1 /* 2 * Simple MTD partitioning layer 3 * 4 * (C) 2000 Nicolas Pitre <nico@cam.org> 5 * 6 * This code is GPL 7 * 8 * 02-21-2002 Thomas Gleixner <gleixner@autronix.de> 9 * added support for read_oob, write_oob 10 */ 11 12 #include <common.h> 13 #include <malloc.h> 14 #include <asm/errno.h> 15 16 #include <linux/types.h> 17 #include <linux/list.h> 18 #include <linux/mtd/mtd.h> 19 #include <linux/mtd/partitions.h> 20 #include <linux/compat.h> 21 22 /* Our partition linked list */ 23 struct list_head mtd_partitions; 24 25 /* Our partition node structure */ 26 struct mtd_part { 27 struct mtd_info mtd; 28 struct mtd_info *master; 29 uint64_t offset; 30 int index; 31 struct list_head list; 32 int registered; 33 }; 34 35 /* 36 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 37 * the pointer to that structure with this macro. 38 */ 39 #define PART(x) ((struct mtd_part *)(x)) 40 41 42 /* 43 * MTD methods which simply translate the effective address and pass through 44 * to the _real_ device. 45 */ 46 47 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 48 size_t *retlen, u_char *buf) 49 { 50 struct mtd_part *part = PART(mtd); 51 struct mtd_ecc_stats stats; 52 int res; 53 54 stats = part->master->ecc_stats; 55 res = mtd_read(part->master, from + part->offset, len, retlen, buf); 56 if (unlikely(res)) { 57 if (mtd_is_bitflip(res)) 58 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected; 59 if (mtd_is_eccerr(res)) 60 mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed; 61 } 62 return res; 63 } 64 65 static int part_read_oob(struct mtd_info *mtd, loff_t from, 66 struct mtd_oob_ops *ops) 67 { 68 struct mtd_part *part = PART(mtd); 69 int res; 70 71 if (from >= mtd->size) 72 return -EINVAL; 73 if (ops->datbuf && from + ops->len > mtd->size) 74 return -EINVAL; 75 res = mtd_read_oob(part->master, from + part->offset, ops); 76 77 if (unlikely(res)) { 78 if (mtd_is_bitflip(res)) 79 mtd->ecc_stats.corrected++; 80 if (mtd_is_eccerr(res)) 81 mtd->ecc_stats.failed++; 82 } 83 return res; 84 } 85 86 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 87 size_t len, size_t *retlen, u_char *buf) 88 { 89 struct mtd_part *part = PART(mtd); 90 return mtd_read_user_prot_reg(part->master, from, len, retlen, buf); 91 } 92 93 static int part_get_user_prot_info(struct mtd_info *mtd, 94 struct otp_info *buf, size_t len) 95 { 96 struct mtd_part *part = PART(mtd); 97 return mtd_get_user_prot_info(part->master, buf, len); 98 } 99 100 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 101 size_t len, size_t *retlen, u_char *buf) 102 { 103 struct mtd_part *part = PART(mtd); 104 return mtd_read_fact_prot_reg(part->master, from, len, retlen, buf); 105 } 106 107 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, 108 size_t len) 109 { 110 struct mtd_part *part = PART(mtd); 111 return mtd_get_fact_prot_info(part->master, buf, len); 112 } 113 114 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 115 size_t *retlen, const u_char *buf) 116 { 117 struct mtd_part *part = PART(mtd); 118 return mtd_write(part->master, to + part->offset, len, retlen, buf); 119 } 120 121 static int part_write_oob(struct mtd_info *mtd, loff_t to, 122 struct mtd_oob_ops *ops) 123 { 124 struct mtd_part *part = PART(mtd); 125 126 if (to >= mtd->size) 127 return -EINVAL; 128 if (ops->datbuf && to + ops->len > mtd->size) 129 return -EINVAL; 130 return mtd_write_oob(part->master, to + part->offset, ops); 131 } 132 133 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 134 size_t len, size_t *retlen, u_char *buf) 135 { 136 struct mtd_part *part = PART(mtd); 137 return mtd_write_user_prot_reg(part->master, from, len, retlen, buf); 138 } 139 140 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 141 size_t len) 142 { 143 struct mtd_part *part = PART(mtd); 144 return mtd_lock_user_prot_reg(part->master, from, len); 145 } 146 147 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 148 { 149 struct mtd_part *part = PART(mtd); 150 int ret; 151 152 instr->addr += part->offset; 153 ret = mtd_erase(part->master, instr); 154 if (ret) { 155 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 156 instr->fail_addr -= part->offset; 157 instr->addr -= part->offset; 158 } 159 return ret; 160 } 161 162 void mtd_erase_callback(struct erase_info *instr) 163 { 164 if (instr->mtd->_erase == part_erase) { 165 struct mtd_part *part = PART(instr->mtd); 166 167 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 168 instr->fail_addr -= part->offset; 169 instr->addr -= part->offset; 170 } 171 if (instr->callback) 172 instr->callback(instr); 173 } 174 175 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 176 { 177 struct mtd_part *part = PART(mtd); 178 return mtd_lock(part->master, ofs + part->offset, len); 179 } 180 181 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 182 { 183 struct mtd_part *part = PART(mtd); 184 return mtd_unlock(part->master, ofs + part->offset, len); 185 } 186 187 static void part_sync(struct mtd_info *mtd) 188 { 189 struct mtd_part *part = PART(mtd); 190 mtd_sync(part->master); 191 } 192 193 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 194 { 195 struct mtd_part *part = PART(mtd); 196 ofs += part->offset; 197 return mtd_block_isbad(part->master, ofs); 198 } 199 200 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 201 { 202 struct mtd_part *part = PART(mtd); 203 int res; 204 205 ofs += part->offset; 206 res = mtd_block_markbad(part->master, ofs); 207 if (!res) 208 mtd->ecc_stats.badblocks++; 209 return res; 210 } 211 212 /* 213 * This function unregisters and destroy all slave MTD objects which are 214 * attached to the given master MTD object. 215 */ 216 217 int del_mtd_partitions(struct mtd_info *master) 218 { 219 struct mtd_part *slave, *next; 220 221 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 222 if (slave->master == master) { 223 list_del(&slave->list); 224 if (slave->registered) 225 del_mtd_device(&slave->mtd); 226 kfree(slave); 227 } 228 229 return 0; 230 } 231 232 static struct mtd_part *add_one_partition(struct mtd_info *master, 233 const struct mtd_partition *part, int partno, 234 uint64_t cur_offset) 235 { 236 struct mtd_part *slave; 237 238 /* allocate the partition structure */ 239 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 240 if (!slave) { 241 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 242 master->name); 243 del_mtd_partitions(master); 244 return NULL; 245 } 246 list_add(&slave->list, &mtd_partitions); 247 248 /* set up the MTD object for this partition */ 249 slave->mtd.type = master->type; 250 slave->mtd.flags = master->flags & ~part->mask_flags; 251 slave->mtd.size = part->size; 252 slave->mtd.writesize = master->writesize; 253 slave->mtd.oobsize = master->oobsize; 254 slave->mtd.oobavail = master->oobavail; 255 slave->mtd.subpage_sft = master->subpage_sft; 256 257 slave->mtd.name = part->name; 258 slave->mtd.owner = master->owner; 259 260 slave->mtd._read = part_read; 261 slave->mtd._write = part_write; 262 263 if (master->_read_oob) 264 slave->mtd._read_oob = part_read_oob; 265 if (master->_write_oob) 266 slave->mtd._write_oob = part_write_oob; 267 if (master->_read_user_prot_reg) 268 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 269 if (master->_read_fact_prot_reg) 270 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 271 if (master->_write_user_prot_reg) 272 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 273 if (master->_lock_user_prot_reg) 274 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 275 if (master->_get_user_prot_info) 276 slave->mtd._get_user_prot_info = part_get_user_prot_info; 277 if (master->_get_fact_prot_info) 278 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 279 if (master->_sync) 280 slave->mtd._sync = part_sync; 281 if (master->_lock) 282 slave->mtd._lock = part_lock; 283 if (master->_unlock) 284 slave->mtd._unlock = part_unlock; 285 if (master->_block_isbad) 286 slave->mtd._block_isbad = part_block_isbad; 287 if (master->_block_markbad) 288 slave->mtd._block_markbad = part_block_markbad; 289 slave->mtd._erase = part_erase; 290 slave->master = master; 291 slave->offset = part->offset; 292 slave->index = partno; 293 294 if (slave->offset == MTDPART_OFS_APPEND) 295 slave->offset = cur_offset; 296 if (slave->offset == MTDPART_OFS_NXTBLK) { 297 slave->offset = cur_offset; 298 if (mtd_mod_by_eb(cur_offset, master) != 0) { 299 /* Round up to next erasesize */ 300 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 301 debug("Moving partition %d: 0x%012llx -> 0x%012llx\n", 302 partno, (unsigned long long)cur_offset, 303 (unsigned long long)slave->offset); 304 } 305 } 306 if (slave->mtd.size == MTDPART_SIZ_FULL) 307 slave->mtd.size = master->size - slave->offset; 308 309 debug("0x%012llx-0x%012llx : \"%s\"\n", 310 (unsigned long long)slave->offset, 311 (unsigned long long)(slave->offset + slave->mtd.size), 312 slave->mtd.name); 313 314 /* let's do some sanity checks */ 315 if (slave->offset >= master->size) { 316 /* let's register it anyway to preserve ordering */ 317 slave->offset = 0; 318 slave->mtd.size = 0; 319 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 320 part->name); 321 goto out_register; 322 } 323 if (slave->offset + slave->mtd.size > master->size) { 324 slave->mtd.size = master->size - slave->offset; 325 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 326 part->name, master->name, (unsigned long long)slave->mtd.size); 327 } 328 if (master->numeraseregions > 1) { 329 /* Deal with variable erase size stuff */ 330 int i, max = master->numeraseregions; 331 u64 end = slave->offset + slave->mtd.size; 332 struct mtd_erase_region_info *regions = master->eraseregions; 333 334 /* Find the first erase regions which is part of this 335 * partition. */ 336 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 337 ; 338 /* The loop searched for the region _behind_ the first one */ 339 i--; 340 341 /* Pick biggest erasesize */ 342 for (; i < max && regions[i].offset < end; i++) { 343 if (slave->mtd.erasesize < regions[i].erasesize) { 344 slave->mtd.erasesize = regions[i].erasesize; 345 } 346 } 347 BUG_ON(slave->mtd.erasesize == 0); 348 } else { 349 /* Single erase size */ 350 slave->mtd.erasesize = master->erasesize; 351 } 352 353 if ((slave->mtd.flags & MTD_WRITEABLE) && 354 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 355 /* Doesn't start on a boundary of major erase size */ 356 /* FIXME: Let it be writable if it is on a boundary of 357 * _minor_ erase size though */ 358 slave->mtd.flags &= ~MTD_WRITEABLE; 359 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 360 part->name); 361 } 362 if ((slave->mtd.flags & MTD_WRITEABLE) && 363 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 364 slave->mtd.flags &= ~MTD_WRITEABLE; 365 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 366 part->name); 367 } 368 369 slave->mtd.ecclayout = master->ecclayout; 370 if (master->_block_isbad) { 371 uint64_t offs = 0; 372 373 while (offs < slave->mtd.size) { 374 if (mtd_block_isbad(master, offs + slave->offset)) 375 slave->mtd.ecc_stats.badblocks++; 376 offs += slave->mtd.erasesize; 377 } 378 } 379 380 out_register: 381 if (part->mtdp) { 382 /* store the object pointer (caller may or may not register it*/ 383 *part->mtdp = &slave->mtd; 384 slave->registered = 0; 385 } else { 386 /* register our partition */ 387 add_mtd_device(&slave->mtd); 388 slave->registered = 1; 389 } 390 return slave; 391 } 392 393 /* 394 * This function, given a master MTD object and a partition table, creates 395 * and registers slave MTD objects which are bound to the master according to 396 * the partition definitions. 397 * 398 * We don't register the master, or expect the caller to have done so, 399 * for reasons of data integrity. 400 */ 401 402 int add_mtd_partitions(struct mtd_info *master, 403 const struct mtd_partition *parts, 404 int nbparts) 405 { 406 struct mtd_part *slave; 407 uint64_t cur_offset = 0; 408 int i; 409 410 /* 411 * Need to init the list here, since LIST_INIT() does not 412 * work on platforms where relocation has problems (like MIPS 413 * & PPC). 414 */ 415 if (mtd_partitions.next == NULL) 416 INIT_LIST_HEAD(&mtd_partitions); 417 418 debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 419 420 for (i = 0; i < nbparts; i++) { 421 slave = add_one_partition(master, parts + i, i, cur_offset); 422 if (!slave) 423 return -ENOMEM; 424 cur_offset = slave->offset + slave->mtd.size; 425 } 426 427 return 0; 428 } 429