xref: /openbmc/u-boot/drivers/mtd/mtdpart.c (revision a4145534)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * (C) 2000 Nicolas Pitre <nico@cam.org>
5  *
6  * This code is GPL
7  *
8  * 	02-21-2002	Thomas Gleixner <gleixner@autronix.de>
9  *			added support for read_oob, write_oob
10  */
11 
12 #include <common.h>
13 #include <malloc.h>
14 #include <asm/errno.h>
15 
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/mtd/compat.h>
21 
22 /* Our partition linked list */
23 struct list_head mtd_partitions;
24 
25 /* Our partition node structure */
26 struct mtd_part {
27 	struct mtd_info mtd;
28 	struct mtd_info *master;
29 	uint64_t offset;
30 	int index;
31 	struct list_head list;
32 	int registered;
33 };
34 
35 /*
36  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
37  * the pointer to that structure with this macro.
38  */
39 #define PART(x)  ((struct mtd_part *)(x))
40 
41 
42 /*
43  * MTD methods which simply translate the effective address and pass through
44  * to the _real_ device.
45  */
46 
47 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
48 		size_t *retlen, u_char *buf)
49 {
50 	struct mtd_part *part = PART(mtd);
51 	struct mtd_ecc_stats stats;
52 	int res;
53 
54 	stats = part->master->ecc_stats;
55 
56 	if (from >= mtd->size)
57 		len = 0;
58 	else if (from + len > mtd->size)
59 		len = mtd->size - from;
60 	res = part->master->read(part->master, from + part->offset,
61 				   len, retlen, buf);
62 	if (unlikely(res)) {
63 		if (res == -EUCLEAN)
64 			mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
65 		if (res == -EBADMSG)
66 			mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
67 	}
68 	return res;
69 }
70 
71 static int part_read_oob(struct mtd_info *mtd, loff_t from,
72 		struct mtd_oob_ops *ops)
73 {
74 	struct mtd_part *part = PART(mtd);
75 	int res;
76 
77 	if (from >= mtd->size)
78 		return -EINVAL;
79 	if (ops->datbuf && from + ops->len > mtd->size)
80 		return -EINVAL;
81 	res = part->master->read_oob(part->master, from + part->offset, ops);
82 
83 	if (unlikely(res)) {
84 		if (res == -EUCLEAN)
85 			mtd->ecc_stats.corrected++;
86 		if (res == -EBADMSG)
87 			mtd->ecc_stats.failed++;
88 	}
89 	return res;
90 }
91 
92 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
93 		size_t len, size_t *retlen, u_char *buf)
94 {
95 	struct mtd_part *part = PART(mtd);
96 	return part->master->read_user_prot_reg(part->master, from,
97 					len, retlen, buf);
98 }
99 
100 static int part_get_user_prot_info(struct mtd_info *mtd,
101 		struct otp_info *buf, size_t len)
102 {
103 	struct mtd_part *part = PART(mtd);
104 	return part->master->get_user_prot_info(part->master, buf, len);
105 }
106 
107 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
108 		size_t len, size_t *retlen, u_char *buf)
109 {
110 	struct mtd_part *part = PART(mtd);
111 	return part->master->read_fact_prot_reg(part->master, from,
112 					len, retlen, buf);
113 }
114 
115 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
116 		size_t len)
117 {
118 	struct mtd_part *part = PART(mtd);
119 	return part->master->get_fact_prot_info(part->master, buf, len);
120 }
121 
122 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
123 		size_t *retlen, const u_char *buf)
124 {
125 	struct mtd_part *part = PART(mtd);
126 	if (!(mtd->flags & MTD_WRITEABLE))
127 		return -EROFS;
128 	if (to >= mtd->size)
129 		len = 0;
130 	else if (to + len > mtd->size)
131 		len = mtd->size - to;
132 	return part->master->write(part->master, to + part->offset,
133 				    len, retlen, buf);
134 }
135 
136 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
137 		size_t *retlen, const u_char *buf)
138 {
139 	struct mtd_part *part = PART(mtd);
140 	if (!(mtd->flags & MTD_WRITEABLE))
141 		return -EROFS;
142 	if (to >= mtd->size)
143 		len = 0;
144 	else if (to + len > mtd->size)
145 		len = mtd->size - to;
146 	return part->master->panic_write(part->master, to + part->offset,
147 				    len, retlen, buf);
148 }
149 
150 static int part_write_oob(struct mtd_info *mtd, loff_t to,
151 		struct mtd_oob_ops *ops)
152 {
153 	struct mtd_part *part = PART(mtd);
154 
155 	if (!(mtd->flags & MTD_WRITEABLE))
156 		return -EROFS;
157 
158 	if (to >= mtd->size)
159 		return -EINVAL;
160 	if (ops->datbuf && to + ops->len > mtd->size)
161 		return -EINVAL;
162 	return part->master->write_oob(part->master, to + part->offset, ops);
163 }
164 
165 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
166 		size_t len, size_t *retlen, u_char *buf)
167 {
168 	struct mtd_part *part = PART(mtd);
169 	return part->master->write_user_prot_reg(part->master, from,
170 					len, retlen, buf);
171 }
172 
173 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
174 		size_t len)
175 {
176 	struct mtd_part *part = PART(mtd);
177 	return part->master->lock_user_prot_reg(part->master, from, len);
178 }
179 
180 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
181 {
182 	struct mtd_part *part = PART(mtd);
183 	int ret;
184 	if (!(mtd->flags & MTD_WRITEABLE))
185 		return -EROFS;
186 	if (instr->addr >= mtd->size)
187 		return -EINVAL;
188 	instr->addr += part->offset;
189 	ret = part->master->erase(part->master, instr);
190 	if (ret) {
191 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
192 			instr->fail_addr -= part->offset;
193 		instr->addr -= part->offset;
194 	}
195 	return ret;
196 }
197 
198 void mtd_erase_callback(struct erase_info *instr)
199 {
200 	if (instr->mtd->erase == part_erase) {
201 		struct mtd_part *part = PART(instr->mtd);
202 
203 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
204 			instr->fail_addr -= part->offset;
205 		instr->addr -= part->offset;
206 	}
207 	if (instr->callback)
208 		instr->callback(instr);
209 }
210 
211 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
212 {
213 	struct mtd_part *part = PART(mtd);
214 	if ((len + ofs) > mtd->size)
215 		return -EINVAL;
216 	return part->master->lock(part->master, ofs + part->offset, len);
217 }
218 
219 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
220 {
221 	struct mtd_part *part = PART(mtd);
222 	if ((len + ofs) > mtd->size)
223 		return -EINVAL;
224 	return part->master->unlock(part->master, ofs + part->offset, len);
225 }
226 
227 static void part_sync(struct mtd_info *mtd)
228 {
229 	struct mtd_part *part = PART(mtd);
230 	part->master->sync(part->master);
231 }
232 
233 static int part_suspend(struct mtd_info *mtd)
234 {
235 	struct mtd_part *part = PART(mtd);
236 	return part->master->suspend(part->master);
237 }
238 
239 static void part_resume(struct mtd_info *mtd)
240 {
241 	struct mtd_part *part = PART(mtd);
242 	part->master->resume(part->master);
243 }
244 
245 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
246 {
247 	struct mtd_part *part = PART(mtd);
248 	if (ofs >= mtd->size)
249 		return -EINVAL;
250 	ofs += part->offset;
251 	return part->master->block_isbad(part->master, ofs);
252 }
253 
254 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
255 {
256 	struct mtd_part *part = PART(mtd);
257 	int res;
258 
259 	if (!(mtd->flags & MTD_WRITEABLE))
260 		return -EROFS;
261 	if (ofs >= mtd->size)
262 		return -EINVAL;
263 	ofs += part->offset;
264 	res = part->master->block_markbad(part->master, ofs);
265 	if (!res)
266 		mtd->ecc_stats.badblocks++;
267 	return res;
268 }
269 
270 /*
271  * This function unregisters and destroy all slave MTD objects which are
272  * attached to the given master MTD object.
273  */
274 
275 int del_mtd_partitions(struct mtd_info *master)
276 {
277 	struct mtd_part *slave, *next;
278 
279 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
280 		if (slave->master == master) {
281 			list_del(&slave->list);
282 			if (slave->registered)
283 				del_mtd_device(&slave->mtd);
284 			kfree(slave);
285 		}
286 
287 	return 0;
288 }
289 
290 static struct mtd_part *add_one_partition(struct mtd_info *master,
291 		const struct mtd_partition *part, int partno,
292 		uint64_t cur_offset)
293 {
294 	struct mtd_part *slave;
295 
296 	/* allocate the partition structure */
297 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
298 	if (!slave) {
299 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
300 			master->name);
301 		del_mtd_partitions(master);
302 		return NULL;
303 	}
304 	list_add(&slave->list, &mtd_partitions);
305 
306 	/* set up the MTD object for this partition */
307 	slave->mtd.type = master->type;
308 	slave->mtd.flags = master->flags & ~part->mask_flags;
309 	slave->mtd.size = part->size;
310 	slave->mtd.writesize = master->writesize;
311 	slave->mtd.oobsize = master->oobsize;
312 	slave->mtd.oobavail = master->oobavail;
313 	slave->mtd.subpage_sft = master->subpage_sft;
314 
315 	slave->mtd.name = part->name;
316 	slave->mtd.owner = master->owner;
317 
318 	slave->mtd.read = part_read;
319 	slave->mtd.write = part_write;
320 
321 	if (master->panic_write)
322 		slave->mtd.panic_write = part_panic_write;
323 
324 	if (master->read_oob)
325 		slave->mtd.read_oob = part_read_oob;
326 	if (master->write_oob)
327 		slave->mtd.write_oob = part_write_oob;
328 	if (master->read_user_prot_reg)
329 		slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
330 	if (master->read_fact_prot_reg)
331 		slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
332 	if (master->write_user_prot_reg)
333 		slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
334 	if (master->lock_user_prot_reg)
335 		slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
336 	if (master->get_user_prot_info)
337 		slave->mtd.get_user_prot_info = part_get_user_prot_info;
338 	if (master->get_fact_prot_info)
339 		slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
340 	if (master->sync)
341 		slave->mtd.sync = part_sync;
342 	if (!partno && master->suspend && master->resume) {
343 			slave->mtd.suspend = part_suspend;
344 			slave->mtd.resume = part_resume;
345 	}
346 	if (master->lock)
347 		slave->mtd.lock = part_lock;
348 	if (master->unlock)
349 		slave->mtd.unlock = part_unlock;
350 	if (master->block_isbad)
351 		slave->mtd.block_isbad = part_block_isbad;
352 	if (master->block_markbad)
353 		slave->mtd.block_markbad = part_block_markbad;
354 	slave->mtd.erase = part_erase;
355 	slave->master = master;
356 	slave->offset = part->offset;
357 	slave->index = partno;
358 
359 	if (slave->offset == MTDPART_OFS_APPEND)
360 		slave->offset = cur_offset;
361 	if (slave->offset == MTDPART_OFS_NXTBLK) {
362 		slave->offset = cur_offset;
363 		if (mtd_mod_by_eb(cur_offset, master) != 0) {
364 			/* Round up to next erasesize */
365 			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
366 			printk(KERN_NOTICE "Moving partition %d: "
367 			       "0x%012llx -> 0x%012llx\n", partno,
368 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
369 		}
370 	}
371 	if (slave->mtd.size == MTDPART_SIZ_FULL)
372 		slave->mtd.size = master->size - slave->offset;
373 
374 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
375 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
376 
377 	/* let's do some sanity checks */
378 	if (slave->offset >= master->size) {
379 		/* let's register it anyway to preserve ordering */
380 		slave->offset = 0;
381 		slave->mtd.size = 0;
382 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
383 			part->name);
384 		goto out_register;
385 	}
386 	if (slave->offset + slave->mtd.size > master->size) {
387 		slave->mtd.size = master->size - slave->offset;
388 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
389 			part->name, master->name, (unsigned long long)slave->mtd.size);
390 	}
391 	if (master->numeraseregions > 1) {
392 		/* Deal with variable erase size stuff */
393 		int i, max = master->numeraseregions;
394 		u64 end = slave->offset + slave->mtd.size;
395 		struct mtd_erase_region_info *regions = master->eraseregions;
396 
397 		/* Find the first erase regions which is part of this
398 		 * partition. */
399 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
400 			;
401 		/* The loop searched for the region _behind_ the first one */
402 		i--;
403 
404 		/* Pick biggest erasesize */
405 		for (; i < max && regions[i].offset < end; i++) {
406 			if (slave->mtd.erasesize < regions[i].erasesize) {
407 				slave->mtd.erasesize = regions[i].erasesize;
408 			}
409 		}
410 		BUG_ON(slave->mtd.erasesize == 0);
411 	} else {
412 		/* Single erase size */
413 		slave->mtd.erasesize = master->erasesize;
414 	}
415 
416 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
417 	    mtd_mod_by_eb(slave->offset, &slave->mtd)) {
418 		/* Doesn't start on a boundary of major erase size */
419 		/* FIXME: Let it be writable if it is on a boundary of
420 		 * _minor_ erase size though */
421 		slave->mtd.flags &= ~MTD_WRITEABLE;
422 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
423 			part->name);
424 	}
425 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
426 	    mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
427 		slave->mtd.flags &= ~MTD_WRITEABLE;
428 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
429 			part->name);
430 	}
431 
432 	slave->mtd.ecclayout = master->ecclayout;
433 	if (master->block_isbad) {
434 		uint64_t offs = 0;
435 
436 		while (offs < slave->mtd.size) {
437 			if (master->block_isbad(master,
438 						offs + slave->offset))
439 				slave->mtd.ecc_stats.badblocks++;
440 			offs += slave->mtd.erasesize;
441 		}
442 	}
443 
444 out_register:
445 	if (part->mtdp) {
446 		/* store the object pointer (caller may or may not register it*/
447 		*part->mtdp = &slave->mtd;
448 		slave->registered = 0;
449 	} else {
450 		/* register our partition */
451 		add_mtd_device(&slave->mtd);
452 		slave->registered = 1;
453 	}
454 	return slave;
455 }
456 
457 /*
458  * This function, given a master MTD object and a partition table, creates
459  * and registers slave MTD objects which are bound to the master according to
460  * the partition definitions.
461  *
462  * We don't register the master, or expect the caller to have done so,
463  * for reasons of data integrity.
464  */
465 
466 int add_mtd_partitions(struct mtd_info *master,
467 		       const struct mtd_partition *parts,
468 		       int nbparts)
469 {
470 	struct mtd_part *slave;
471 	uint64_t cur_offset = 0;
472 	int i;
473 
474 	/*
475 	 * Need to init the list here, since LIST_INIT() does not
476 	 * work on platforms where relocation has problems (like MIPS
477 	 * & PPC).
478 	 */
479 	if (mtd_partitions.next == NULL)
480 		INIT_LIST_HEAD(&mtd_partitions);
481 
482 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
483 
484 	for (i = 0; i < nbparts; i++) {
485 		slave = add_one_partition(master, parts + i, i, cur_offset);
486 		if (!slave)
487 			return -ENOMEM;
488 		cur_offset = slave->offset + slave->mtd.size;
489 	}
490 
491 	return 0;
492 }
493