1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 * 10 */ 11 12 #ifndef __UBOOT__ 13 #include <linux/module.h> 14 #include <linux/types.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/list.h> 18 #include <linux/kmod.h> 19 #endif 20 21 #include <common.h> 22 #include <malloc.h> 23 #include <linux/errno.h> 24 #include <linux/compat.h> 25 #include <ubi_uboot.h> 26 27 #include <linux/mtd/mtd.h> 28 #include <linux/mtd/partitions.h> 29 #include <linux/err.h> 30 31 #include "mtdcore.h" 32 33 /* Our partition linked list */ 34 static LIST_HEAD(mtd_partitions); 35 #ifndef __UBOOT__ 36 static DEFINE_MUTEX(mtd_partitions_mutex); 37 #else 38 DEFINE_MUTEX(mtd_partitions_mutex); 39 #endif 40 41 /* Our partition node structure */ 42 struct mtd_part { 43 struct mtd_info mtd; 44 struct mtd_info *master; 45 uint64_t offset; 46 struct list_head list; 47 }; 48 49 /* 50 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 51 * the pointer to that structure with this macro. 52 */ 53 #define PART(x) ((struct mtd_part *)(x)) 54 55 56 #ifdef __UBOOT__ 57 /* from mm/util.c */ 58 59 /** 60 * kstrdup - allocate space for and copy an existing string 61 * @s: the string to duplicate 62 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 63 */ 64 char *kstrdup(const char *s, gfp_t gfp) 65 { 66 size_t len; 67 char *buf; 68 69 if (!s) 70 return NULL; 71 72 len = strlen(s) + 1; 73 buf = kmalloc(len, gfp); 74 if (buf) 75 memcpy(buf, s, len); 76 return buf; 77 } 78 #endif 79 80 /* 81 * MTD methods which simply translate the effective address and pass through 82 * to the _real_ device. 83 */ 84 85 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 86 size_t *retlen, u_char *buf) 87 { 88 struct mtd_part *part = PART(mtd); 89 struct mtd_ecc_stats stats; 90 int res; 91 92 stats = part->master->ecc_stats; 93 res = part->master->_read(part->master, from + part->offset, len, 94 retlen, buf); 95 if (unlikely(mtd_is_eccerr(res))) 96 mtd->ecc_stats.failed += 97 part->master->ecc_stats.failed - stats.failed; 98 else 99 mtd->ecc_stats.corrected += 100 part->master->ecc_stats.corrected - stats.corrected; 101 return res; 102 } 103 104 #ifndef __UBOOT__ 105 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 106 size_t *retlen, void **virt, resource_size_t *phys) 107 { 108 struct mtd_part *part = PART(mtd); 109 110 return part->master->_point(part->master, from + part->offset, len, 111 retlen, virt, phys); 112 } 113 114 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 115 { 116 struct mtd_part *part = PART(mtd); 117 118 return part->master->_unpoint(part->master, from + part->offset, len); 119 } 120 #endif 121 122 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 123 unsigned long len, 124 unsigned long offset, 125 unsigned long flags) 126 { 127 struct mtd_part *part = PART(mtd); 128 129 offset += part->offset; 130 return part->master->_get_unmapped_area(part->master, len, offset, 131 flags); 132 } 133 134 static int part_read_oob(struct mtd_info *mtd, loff_t from, 135 struct mtd_oob_ops *ops) 136 { 137 struct mtd_part *part = PART(mtd); 138 int res; 139 140 if (from >= mtd->size) 141 return -EINVAL; 142 if (ops->datbuf && from + ops->len > mtd->size) 143 return -EINVAL; 144 145 /* 146 * If OOB is also requested, make sure that we do not read past the end 147 * of this partition. 148 */ 149 if (ops->oobbuf) { 150 size_t len, pages; 151 152 if (ops->mode == MTD_OPS_AUTO_OOB) 153 len = mtd->oobavail; 154 else 155 len = mtd->oobsize; 156 pages = mtd_div_by_ws(mtd->size, mtd); 157 pages -= mtd_div_by_ws(from, mtd); 158 if (ops->ooboffs + ops->ooblen > pages * len) 159 return -EINVAL; 160 } 161 162 res = part->master->_read_oob(part->master, from + part->offset, ops); 163 if (unlikely(res)) { 164 if (mtd_is_bitflip(res)) 165 mtd->ecc_stats.corrected++; 166 if (mtd_is_eccerr(res)) 167 mtd->ecc_stats.failed++; 168 } 169 return res; 170 } 171 172 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 173 size_t len, size_t *retlen, u_char *buf) 174 { 175 struct mtd_part *part = PART(mtd); 176 return part->master->_read_user_prot_reg(part->master, from, len, 177 retlen, buf); 178 } 179 180 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, 181 size_t *retlen, struct otp_info *buf) 182 { 183 struct mtd_part *part = PART(mtd); 184 return part->master->_get_user_prot_info(part->master, len, retlen, 185 buf); 186 } 187 188 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 189 size_t len, size_t *retlen, u_char *buf) 190 { 191 struct mtd_part *part = PART(mtd); 192 return part->master->_read_fact_prot_reg(part->master, from, len, 193 retlen, buf); 194 } 195 196 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, 197 size_t *retlen, struct otp_info *buf) 198 { 199 struct mtd_part *part = PART(mtd); 200 return part->master->_get_fact_prot_info(part->master, len, retlen, 201 buf); 202 } 203 204 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 205 size_t *retlen, const u_char *buf) 206 { 207 struct mtd_part *part = PART(mtd); 208 return part->master->_write(part->master, to + part->offset, len, 209 retlen, buf); 210 } 211 212 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 213 size_t *retlen, const u_char *buf) 214 { 215 struct mtd_part *part = PART(mtd); 216 return part->master->_panic_write(part->master, to + part->offset, len, 217 retlen, buf); 218 } 219 220 static int part_write_oob(struct mtd_info *mtd, loff_t to, 221 struct mtd_oob_ops *ops) 222 { 223 struct mtd_part *part = PART(mtd); 224 225 if (to >= mtd->size) 226 return -EINVAL; 227 if (ops->datbuf && to + ops->len > mtd->size) 228 return -EINVAL; 229 return part->master->_write_oob(part->master, to + part->offset, ops); 230 } 231 232 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 233 size_t len, size_t *retlen, u_char *buf) 234 { 235 struct mtd_part *part = PART(mtd); 236 return part->master->_write_user_prot_reg(part->master, from, len, 237 retlen, buf); 238 } 239 240 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 241 size_t len) 242 { 243 struct mtd_part *part = PART(mtd); 244 return part->master->_lock_user_prot_reg(part->master, from, len); 245 } 246 247 #ifndef __UBOOT__ 248 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 249 unsigned long count, loff_t to, size_t *retlen) 250 { 251 struct mtd_part *part = PART(mtd); 252 return part->master->_writev(part->master, vecs, count, 253 to + part->offset, retlen); 254 } 255 #endif 256 257 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 258 { 259 struct mtd_part *part = PART(mtd); 260 int ret; 261 262 instr->addr += part->offset; 263 ret = part->master->_erase(part->master, instr); 264 if (ret) { 265 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 266 instr->fail_addr -= part->offset; 267 instr->addr -= part->offset; 268 } 269 return ret; 270 } 271 272 void mtd_erase_callback(struct erase_info *instr) 273 { 274 if (instr->mtd->_erase == part_erase) { 275 struct mtd_part *part = PART(instr->mtd); 276 277 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 278 instr->fail_addr -= part->offset; 279 instr->addr -= part->offset; 280 } 281 if (instr->callback) 282 instr->callback(instr); 283 } 284 EXPORT_SYMBOL_GPL(mtd_erase_callback); 285 286 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 287 { 288 struct mtd_part *part = PART(mtd); 289 return part->master->_lock(part->master, ofs + part->offset, len); 290 } 291 292 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 293 { 294 struct mtd_part *part = PART(mtd); 295 return part->master->_unlock(part->master, ofs + part->offset, len); 296 } 297 298 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 299 { 300 struct mtd_part *part = PART(mtd); 301 return part->master->_is_locked(part->master, ofs + part->offset, len); 302 } 303 304 static void part_sync(struct mtd_info *mtd) 305 { 306 struct mtd_part *part = PART(mtd); 307 part->master->_sync(part->master); 308 } 309 310 #ifndef __UBOOT__ 311 static int part_suspend(struct mtd_info *mtd) 312 { 313 struct mtd_part *part = PART(mtd); 314 return part->master->_suspend(part->master); 315 } 316 317 static void part_resume(struct mtd_info *mtd) 318 { 319 struct mtd_part *part = PART(mtd); 320 part->master->_resume(part->master); 321 } 322 #endif 323 324 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) 325 { 326 struct mtd_part *part = PART(mtd); 327 ofs += part->offset; 328 return part->master->_block_isreserved(part->master, ofs); 329 } 330 331 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 332 { 333 struct mtd_part *part = PART(mtd); 334 ofs += part->offset; 335 return part->master->_block_isbad(part->master, ofs); 336 } 337 338 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 339 { 340 struct mtd_part *part = PART(mtd); 341 int res; 342 343 ofs += part->offset; 344 res = part->master->_block_markbad(part->master, ofs); 345 if (!res) 346 mtd->ecc_stats.badblocks++; 347 return res; 348 } 349 350 static inline void free_partition(struct mtd_part *p) 351 { 352 kfree(p->mtd.name); 353 kfree(p); 354 } 355 356 /* 357 * This function unregisters and destroy all slave MTD objects which are 358 * attached to the given master MTD object. 359 */ 360 361 int del_mtd_partitions(struct mtd_info *master) 362 { 363 struct mtd_part *slave, *next; 364 int ret, err = 0; 365 366 mutex_lock(&mtd_partitions_mutex); 367 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 368 if (slave->master == master) { 369 ret = del_mtd_device(&slave->mtd); 370 if (ret < 0) { 371 err = ret; 372 continue; 373 } 374 list_del(&slave->list); 375 free_partition(slave); 376 } 377 mutex_unlock(&mtd_partitions_mutex); 378 379 return err; 380 } 381 382 static struct mtd_part *allocate_partition(struct mtd_info *master, 383 const struct mtd_partition *part, int partno, 384 uint64_t cur_offset) 385 { 386 struct mtd_part *slave; 387 char *name; 388 389 /* allocate the partition structure */ 390 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 391 name = kstrdup(part->name, GFP_KERNEL); 392 if (!name || !slave) { 393 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 394 master->name); 395 kfree(name); 396 kfree(slave); 397 return ERR_PTR(-ENOMEM); 398 } 399 400 /* set up the MTD object for this partition */ 401 slave->mtd.type = master->type; 402 slave->mtd.flags = master->flags & ~part->mask_flags; 403 slave->mtd.size = part->size; 404 slave->mtd.writesize = master->writesize; 405 slave->mtd.writebufsize = master->writebufsize; 406 slave->mtd.oobsize = master->oobsize; 407 slave->mtd.oobavail = master->oobavail; 408 slave->mtd.subpage_sft = master->subpage_sft; 409 410 slave->mtd.name = name; 411 slave->mtd.owner = master->owner; 412 #ifndef __UBOOT__ 413 slave->mtd.backing_dev_info = master->backing_dev_info; 414 415 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone 416 * to have the same data be in two different partitions. 417 */ 418 slave->mtd.dev.parent = master->dev.parent; 419 #endif 420 421 slave->mtd._read = part_read; 422 slave->mtd._write = part_write; 423 424 if (master->_panic_write) 425 slave->mtd._panic_write = part_panic_write; 426 427 #ifndef __UBOOT__ 428 if (master->_point && master->_unpoint) { 429 slave->mtd._point = part_point; 430 slave->mtd._unpoint = part_unpoint; 431 } 432 #endif 433 434 if (master->_get_unmapped_area) 435 slave->mtd._get_unmapped_area = part_get_unmapped_area; 436 if (master->_read_oob) 437 slave->mtd._read_oob = part_read_oob; 438 if (master->_write_oob) 439 slave->mtd._write_oob = part_write_oob; 440 if (master->_read_user_prot_reg) 441 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 442 if (master->_read_fact_prot_reg) 443 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 444 if (master->_write_user_prot_reg) 445 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 446 if (master->_lock_user_prot_reg) 447 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 448 if (master->_get_user_prot_info) 449 slave->mtd._get_user_prot_info = part_get_user_prot_info; 450 if (master->_get_fact_prot_info) 451 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 452 if (master->_sync) 453 slave->mtd._sync = part_sync; 454 #ifndef __UBOOT__ 455 if (!partno && !master->dev.class && master->_suspend && 456 master->_resume) { 457 slave->mtd._suspend = part_suspend; 458 slave->mtd._resume = part_resume; 459 } 460 if (master->_writev) 461 slave->mtd._writev = part_writev; 462 #endif 463 if (master->_lock) 464 slave->mtd._lock = part_lock; 465 if (master->_unlock) 466 slave->mtd._unlock = part_unlock; 467 if (master->_is_locked) 468 slave->mtd._is_locked = part_is_locked; 469 if (master->_block_isreserved) 470 slave->mtd._block_isreserved = part_block_isreserved; 471 if (master->_block_isbad) 472 slave->mtd._block_isbad = part_block_isbad; 473 if (master->_block_markbad) 474 slave->mtd._block_markbad = part_block_markbad; 475 slave->mtd._erase = part_erase; 476 slave->master = master; 477 slave->offset = part->offset; 478 479 if (slave->offset == MTDPART_OFS_APPEND) 480 slave->offset = cur_offset; 481 if (slave->offset == MTDPART_OFS_NXTBLK) { 482 slave->offset = cur_offset; 483 if (mtd_mod_by_eb(cur_offset, master) != 0) { 484 /* Round up to next erasesize */ 485 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 486 debug("Moving partition %d: " 487 "0x%012llx -> 0x%012llx\n", partno, 488 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 489 } 490 } 491 if (slave->offset == MTDPART_OFS_RETAIN) { 492 slave->offset = cur_offset; 493 if (master->size - slave->offset >= slave->mtd.size) { 494 slave->mtd.size = master->size - slave->offset 495 - slave->mtd.size; 496 } else { 497 debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 498 part->name, master->size - slave->offset, 499 slave->mtd.size); 500 /* register to preserve ordering */ 501 goto out_register; 502 } 503 } 504 if (slave->mtd.size == MTDPART_SIZ_FULL) 505 slave->mtd.size = master->size - slave->offset; 506 507 debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 508 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 509 510 /* let's do some sanity checks */ 511 if (slave->offset >= master->size) { 512 /* let's register it anyway to preserve ordering */ 513 slave->offset = 0; 514 slave->mtd.size = 0; 515 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 516 part->name); 517 goto out_register; 518 } 519 if (slave->offset + slave->mtd.size > master->size) { 520 slave->mtd.size = master->size - slave->offset; 521 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 522 part->name, master->name, (unsigned long long)slave->mtd.size); 523 } 524 if (master->numeraseregions > 1) { 525 /* Deal with variable erase size stuff */ 526 int i, max = master->numeraseregions; 527 u64 end = slave->offset + slave->mtd.size; 528 struct mtd_erase_region_info *regions = master->eraseregions; 529 530 /* Find the first erase regions which is part of this 531 * partition. */ 532 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 533 ; 534 /* The loop searched for the region _behind_ the first one */ 535 if (i > 0) 536 i--; 537 538 /* Pick biggest erasesize */ 539 for (; i < max && regions[i].offset < end; i++) { 540 if (slave->mtd.erasesize < regions[i].erasesize) { 541 slave->mtd.erasesize = regions[i].erasesize; 542 } 543 } 544 BUG_ON(slave->mtd.erasesize == 0); 545 } else { 546 /* Single erase size */ 547 slave->mtd.erasesize = master->erasesize; 548 } 549 550 if ((slave->mtd.flags & MTD_WRITEABLE) && 551 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 552 /* Doesn't start on a boundary of major erase size */ 553 /* FIXME: Let it be writable if it is on a boundary of 554 * _minor_ erase size though */ 555 slave->mtd.flags &= ~MTD_WRITEABLE; 556 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 557 part->name); 558 } 559 if ((slave->mtd.flags & MTD_WRITEABLE) && 560 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 561 slave->mtd.flags &= ~MTD_WRITEABLE; 562 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 563 part->name); 564 } 565 566 slave->mtd.ecclayout = master->ecclayout; 567 slave->mtd.ecc_step_size = master->ecc_step_size; 568 slave->mtd.ecc_strength = master->ecc_strength; 569 slave->mtd.bitflip_threshold = master->bitflip_threshold; 570 571 if (master->_block_isbad) { 572 uint64_t offs = 0; 573 574 while (offs < slave->mtd.size) { 575 if (mtd_block_isbad(master, offs + slave->offset)) 576 slave->mtd.ecc_stats.badblocks++; 577 offs += slave->mtd.erasesize; 578 } 579 } 580 581 out_register: 582 return slave; 583 } 584 585 #ifndef __UBOOT__ 586 int mtd_add_partition(struct mtd_info *master, const char *name, 587 long long offset, long long length) 588 { 589 struct mtd_partition part; 590 struct mtd_part *p, *new; 591 uint64_t start, end; 592 int ret = 0; 593 594 /* the direct offset is expected */ 595 if (offset == MTDPART_OFS_APPEND || 596 offset == MTDPART_OFS_NXTBLK) 597 return -EINVAL; 598 599 if (length == MTDPART_SIZ_FULL) 600 length = master->size - offset; 601 602 if (length <= 0) 603 return -EINVAL; 604 605 part.name = name; 606 part.size = length; 607 part.offset = offset; 608 part.mask_flags = 0; 609 part.ecclayout = NULL; 610 611 new = allocate_partition(master, &part, -1, offset); 612 if (IS_ERR(new)) 613 return PTR_ERR(new); 614 615 start = offset; 616 end = offset + length; 617 618 mutex_lock(&mtd_partitions_mutex); 619 list_for_each_entry(p, &mtd_partitions, list) 620 if (p->master == master) { 621 if ((start >= p->offset) && 622 (start < (p->offset + p->mtd.size))) 623 goto err_inv; 624 625 if ((end >= p->offset) && 626 (end < (p->offset + p->mtd.size))) 627 goto err_inv; 628 } 629 630 list_add(&new->list, &mtd_partitions); 631 mutex_unlock(&mtd_partitions_mutex); 632 633 add_mtd_device(&new->mtd); 634 635 return ret; 636 err_inv: 637 mutex_unlock(&mtd_partitions_mutex); 638 free_partition(new); 639 return -EINVAL; 640 } 641 EXPORT_SYMBOL_GPL(mtd_add_partition); 642 643 int mtd_del_partition(struct mtd_info *master, int partno) 644 { 645 struct mtd_part *slave, *next; 646 int ret = -EINVAL; 647 648 mutex_lock(&mtd_partitions_mutex); 649 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 650 if ((slave->master == master) && 651 (slave->mtd.index == partno)) { 652 ret = del_mtd_device(&slave->mtd); 653 if (ret < 0) 654 break; 655 656 list_del(&slave->list); 657 free_partition(slave); 658 break; 659 } 660 mutex_unlock(&mtd_partitions_mutex); 661 662 return ret; 663 } 664 EXPORT_SYMBOL_GPL(mtd_del_partition); 665 #endif 666 667 /* 668 * This function, given a master MTD object and a partition table, creates 669 * and registers slave MTD objects which are bound to the master according to 670 * the partition definitions. 671 * 672 * We don't register the master, or expect the caller to have done so, 673 * for reasons of data integrity. 674 */ 675 676 int add_mtd_partitions(struct mtd_info *master, 677 const struct mtd_partition *parts, 678 int nbparts) 679 { 680 struct mtd_part *slave; 681 uint64_t cur_offset = 0; 682 int i; 683 684 #ifdef __UBOOT__ 685 /* 686 * Need to init the list here, since LIST_INIT() does not 687 * work on platforms where relocation has problems (like MIPS 688 * & PPC). 689 */ 690 if (mtd_partitions.next == NULL) 691 INIT_LIST_HEAD(&mtd_partitions); 692 #endif 693 694 debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 695 696 for (i = 0; i < nbparts; i++) { 697 slave = allocate_partition(master, parts + i, i, cur_offset); 698 if (IS_ERR(slave)) 699 return PTR_ERR(slave); 700 701 mutex_lock(&mtd_partitions_mutex); 702 list_add(&slave->list, &mtd_partitions); 703 mutex_unlock(&mtd_partitions_mutex); 704 705 add_mtd_device(&slave->mtd); 706 707 cur_offset = slave->offset + slave->mtd.size; 708 } 709 710 return 0; 711 } 712 713 #ifndef __UBOOT__ 714 static DEFINE_SPINLOCK(part_parser_lock); 715 static LIST_HEAD(part_parsers); 716 717 static struct mtd_part_parser *get_partition_parser(const char *name) 718 { 719 struct mtd_part_parser *p, *ret = NULL; 720 721 spin_lock(&part_parser_lock); 722 723 list_for_each_entry(p, &part_parsers, list) 724 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 725 ret = p; 726 break; 727 } 728 729 spin_unlock(&part_parser_lock); 730 731 return ret; 732 } 733 734 #define put_partition_parser(p) do { module_put((p)->owner); } while (0) 735 736 void register_mtd_parser(struct mtd_part_parser *p) 737 { 738 spin_lock(&part_parser_lock); 739 list_add(&p->list, &part_parsers); 740 spin_unlock(&part_parser_lock); 741 } 742 EXPORT_SYMBOL_GPL(register_mtd_parser); 743 744 void deregister_mtd_parser(struct mtd_part_parser *p) 745 { 746 spin_lock(&part_parser_lock); 747 list_del(&p->list); 748 spin_unlock(&part_parser_lock); 749 } 750 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 751 752 /* 753 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 754 * are changing this array! 755 */ 756 static const char * const default_mtd_part_types[] = { 757 "cmdlinepart", 758 "ofpart", 759 NULL 760 }; 761 762 /** 763 * parse_mtd_partitions - parse MTD partitions 764 * @master: the master partition (describes whole MTD device) 765 * @types: names of partition parsers to try or %NULL 766 * @pparts: array of partitions found is returned here 767 * @data: MTD partition parser-specific data 768 * 769 * This function tries to find partition on MTD device @master. It uses MTD 770 * partition parsers, specified in @types. However, if @types is %NULL, then 771 * the default list of parsers is used. The default list contains only the 772 * "cmdlinepart" and "ofpart" parsers ATM. 773 * Note: If there are more then one parser in @types, the kernel only takes the 774 * partitions parsed out by the first parser. 775 * 776 * This function may return: 777 * o a negative error code in case of failure 778 * o zero if no partitions were found 779 * o a positive number of found partitions, in which case on exit @pparts will 780 * point to an array containing this number of &struct mtd_info objects. 781 */ 782 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 783 struct mtd_partition **pparts, 784 struct mtd_part_parser_data *data) 785 { 786 struct mtd_part_parser *parser; 787 int ret = 0; 788 789 if (!types) 790 types = default_mtd_part_types; 791 792 for ( ; ret <= 0 && *types; types++) { 793 parser = get_partition_parser(*types); 794 if (!parser && !request_module("%s", *types)) 795 parser = get_partition_parser(*types); 796 if (!parser) 797 continue; 798 ret = (*parser->parse_fn)(master, pparts, data); 799 put_partition_parser(parser); 800 if (ret > 0) { 801 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 802 ret, parser->name, master->name); 803 break; 804 } 805 } 806 return ret; 807 } 808 #endif 809 810 int mtd_is_partition(const struct mtd_info *mtd) 811 { 812 struct mtd_part *part; 813 int ispart = 0; 814 815 mutex_lock(&mtd_partitions_mutex); 816 list_for_each_entry(part, &mtd_partitions, list) 817 if (&part->mtd == mtd) { 818 ispart = 1; 819 break; 820 } 821 mutex_unlock(&mtd_partitions_mutex); 822 823 return ispart; 824 } 825 EXPORT_SYMBOL_GPL(mtd_is_partition); 826 827 /* Returns the size of the entire flash chip */ 828 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 829 { 830 if (!mtd_is_partition(mtd)) 831 return mtd->size; 832 833 return PART(mtd)->master->size; 834 } 835 EXPORT_SYMBOL_GPL(mtd_get_device_size); 836