtd); 306 part->master->_sync(part->master); 307 } 308 309 #ifndef __UBOOT__ 310 static int part_suspend(struct mtd_info *mtd) 311 { 312 struct mtd_part *part = PART(mtd); 313 return part->master->_suspend(part->master); 314 } 315 316 static void part_resume(struct mtd_info *mtd) 317 { 318 struct mtd_part *part = PART(mtd); 319 part->master->_resume(part->master); 320 } 321 #endif 322 323 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) 324 { 325 struct mtd_part *part = PART(mtd); 326 ofs += part->offset; 327 return part->master->_block_isreserved(part->master, ofs); 328 } 329 330 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 331 { 332 struct mtd_part *part = PART(mtd); 333 ofs += part->offset; 334 return part->master->_block_isbad(part->master, ofs); 335 } 336 337 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 338 { 339 struct mtd_part *part = PART(mtd); 340 int res; 341 342 ofs += part->offset; 343 res = part->master->_block_markbad(part->master, ofs); 344 if (!res) 345 mtd->ecc_stats.badblocks++; 346 return res; 347 } 348 349 static inline void free_partition(struct mtd_part *p) 350 { 351 kfree(p->mtd.name); 352 kfree(p); 353 } 354 355 /* 356 * This function unregisters and destroy all slave MTD objects which are 357 * attached to the given master MTD object. 358 */ 359 360 int del_mtd_partitions(struct mtd_info *master) 361 { 362 struct mtd_part *slave, *next; 363 int ret, err = 0; 364 365 mutex_lock(&mtd_partitions_mutex); 366 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 367 if (slave->master == master) { 368 ret = del_mtd_device(&slave->mtd); 369 if (ret < 0) { 370 err = ret; 371 continue; 372 } 373 list_del(&slave->list); 374 free_partition(slave); 375 } 376 mutex_unlock(&mtd_partitions_mutex); 377 378 return err; 379 } 380 381 static struct mtd_part *allocate_partition(struct mtd_info *master, 382 const struct mtd_partition *part, int partno, 383 uint64_t cur_offset) 384 { 385 struct mtd_part *slave; 386 char *name; 387 388 /* allocate the partition structure */ 389 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 390 name = kstrdup(part->name, GFP_KERNEL); 391 if (!name || !slave) { 392 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 393 master->name); 394 kfree(name); 395 kfree(slave); 396 return ERR_PTR(-ENOMEM); 397 } 398 399 /* set up the MTD object for this partition */ 400 slave->mtd.type = master->type; 401 slave->mtd.flags = master->flags & ~part->mask_flags; 402 slave->mtd.size = part->size; 403 slave->mtd.writesize = master->writesize; 404 slave->mtd.writebufsize = master->writebufsize; 405 slave->mtd.oobsize = master->oobsize; 406 slave->mtd.oobavail = master->oobavail; 407 slave->mtd.subpage_sft = master->subpage_sft; 408 409 slave->mtd.name = name; 410 slave->mtd.owner = master->owner; 411 #ifndef __UBOOT__ 412 slave->mtd.backing_dev_info = master->backing_dev_info; 413 414 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone 415 * to have the same data be in two different partitions. 416 */ 417 slave->mtd.dev.parent = master->dev.parent; 418 #endif 419 420 if (master->_read) 421 slave->mtd._read = part_read; 422 if (master->_write) 423 slave->mtd._write = part_write; 424 425 if (master->_panic_write) 426 slave->mtd._panic_write = part_panic_write; 427 428 #ifndef __UBOOT__ 429 if (master->_point && master->_unpoint) { 430 slave->mtd._point = part_point; 431 slave->mtd._unpoint = part_unpoint; 432 } 433 #endif 434 435 if (master->_get_unmapped_area) 436 slave->mtd._get_unmapped_area = part_get_unmapped_area; 437 if (master->_read_oob) 438 slave->mtd._read_oob = part_read_oob; 439 if (master->_write_oob) 440 slave->mtd._write_oob = part_write_oob; 441 if (master->_read_user_prot_reg) 442 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 443 if (master->_read_fact_prot_reg) 444 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 445 if (master->_write_user_prot_reg) 446 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 447 if (master->_lock_user_prot_reg) 448 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 449 if (master->_get_user_prot_info) 450 slave->mtd._get_user_prot_info = part_get_user_prot_info; 451 if (master->_get_fact_prot_info) 452 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 453 if (master->_sync) 454 slave->mtd._sync = part_sync; 455 #ifndef __UBOOT__ 456 if (!partno && !master->dev.class && master->_suspend && 457 master->_resume) { 458 slave->mtd._suspend = part_suspend; 459 slave->mtd._resume = part_resume; 460 } 461 if (master->_writev) 462 slave->mtd._writev = part_writev; 463 #endif 464 if (master->_lock) 465 slave->mtd._lock = part_lock; 466 if (master->_unlock) 467 slave->mtd._unlock = part_unlock; 468 if (master->_is_locked) 469 slave->mtd._is_locked = part_is_locked; 470 if (master->_block_isreserved) 471 slave->mtd._block_isreserved = part_block_isreserved; 472 if (master->_block_isbad) 473 slave->mtd._block_isbad = part_block_isbad; 474 if (master->_block_markbad) 475 slave->mtd._block_markbad = part_block_markbad; 476 slave->mtd._erase = part_erase; 477 slave->master = master; 478 slave->offset = part->offset; 479 480 if (slave->offset == MTDPART_OFS_APPEND) 481 slave->offset = cur_offset; 482 if (slave->offset == MTDPART_OFS_NXTBLK) { 483 slave->offset = cur_offset; 484 if (mtd_mod_by_eb(cur_offset, master) != 0) { 485 /* Round up to next erasesize */ 486 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 487 debug("Moving partition %d: " 488 "0x%012llx -> 0x%012llx\n", partno, 489 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 490 } 491 } 492 if (slave->offset == MTDPART_OFS_RETAIN) { 493 slave->offset = cur_offset; 494 if (master->size - slave->offset >= slave->mtd.size) { 495 slave->mtd.size = master->size - slave->offset 496 - slave->mtd.size; 497 } else { 498 debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 499 part->name, master->size - slave->offset, 500 slave->mtd.size); 501 /* register to preserve ordering */ 502 goto out_register; 503 } 504 } 505 if (slave->mtd.size == MTDPART_SIZ_FULL) 506 slave->mtd.size = master->size - slave->offset; 507 508 debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 509 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 510 511 /* let's do some sanity checks */ 512 if (slave->offset >= master->size) { 513 /* let's register it anyway to preserve ordering */ 514 slave->offset = 0; 515 slave->mtd.size = 0; 516 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 517 part->name); 518 goto out_register; 519 } 520 if (slave->offset + slave->mtd.size > master->size) { 521 slave->mtd.size = master->size - slave->offset; 522 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 523 part->name, master->name, (unsigned long long)slave->mtd.size); 524 } 525 if (master->numeraseregions > 1) { 526 /* Deal with variable erase size stuff */ 527 int i, max = master->numeraseregions; 528 u64 end = slave->offset + slave->mtd.size; 529 struct mtd_erase_region_info *regions = master->eraseregions; 530 531 /* Find the first erase regions which is part of this 532 * partition. */ 533 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 534 ; 535 /* The loop searched for the region _behind_ the first one */ 536 if (i > 0) 537 i--; 538 539 /* Pick biggest erasesize */ 540 for (; i < max && regions[i].offset < end; i++) { 541 if (slave->mtd.erasesize < regions[i].erasesize) { 542 slave->mtd.erasesize = regions[i].erasesize; 543 } 544 } 545 BUG_ON(slave->mtd.erasesize == 0); 546 } else { 547 /* Single erase size */ 548 slave->mtd.erasesize = master->erasesize; 549 } 550 551 if ((slave->mtd.flags & MTD_WRITEABLE) && 552 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 553 /* Doesn't start on a boundary of major erase size */ 554 /* FIXME: Let it be writable if it is on a boundary of 555 * _minor_ erase size though */ 556 slave->mtd.flags &= ~MTD_WRITEABLE; 557 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 558 part->name); 559 } 560 if ((slave->mtd.flags & MTD_WRITEABLE) && 561 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 562 slave->mtd.flags &= ~MTD_WRITEABLE; 563 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 564 part->name); 565 } 566 567 slave->mtd.ecclayout = master->ecclayout; 568 slave->mtd.ecc_step_size = master->ecc_step_size; 569 slave->mtd.ecc_strength = master->ecc_strength; 570 slave->mtd.bitflip_threshold = master->bitflip_threshold; 571 572 if (master->_block_isbad) { 573 uint64_t offs = 0; 574 575 while (offs < slave->mtd.size) { 576 if (mtd_block_isbad(master, offs + slave->offset)) 577 slave->mtd.ecc_stats.badblocks++; 578 offs += slave->mtd.erasesize; 579 } 580 } 581 582 out_register: 583 return slave; 584 } 585 586 #ifndef __UBOOT__ 587 int mtd_add_partition(struct mtd_info *master, const char *name, 588 long long offset, long long length) 589 { 590 struct mtd_partition part; 591 struct mtd_part *p, *new; 592 uint64_t start, end; 593 int ret = 0; 594 595 /* the direct offset is expected */ 596 if (offset == MTDPART_OFS_APPEND || 597 offset == MTDPART_OFS_NXTBLK) 598 return -EINVAL; 599 600 if (length == MTDPART_SIZ_FULL) 601 length = master->size - offset; 602 603 if (length <= 0) 604 return -EINVAL; 605 606 part.name = name; 607 part.size = length; 608 part.offset = offset; 609 part.mask_flags = 0; 610 part.ecclayout = NULL; 611 612 new = allocate_partition(master, &part, -1, offset); 613 if (IS_ERR(new)) 614 return PTR_ERR(new); 615 616 start = offset; 617 end = offset + length; 618 619 mutex_lock(&mtd_partitions_mutex); 620 list_for_each_entry(p, &mtd_partitions, list) 621 if (p->master == master) { 622 if ((start >= p->offset) && 623 (start < (p->offset + p->mtd.size))) 624 goto err_inv; 625 626 if ((end >= p->offset) && 627 (end < (p->offset + p->mtd.size))) 628 goto err_inv; 629 } 630 631 list_add(&new->list, &mtd_partitions); 632 mutex_unlock(&mtd_partitions_mutex); 633 634 add_mtd_device(&new->mtd); 635 636 return ret; 637 err_inv: 638 mutex_unlock(&mtd_partitions_mutex); 639 free_partition(new); 640 return -EINVAL; 641 } 642 EXPORT_SYMBOL_GPL(mtd_add_partition); 643 644 int mtd_del_partition(struct mtd_info *master, int partno) 645 { 646 struct mtd_part *slave, *next; 647 int ret = -EINVAL; 648 649 mutex_lock(&mtd_partitions_mutex); 650 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 651 if ((slave->master == master) && 652 (slave->mtd.index == partno)) { 653 ret = del_mtd_device(&slave->mtd); 654 if (ret < 0) 655 break; 656 657 list_del(&slave->list); 658 free_partition(slave); 659 break; 660 } 661 mutex_unlock(&mtd_partitions_mutex); 662 663 return ret; 664 } 665 EXPORT_SYMBOL_GPL(mtd_del_partition); 666 #endif 667 668 /* 669 * This function, given a master MTD object and a partition table, creates 670 * and registers slave MTD objects which are bound to the master according to 671 * the partition definitions. 672 * 673 * We don't register the master, or expect the caller to have done so, 674 * for reasons of data integrity. 675 */ 676 677 int add_mtd_partitions(struct mtd_info *master, 678 const struct mtd_partition *parts, 679 int nbparts) 680 { 681 struct mtd_part *slave; 682 uint64_t cur_offset = 0; 683 int i; 684 685 #ifdef __UBOOT__ 686 /* 687 * Need to init the list here, since LIST_INIT() does not 688 * work on platforms where relocation has problems (like MIPS 689 * & PPC). 690 */ 691 if (mtd_partitions.next == NULL) 692 INIT_LIST_HEAD(&mtd_partitions); 693 #endif 694 695 debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 696 697 for (i = 0; i < nbparts; i++) { 698 slave = allocate_partition(master, parts + i, i, cur_offset); 699 if (IS_ERR(slave)) 700 return PTR_ERR(slave); 701 702 mutex_lock(&mtd_partitions_mutex); 703 list_add(&slave->list, &mtd_partitions); 704 mutex_unlock(&mtd_partitions_mutex); 705 706 add_mtd_device(&slave->mtd); 707 708 cur_offset = slave->offset + slave->mtd.size; 709 } 710 711 return 0; 712 } 713 714 #ifndef __UBOOT__ 715 static DEFINE_SPINLOCK(part_parser_lock); 716 static LIST_HEAD(part_parsers); 717 718 static struct mtd_part_parser *get_partition_parser(const char *name) 719 { 720 struct mtd_part_parser *p, *ret = NULL; 721 722 spin_lock(&part_parser_lock); 723 724 list_for_each_entry(p, &part_parsers, list) 725 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 726 ret = p; 727 break; 728 } 729 730 spin_unlock(&part_parser_lock); 731 732 return ret; 733 } 734 735 #define put_partition_parser(p) do { module_put((p)->owner); } while (0) 736 737 void register_mtd_parser(struct mtd_part_parser *p) 738 { 739 spin_lock(&part_parser_lock); 740 list_add(&p->list, &part_parsers); 741 spin_unlock(&part_parser_lock); 742 } 743 EXPORT_SYMBOL_GPL(register_mtd_parser); 744 745 void deregister_mtd_parser(struct mtd_part_parser *p) 746 { 747 spin_lock(&part_parser_lock); 748 list_del(&p->list); 749 spin_unlock(&part_parser_lock); 750 } 751 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 752 753 /* 754 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 755 * are changing this array! 756 */ 757 static const char * const default_mtd_part_types[] = { 758 "cmdlinepart", 759 "ofpart", 760 NULL 761 }; 762 763 /** 764 * parse_mtd_partitions - parse MTD partitions 765 * @master: the master partition (describes whole MTD device) 766 * @types: names of partition parsers to try or %NULL 767 * @pparts: array of partitions found is returned here 768 * @data: MTD partition parser-specific data 769 * 770 * This function tries to find partition on MTD device @master. It uses MTD 771 * partition parsers, specified in @types. However, if @types is %NULL, then 772 * the default list of parsers is used. The default list contains only the 773 * "cmdlinepart" and "ofpart" parsers ATM. 774 * Note: If there are more then one parser in @types, the kernel only takes the 775 * partitions parsed out by the first parser. 776 * 777 * This function may return: 778 * o a negative error code in case of failure 779 * o zero if no partitions were found 780 * o a positive number of found partitions, in which case on exit @pparts will 781 * point to an array containing this number of &struct mtd_info objects. 782 */ 783 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 784 struct mtd_partition **pparts, 785 struct mtd_part_parser_data *data) 786 { 787 struct mtd_part_parser *parser; 788 int ret = 0; 789 790 if (!types) 791 types = default_mtd_part_types; 792 793 for ( ; ret <= 0 && *types; types++) { 794 parser = get_partition_parser(*types); 795 if (!parser && !request_module("%s", *types)) 796 parser = get_partition_parser(*types); 797 if (!parser) 798 continue; 799 ret = (*parser->parse_fn)(master, pparts, data); 800 put_partition_parser(parser); 801 if (ret > 0) { 802 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 803 ret, parser->name, master->name); 804 break; 805 } 806 } 807 return ret; 808 } 809 #endif 810 811 int mtd_is_partition(const struct mtd_info *mtd) 812 { 813 struct mtd_part *part; 814 int ispart = 0; 815 816 mutex_lock(&mtd_partitions_mutex); 817 list_for_each_entry(part, &mtd_partitions, list) 818 if (&part->mtd == mtd) { 819 ispart = 1; 820 break; 821 } 822 mutex_unlock(&mtd_partitions_mutex); 823 824 return ispart; 825 } 826 EXPORT_SYMBOL_GPL(mtd_is_partition); 827 828 /* Returns the size of the entire flash chip */ 829 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 830 { 831 if (!mtd_is_partition(mtd)) 832 return mtd->size; 833 834 return PART(mtd)->master->size; 835 } 836 EXPORT_SYMBOL_GPL(mtd_get_device_size); 837