1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 * 10 */ 11 12 #ifndef __UBOOT__ 13 #include <linux/module.h> 14 #include <linux/types.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/list.h> 18 #include <linux/kmod.h> 19 #endif 20 21 #include <common.h> 22 #include <malloc.h> 23 #include <asm/errno.h> 24 #include <linux/compat.h> 25 #include <ubi_uboot.h> 26 27 #include <linux/mtd/mtd.h> 28 #include <linux/mtd/partitions.h> 29 #include <linux/err.h> 30 31 #include "mtdcore.h" 32 33 /* Our partition linked list */ 34 static LIST_HEAD(mtd_partitions); 35 #ifndef __UBOOT__ 36 static DEFINE_MUTEX(mtd_partitions_mutex); 37 #else 38 DEFINE_MUTEX(mtd_partitions_mutex); 39 #endif 40 41 /* Our partition node structure */ 42 struct mtd_part { 43 struct mtd_info mtd; 44 struct mtd_info *master; 45 uint64_t offset; 46 struct list_head list; 47 }; 48 49 /* 50 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 51 * the pointer to that structure with this macro. 52 */ 53 #define PART(x) ((struct mtd_part *)(x)) 54 55 56 #ifdef __UBOOT__ 57 /* from mm/util.c */ 58 59 /** 60 * kstrdup - allocate space for and copy an existing string 61 * @s: the string to duplicate 62 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 63 */ 64 char *kstrdup(const char *s, gfp_t gfp) 65 { 66 size_t len; 67 char *buf; 68 69 if (!s) 70 return NULL; 71 72 len = strlen(s) + 1; 73 buf = kmalloc(len, gfp); 74 if (buf) 75 memcpy(buf, s, len); 76 return buf; 77 } 78 #endif 79 80 /* 81 * MTD methods which simply translate the effective address and pass through 82 * to the _real_ device. 83 */ 84 85 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 86 size_t *retlen, u_char *buf) 87 { 88 struct mtd_part *part = PART(mtd); 89 struct mtd_ecc_stats stats; 90 int res; 91 92 stats = part->master->ecc_stats; 93 res = part->master->_read(part->master, from + part->offset, len, 94 retlen, buf); 95 if (unlikely(mtd_is_eccerr(res))) 96 mtd->ecc_stats.failed += 97 part->master->ecc_stats.failed - stats.failed; 98 else 99 mtd->ecc_stats.corrected += 100 part->master->ecc_stats.corrected - stats.corrected; 101 return res; 102 } 103 104 #ifndef __UBOOT__ 105 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 106 size_t *retlen, void **virt, resource_size_t *phys) 107 { 108 struct mtd_part *part = PART(mtd); 109 110 return part->master->_point(part->master, from + part->offset, len, 111 retlen, virt, phys); 112 } 113 114 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 115 { 116 struct mtd_part *part = PART(mtd); 117 118 return part->master->_unpoint(part->master, from + part->offset, len); 119 } 120 #endif 121 122 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 123 unsigned long len, 124 unsigned long offset, 125 unsigned long flags) 126 { 127 struct mtd_part *part = PART(mtd); 128 129 offset += part->offset; 130 return part->master->_get_unmapped_area(part->master, len, offset, 131 flags); 132 } 133 134 static int part_read_oob(struct mtd_info *mtd, loff_t from, 135 struct mtd_oob_ops *ops) 136 { 137 struct mtd_part *part = PART(mtd); 138 int res; 139 140 if (from >= mtd->size) 141 return -EINVAL; 142 if (ops->datbuf && from + ops->len > mtd->size) 143 return -EINVAL; 144 145 /* 146 * If OOB is also requested, make sure that we do not read past the end 147 * of this partition. 148 */ 149 if (ops->oobbuf) { 150 size_t len, pages; 151 152 if (ops->mode == MTD_OPS_AUTO_OOB) 153 len = mtd->oobavail; 154 else 155 len = mtd->oobsize; 156 pages = mtd_div_by_ws(mtd->size, mtd); 157 pages -= mtd_div_by_ws(from, mtd); 158 if (ops->ooboffs + ops->ooblen > pages * len) 159 return -EINVAL; 160 } 161 162 res = part->master->_read_oob(part->master, from + part->offset, ops); 163 if (unlikely(res)) { 164 if (mtd_is_bitflip(res)) 165 mtd->ecc_stats.corrected++; 166 if (mtd_is_eccerr(res)) 167 mtd->ecc_stats.failed++; 168 } 169 return res; 170 } 171 172 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 173 size_t len, size_t *retlen, u_char *buf) 174 { 175 struct mtd_part *part = PART(mtd); 176 return part->master->_read_user_prot_reg(part->master, from, len, 177 retlen, buf); 178 } 179 180 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, 181 size_t *retlen, struct otp_info *buf) 182 { 183 struct mtd_part *part = PART(mtd); 184 return part->master->_get_user_prot_info(part->master, len, retlen, 185 buf); 186 } 187 188 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 189 size_t len, size_t *retlen, u_char *buf) 190 { 191 struct mtd_part *part = PART(mtd); 192 return part->master->_read_fact_prot_reg(part->master, from, len, 193 retlen, buf); 194 } 195 196 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, 197 size_t *retlen, struct otp_info *buf) 198 { 199 struct mtd_part *part = PART(mtd); 200 return part->master->_get_fact_prot_info(part->master, len, retlen, 201 buf); 202 } 203 204 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 205 size_t *retlen, const u_char *buf) 206 { 207 struct mtd_part *part = PART(mtd); 208 return part->master->_write(part->master, to + part->offset, len, 209 retlen, buf); 210 } 211 212 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 213 size_t *retlen, const u_char *buf) 214 { 215 struct mtd_part *part = PART(mtd); 216 return part->master->_panic_write(part->master, to + part->offset, len, 217 retlen, buf); 218 } 219 220 static int part_write_oob(struct mtd_info *mtd, loff_t to, 221 struct mtd_oob_ops *ops) 222 { 223 struct mtd_part *part = PART(mtd); 224 225 if (to >= mtd->size) 226 return -EINVAL; 227 if (ops->datbuf && to + ops->len > mtd->size) 228 return -EINVAL; 229 return part->master->_write_oob(part->master, to + part->offset, ops); 230 } 231 232 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 233 size_t len, size_t *retlen, u_char *buf) 234 { 235 struct mtd_part *part = PART(mtd); 236 return part->master->_write_user_prot_reg(part->master, from, len, 237 retlen, buf); 238 } 239 240 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 241 size_t len) 242 { 243 struct mtd_part *part = PART(mtd); 244 return part->master->_lock_user_prot_reg(part->master, from, len); 245 } 246 247 #ifndef __UBOOT__ 248 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 249 unsigned long count, loff_t to, size_t *retlen) 250 { 251 struct mtd_part *part = PART(mtd); 252 return part->master->_writev(part->master, vecs, count, 253 to + part->offset, retlen); 254 } 255 #endif 256 257 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 258 { 259 struct mtd_part *part = PART(mtd); 260 int ret; 261 262 instr->addr += part->offset; 263 ret = part->master->_erase(part->master, instr); 264 if (ret) { 265 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 266 instr->fail_addr -= part->offset; 267 instr->addr -= part->offset; 268 } 269 return ret; 270 } 271 272 void mtd_erase_callback(struct erase_info *instr) 273 { 274 if (instr->mtd->_erase == part_erase) { 275 struct mtd_part *part = PART(instr->mtd); 276 277 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 278 instr->fail_addr -= part->offset; 279 instr->addr -= part->offset; 280 } 281 if (instr->callback) 282 instr->callback(instr); 283 } 284 EXPORT_SYMBOL_GPL(mtd_erase_callback); 285 286 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 287 { 288 struct mtd_part *part = PART(mtd); 289 return part->master->_lock(part->master, ofs + part->offset, len); 290 } 291 292 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 293 { 294 struct mtd_part *part = PART(mtd); 295 return part->master->_unlock(part->master, ofs + part->offset, len); 296 } 297 298 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 299 { 300 struct mtd_part *part = PART(mtd); 301 return part->master->_is_locked(part->master, ofs + part->offset, len); 302 } 303 304 static void part_sync(struct mtd_info *mtd) 305 { 306 struct mtd_part *part = PART(mtd); 307 part->master->_sync(part->master); 308 } 309 310 #ifndef __UBOOT__ 311 static int part_suspend(struct mtd_info *mtd) 312 { 313 struct mtd_part *part = PART(mtd); 314 return part->master->_suspend(part->master); 315 } 316 317 static void part_resume(struct mtd_info *mtd) 318 { 319 struct mtd_part *part = PART(mtd); 320 part->master->_resume(part->master); 321 } 322 #endif 323 324 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 325 { 326 struct mtd_part *part = PART(mtd); 327 ofs += part->offset; 328 return part->master->_block_isbad(part->master, ofs); 329 } 330 331 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 332 { 333 struct mtd_part *part = PART(mtd); 334 int res; 335 336 ofs += part->offset; 337 res = part->master->_block_markbad(part->master, ofs); 338 if (!res) 339 mtd->ecc_stats.badblocks++; 340 return res; 341 } 342 343 static inline void free_partition(struct mtd_part *p) 344 { 345 kfree(p->mtd.name); 346 kfree(p); 347 } 348 349 /* 350 * This function unregisters and destroy all slave MTD objects which are 351 * attached to the given master MTD object. 352 */ 353 354 int del_mtd_partitions(struct mtd_info *master) 355 { 356 struct mtd_part *slave, *next; 357 int ret, err = 0; 358 359 mutex_lock(&mtd_partitions_mutex); 360 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 361 if (slave->master == master) { 362 ret = del_mtd_device(&slave->mtd); 363 if (ret < 0) { 364 err = ret; 365 continue; 366 } 367 list_del(&slave->list); 368 free_partition(slave); 369 } 370 mutex_unlock(&mtd_partitions_mutex); 371 372 return err; 373 } 374 375 static struct mtd_part *allocate_partition(struct mtd_info *master, 376 const struct mtd_partition *part, int partno, 377 uint64_t cur_offset) 378 { 379 struct mtd_part *slave; 380 char *name; 381 382 /* allocate the partition structure */ 383 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 384 name = kstrdup(part->name, GFP_KERNEL); 385 if (!name || !slave) { 386 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 387 master->name); 388 kfree(name); 389 kfree(slave); 390 return ERR_PTR(-ENOMEM); 391 } 392 393 /* set up the MTD object for this partition */ 394 slave->mtd.type = master->type; 395 slave->mtd.flags = master->flags & ~part->mask_flags; 396 slave->mtd.size = part->size; 397 slave->mtd.writesize = master->writesize; 398 slave->mtd.writebufsize = master->writebufsize; 399 slave->mtd.oobsize = master->oobsize; 400 slave->mtd.oobavail = master->oobavail; 401 slave->mtd.subpage_sft = master->subpage_sft; 402 403 slave->mtd.name = name; 404 slave->mtd.owner = master->owner; 405 #ifndef __UBOOT__ 406 slave->mtd.backing_dev_info = master->backing_dev_info; 407 408 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone 409 * to have the same data be in two different partitions. 410 */ 411 slave->mtd.dev.parent = master->dev.parent; 412 #endif 413 414 slave->mtd._read = part_read; 415 slave->mtd._write = part_write; 416 417 if (master->_panic_write) 418 slave->mtd._panic_write = part_panic_write; 419 420 #ifndef __UBOOT__ 421 if (master->_point && master->_unpoint) { 422 slave->mtd._point = part_point; 423 slave->mtd._unpoint = part_unpoint; 424 } 425 #endif 426 427 if (master->_get_unmapped_area) 428 slave->mtd._get_unmapped_area = part_get_unmapped_area; 429 if (master->_read_oob) 430 slave->mtd._read_oob = part_read_oob; 431 if (master->_write_oob) 432 slave->mtd._write_oob = part_write_oob; 433 if (master->_read_user_prot_reg) 434 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 435 if (master->_read_fact_prot_reg) 436 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 437 if (master->_write_user_prot_reg) 438 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 439 if (master->_lock_user_prot_reg) 440 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 441 if (master->_get_user_prot_info) 442 slave->mtd._get_user_prot_info = part_get_user_prot_info; 443 if (master->_get_fact_prot_info) 444 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 445 if (master->_sync) 446 slave->mtd._sync = part_sync; 447 #ifndef __UBOOT__ 448 if (!partno && !master->dev.class && master->_suspend && 449 master->_resume) { 450 slave->mtd._suspend = part_suspend; 451 slave->mtd._resume = part_resume; 452 } 453 if (master->_writev) 454 slave->mtd._writev = part_writev; 455 #endif 456 if (master->_lock) 457 slave->mtd._lock = part_lock; 458 if (master->_unlock) 459 slave->mtd._unlock = part_unlock; 460 if (master->_is_locked) 461 slave->mtd._is_locked = part_is_locked; 462 if (master->_block_isbad) 463 slave->mtd._block_isbad = part_block_isbad; 464 if (master->_block_markbad) 465 slave->mtd._block_markbad = part_block_markbad; 466 slave->mtd._erase = part_erase; 467 slave->master = master; 468 slave->offset = part->offset; 469 470 if (slave->offset == MTDPART_OFS_APPEND) 471 slave->offset = cur_offset; 472 if (slave->offset == MTDPART_OFS_NXTBLK) { 473 slave->offset = cur_offset; 474 if (mtd_mod_by_eb(cur_offset, master) != 0) { 475 /* Round up to next erasesize */ 476 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 477 debug("Moving partition %d: " 478 "0x%012llx -> 0x%012llx\n", partno, 479 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 480 } 481 } 482 if (slave->offset == MTDPART_OFS_RETAIN) { 483 slave->offset = cur_offset; 484 if (master->size - slave->offset >= slave->mtd.size) { 485 slave->mtd.size = master->size - slave->offset 486 - slave->mtd.size; 487 } else { 488 debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 489 part->name, master->size - slave->offset, 490 slave->mtd.size); 491 /* register to preserve ordering */ 492 goto out_register; 493 } 494 } 495 if (slave->mtd.size == MTDPART_SIZ_FULL) 496 slave->mtd.size = master->size - slave->offset; 497 498 debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 499 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 500 501 /* let's do some sanity checks */ 502 if (slave->offset >= master->size) { 503 /* let's register it anyway to preserve ordering */ 504 slave->offset = 0; 505 slave->mtd.size = 0; 506 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 507 part->name); 508 goto out_register; 509 } 510 if (slave->offset + slave->mtd.size > master->size) { 511 slave->mtd.size = master->size - slave->offset; 512 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 513 part->name, master->name, (unsigned long long)slave->mtd.size); 514 } 515 if (master->numeraseregions > 1) { 516 /* Deal with variable erase size stuff */ 517 int i, max = master->numeraseregions; 518 u64 end = slave->offset + slave->mtd.size; 519 struct mtd_erase_region_info *regions = master->eraseregions; 520 521 /* Find the first erase regions which is part of this 522 * partition. */ 523 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 524 ; 525 /* The loop searched for the region _behind_ the first one */ 526 if (i > 0) 527 i--; 528 529 /* Pick biggest erasesize */ 530 for (; i < max && regions[i].offset < end; i++) { 531 if (slave->mtd.erasesize < regions[i].erasesize) { 532 slave->mtd.erasesize = regions[i].erasesize; 533 } 534 } 535 BUG_ON(slave->mtd.erasesize == 0); 536 } else { 537 /* Single erase size */ 538 slave->mtd.erasesize = master->erasesize; 539 } 540 541 if ((slave->mtd.flags & MTD_WRITEABLE) && 542 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 543 /* Doesn't start on a boundary of major erase size */ 544 /* FIXME: Let it be writable if it is on a boundary of 545 * _minor_ erase size though */ 546 slave->mtd.flags &= ~MTD_WRITEABLE; 547 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 548 part->name); 549 } 550 if ((slave->mtd.flags & MTD_WRITEABLE) && 551 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 552 slave->mtd.flags &= ~MTD_WRITEABLE; 553 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 554 part->name); 555 } 556 557 slave->mtd.ecclayout = master->ecclayout; 558 slave->mtd.ecc_step_size = master->ecc_step_size; 559 slave->mtd.ecc_strength = master->ecc_strength; 560 slave->mtd.bitflip_threshold = master->bitflip_threshold; 561 562 if (master->_block_isbad) { 563 uint64_t offs = 0; 564 565 while (offs < slave->mtd.size) { 566 if (mtd_block_isbad(master, offs + slave->offset)) 567 slave->mtd.ecc_stats.badblocks++; 568 offs += slave->mtd.erasesize; 569 } 570 } 571 572 out_register: 573 return slave; 574 } 575 576 #ifndef __UBOOT__ 577 int mtd_add_partition(struct mtd_info *master, const char *name, 578 long long offset, long long length) 579 { 580 struct mtd_partition part; 581 struct mtd_part *p, *new; 582 uint64_t start, end; 583 int ret = 0; 584 585 /* the direct offset is expected */ 586 if (offset == MTDPART_OFS_APPEND || 587 offset == MTDPART_OFS_NXTBLK) 588 return -EINVAL; 589 590 if (length == MTDPART_SIZ_FULL) 591 length = master->size - offset; 592 593 if (length <= 0) 594 return -EINVAL; 595 596 part.name = name; 597 part.size = length; 598 part.offset = offset; 599 part.mask_flags = 0; 600 part.ecclayout = NULL; 601 602 new = allocate_partition(master, &part, -1, offset); 603 if (IS_ERR(new)) 604 return PTR_ERR(new); 605 606 start = offset; 607 end = offset + length; 608 609 mutex_lock(&mtd_partitions_mutex); 610 list_for_each_entry(p, &mtd_partitions, list) 611 if (p->master == master) { 612 if ((start >= p->offset) && 613 (start < (p->offset + p->mtd.size))) 614 goto err_inv; 615 616 if ((end >= p->offset) && 617 (end < (p->offset + p->mtd.size))) 618 goto err_inv; 619 } 620 621 list_add(&new->list, &mtd_partitions); 622 mutex_unlock(&mtd_partitions_mutex); 623 624 add_mtd_device(&new->mtd); 625 626 return ret; 627 err_inv: 628 mutex_unlock(&mtd_partitions_mutex); 629 free_partition(new); 630 return -EINVAL; 631 } 632 EXPORT_SYMBOL_GPL(mtd_add_partition); 633 634 int mtd_del_partition(struct mtd_info *master, int partno) 635 { 636 struct mtd_part *slave, *next; 637 int ret = -EINVAL; 638 639 mutex_lock(&mtd_partitions_mutex); 640 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 641 if ((slave->master == master) && 642 (slave->mtd.index == partno)) { 643 ret = del_mtd_device(&slave->mtd); 644 if (ret < 0) 645 break; 646 647 list_del(&slave->list); 648 free_partition(slave); 649 break; 650 } 651 mutex_unlock(&mtd_partitions_mutex); 652 653 return ret; 654 } 655 EXPORT_SYMBOL_GPL(mtd_del_partition); 656 #endif 657 658 /* 659 * This function, given a master MTD object and a partition table, creates 660 * and registers slave MTD objects which are bound to the master according to 661 * the partition definitions. 662 * 663 * We don't register the master, or expect the caller to have done so, 664 * for reasons of data integrity. 665 */ 666 667 int add_mtd_partitions(struct mtd_info *master, 668 const struct mtd_partition *parts, 669 int nbparts) 670 { 671 struct mtd_part *slave; 672 uint64_t cur_offset = 0; 673 int i; 674 675 #ifdef __UBOOT__ 676 /* 677 * Need to init the list here, since LIST_INIT() does not 678 * work on platforms where relocation has problems (like MIPS 679 * & PPC). 680 */ 681 if (mtd_partitions.next == NULL) 682 INIT_LIST_HEAD(&mtd_partitions); 683 #endif 684 685 debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 686 687 for (i = 0; i < nbparts; i++) { 688 slave = allocate_partition(master, parts + i, i, cur_offset); 689 if (IS_ERR(slave)) 690 return PTR_ERR(slave); 691 692 mutex_lock(&mtd_partitions_mutex); 693 list_add(&slave->list, &mtd_partitions); 694 mutex_unlock(&mtd_partitions_mutex); 695 696 add_mtd_device(&slave->mtd); 697 698 cur_offset = slave->offset + slave->mtd.size; 699 } 700 701 return 0; 702 } 703 704 #ifndef __UBOOT__ 705 static DEFINE_SPINLOCK(part_parser_lock); 706 static LIST_HEAD(part_parsers); 707 708 static struct mtd_part_parser *get_partition_parser(const char *name) 709 { 710 struct mtd_part_parser *p, *ret = NULL; 711 712 spin_lock(&part_parser_lock); 713 714 list_for_each_entry(p, &part_parsers, list) 715 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 716 ret = p; 717 break; 718 } 719 720 spin_unlock(&part_parser_lock); 721 722 return ret; 723 } 724 725 #define put_partition_parser(p) do { module_put((p)->owner); } while (0) 726 727 void register_mtd_parser(struct mtd_part_parser *p) 728 { 729 spin_lock(&part_parser_lock); 730 list_add(&p->list, &part_parsers); 731 spin_unlock(&part_parser_lock); 732 } 733 EXPORT_SYMBOL_GPL(register_mtd_parser); 734 735 void deregister_mtd_parser(struct mtd_part_parser *p) 736 { 737 spin_lock(&part_parser_lock); 738 list_del(&p->list); 739 spin_unlock(&part_parser_lock); 740 } 741 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 742 743 /* 744 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 745 * are changing this array! 746 */ 747 static const char * const default_mtd_part_types[] = { 748 "cmdlinepart", 749 "ofpart", 750 NULL 751 }; 752 753 /** 754 * parse_mtd_partitions - parse MTD partitions 755 * @master: the master partition (describes whole MTD device) 756 * @types: names of partition parsers to try or %NULL 757 * @pparts: array of partitions found is returned here 758 * @data: MTD partition parser-specific data 759 * 760 * This function tries to find partition on MTD device @master. It uses MTD 761 * partition parsers, specified in @types. However, if @types is %NULL, then 762 * the default list of parsers is used. The default list contains only the 763 * "cmdlinepart" and "ofpart" parsers ATM. 764 * Note: If there are more then one parser in @types, the kernel only takes the 765 * partitions parsed out by the first parser. 766 * 767 * This function may return: 768 * o a negative error code in case of failure 769 * o zero if no partitions were found 770 * o a positive number of found partitions, in which case on exit @pparts will 771 * point to an array containing this number of &struct mtd_info objects. 772 */ 773 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 774 struct mtd_partition **pparts, 775 struct mtd_part_parser_data *data) 776 { 777 struct mtd_part_parser *parser; 778 int ret = 0; 779 780 if (!types) 781 types = default_mtd_part_types; 782 783 for ( ; ret <= 0 && *types; types++) { 784 parser = get_partition_parser(*types); 785 if (!parser && !request_module("%s", *types)) 786 parser = get_partition_parser(*types); 787 if (!parser) 788 continue; 789 ret = (*parser->parse_fn)(master, pparts, data); 790 put_partition_parser(parser); 791 if (ret > 0) { 792 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 793 ret, parser->name, master->name); 794 break; 795 } 796 } 797 return ret; 798 } 799 #endif 800 801 int mtd_is_partition(const struct mtd_info *mtd) 802 { 803 struct mtd_part *part; 804 int ispart = 0; 805 806 mutex_lock(&mtd_partitions_mutex); 807 list_for_each_entry(part, &mtd_partitions, list) 808 if (&part->mtd == mtd) { 809 ispart = 1; 810 break; 811 } 812 mutex_unlock(&mtd_partitions_mutex); 813 814 return ispart; 815 } 816 EXPORT_SYMBOL_GPL(mtd_is_partition); 817 818 /* Returns the size of the entire flash chip */ 819 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 820 { 821 if (!mtd_is_partition(mtd)) 822 return mtd->size; 823 824 return PART(mtd)->master->size; 825 } 826 EXPORT_SYMBOL_GPL(mtd_get_device_size); 827