1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 * 9 */ 10 11 #ifndef __UBOOT__ 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/ptrace.h> 15 #include <linux/seq_file.h> 16 #include <linux/string.h> 17 #include <linux/timer.h> 18 #include <linux/major.h> 19 #include <linux/fs.h> 20 #include <linux/err.h> 21 #include <linux/ioctl.h> 22 #include <linux/init.h> 23 #include <linux/proc_fs.h> 24 #include <linux/idr.h> 25 #include <linux/backing-dev.h> 26 #include <linux/gfp.h> 27 #include <linux/slab.h> 28 #else 29 #include <linux/err.h> 30 #include <ubi_uboot.h> 31 #endif 32 33 #include <linux/log2.h> 34 #include <linux/mtd/mtd.h> 35 #include <linux/mtd/partitions.h> 36 37 #include "mtdcore.h" 38 39 #ifndef __UBOOT__ 40 /* 41 * backing device capabilities for non-mappable devices (such as NAND flash) 42 * - permits private mappings, copies are taken of the data 43 */ 44 static struct backing_dev_info mtd_bdi_unmappable = { 45 .capabilities = BDI_CAP_MAP_COPY, 46 }; 47 48 /* 49 * backing device capabilities for R/O mappable devices (such as ROM) 50 * - permits private mappings, copies are taken of the data 51 * - permits non-writable shared mappings 52 */ 53 static struct backing_dev_info mtd_bdi_ro_mappable = { 54 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 55 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), 56 }; 57 58 /* 59 * backing device capabilities for writable mappable devices (such as RAM) 60 * - permits private mappings, copies are taken of the data 61 * - permits non-writable shared mappings 62 */ 63 static struct backing_dev_info mtd_bdi_rw_mappable = { 64 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 65 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | 66 BDI_CAP_WRITE_MAP), 67 }; 68 69 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 70 static int mtd_cls_resume(struct device *dev); 71 72 static struct class mtd_class = { 73 .name = "mtd", 74 .owner = THIS_MODULE, 75 .suspend = mtd_cls_suspend, 76 .resume = mtd_cls_resume, 77 }; 78 #else 79 struct mtd_info *mtd_table[MAX_MTD_DEVICES]; 80 81 #define MAX_IDR_ID 64 82 83 struct idr_layer { 84 int used; 85 void *ptr; 86 }; 87 88 struct idr { 89 struct idr_layer id[MAX_IDR_ID]; 90 bool updated; 91 }; 92 93 #define DEFINE_IDR(name) struct idr name; 94 95 void idr_remove(struct idr *idp, int id) 96 { 97 if (idp->id[id].used) { 98 idp->id[id].used = 0; 99 idp->updated = true; 100 } 101 102 return; 103 } 104 void *idr_find(struct idr *idp, int id) 105 { 106 if (idp->id[id].used) 107 return idp->id[id].ptr; 108 109 return NULL; 110 } 111 112 void *idr_get_next(struct idr *idp, int *next) 113 { 114 void *ret; 115 int id = *next; 116 117 ret = idr_find(idp, id); 118 if (ret) { 119 id ++; 120 if (!idp->id[id].used) 121 id = 0; 122 *next = id; 123 } else { 124 *next = 0; 125 } 126 127 return ret; 128 } 129 130 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask) 131 { 132 struct idr_layer *idl; 133 int i = 0; 134 135 while (i < MAX_IDR_ID) { 136 idl = &idp->id[i]; 137 if (idl->used == 0) { 138 idl->used = 1; 139 idl->ptr = ptr; 140 idp->updated = true; 141 return i; 142 } 143 i++; 144 } 145 return -ENOSPC; 146 } 147 #endif 148 149 static DEFINE_IDR(mtd_idr); 150 151 /* These are exported solely for the purpose of mtd_blkdevs.c. You 152 should not use them for _anything_ else */ 153 DEFINE_MUTEX(mtd_table_mutex); 154 EXPORT_SYMBOL_GPL(mtd_table_mutex); 155 156 struct mtd_info *__mtd_next_device(int i) 157 { 158 return idr_get_next(&mtd_idr, &i); 159 } 160 EXPORT_SYMBOL_GPL(__mtd_next_device); 161 162 bool mtd_dev_list_updated(void) 163 { 164 if (mtd_idr.updated) { 165 mtd_idr.updated = false; 166 return true; 167 } 168 169 return false; 170 } 171 172 #ifndef __UBOOT__ 173 static LIST_HEAD(mtd_notifiers); 174 175 176 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 177 178 /* REVISIT once MTD uses the driver model better, whoever allocates 179 * the mtd_info will probably want to use the release() hook... 180 */ 181 static void mtd_release(struct device *dev) 182 { 183 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev); 184 dev_t index = MTD_DEVT(mtd->index); 185 186 /* remove /dev/mtdXro node if needed */ 187 if (index) 188 device_destroy(&mtd_class, index + 1); 189 } 190 191 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 192 { 193 struct mtd_info *mtd = dev_get_drvdata(dev); 194 195 return mtd ? mtd_suspend(mtd) : 0; 196 } 197 198 static int mtd_cls_resume(struct device *dev) 199 { 200 struct mtd_info *mtd = dev_get_drvdata(dev); 201 202 if (mtd) 203 mtd_resume(mtd); 204 return 0; 205 } 206 207 static ssize_t mtd_type_show(struct device *dev, 208 struct device_attribute *attr, char *buf) 209 { 210 struct mtd_info *mtd = dev_get_drvdata(dev); 211 char *type; 212 213 switch (mtd->type) { 214 case MTD_ABSENT: 215 type = "absent"; 216 break; 217 case MTD_RAM: 218 type = "ram"; 219 break; 220 case MTD_ROM: 221 type = "rom"; 222 break; 223 case MTD_NORFLASH: 224 type = "nor"; 225 break; 226 case MTD_NANDFLASH: 227 type = "nand"; 228 break; 229 case MTD_DATAFLASH: 230 type = "dataflash"; 231 break; 232 case MTD_UBIVOLUME: 233 type = "ubi"; 234 break; 235 case MTD_MLCNANDFLASH: 236 type = "mlc-nand"; 237 break; 238 default: 239 type = "unknown"; 240 } 241 242 return snprintf(buf, PAGE_SIZE, "%s\n", type); 243 } 244 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 245 246 static ssize_t mtd_flags_show(struct device *dev, 247 struct device_attribute *attr, char *buf) 248 { 249 struct mtd_info *mtd = dev_get_drvdata(dev); 250 251 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 252 253 } 254 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 255 256 static ssize_t mtd_size_show(struct device *dev, 257 struct device_attribute *attr, char *buf) 258 { 259 struct mtd_info *mtd = dev_get_drvdata(dev); 260 261 return snprintf(buf, PAGE_SIZE, "%llu\n", 262 (unsigned long long)mtd->size); 263 264 } 265 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 266 267 static ssize_t mtd_erasesize_show(struct device *dev, 268 struct device_attribute *attr, char *buf) 269 { 270 struct mtd_info *mtd = dev_get_drvdata(dev); 271 272 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 273 274 } 275 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 276 277 static ssize_t mtd_writesize_show(struct device *dev, 278 struct device_attribute *attr, char *buf) 279 { 280 struct mtd_info *mtd = dev_get_drvdata(dev); 281 282 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 283 284 } 285 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 286 287 static ssize_t mtd_subpagesize_show(struct device *dev, 288 struct device_attribute *attr, char *buf) 289 { 290 struct mtd_info *mtd = dev_get_drvdata(dev); 291 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 292 293 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 294 295 } 296 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 297 298 static ssize_t mtd_oobsize_show(struct device *dev, 299 struct device_attribute *attr, char *buf) 300 { 301 struct mtd_info *mtd = dev_get_drvdata(dev); 302 303 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 304 305 } 306 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 307 308 static ssize_t mtd_numeraseregions_show(struct device *dev, 309 struct device_attribute *attr, char *buf) 310 { 311 struct mtd_info *mtd = dev_get_drvdata(dev); 312 313 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 314 315 } 316 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 317 NULL); 318 319 static ssize_t mtd_name_show(struct device *dev, 320 struct device_attribute *attr, char *buf) 321 { 322 struct mtd_info *mtd = dev_get_drvdata(dev); 323 324 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 325 326 } 327 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 328 329 static ssize_t mtd_ecc_strength_show(struct device *dev, 330 struct device_attribute *attr, char *buf) 331 { 332 struct mtd_info *mtd = dev_get_drvdata(dev); 333 334 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 335 } 336 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 337 338 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 339 struct device_attribute *attr, 340 char *buf) 341 { 342 struct mtd_info *mtd = dev_get_drvdata(dev); 343 344 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 345 } 346 347 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 348 struct device_attribute *attr, 349 const char *buf, size_t count) 350 { 351 struct mtd_info *mtd = dev_get_drvdata(dev); 352 unsigned int bitflip_threshold; 353 int retval; 354 355 retval = kstrtouint(buf, 0, &bitflip_threshold); 356 if (retval) 357 return retval; 358 359 mtd->bitflip_threshold = bitflip_threshold; 360 return count; 361 } 362 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 363 mtd_bitflip_threshold_show, 364 mtd_bitflip_threshold_store); 365 366 static ssize_t mtd_ecc_step_size_show(struct device *dev, 367 struct device_attribute *attr, char *buf) 368 { 369 struct mtd_info *mtd = dev_get_drvdata(dev); 370 371 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 372 373 } 374 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 375 376 static struct attribute *mtd_attrs[] = { 377 &dev_attr_type.attr, 378 &dev_attr_flags.attr, 379 &dev_attr_size.attr, 380 &dev_attr_erasesize.attr, 381 &dev_attr_writesize.attr, 382 &dev_attr_subpagesize.attr, 383 &dev_attr_oobsize.attr, 384 &dev_attr_numeraseregions.attr, 385 &dev_attr_name.attr, 386 &dev_attr_ecc_strength.attr, 387 &dev_attr_ecc_step_size.attr, 388 &dev_attr_bitflip_threshold.attr, 389 NULL, 390 }; 391 ATTRIBUTE_GROUPS(mtd); 392 393 static struct device_type mtd_devtype = { 394 .name = "mtd", 395 .groups = mtd_groups, 396 .release = mtd_release, 397 }; 398 #endif 399 400 /** 401 * add_mtd_device - register an MTD device 402 * @mtd: pointer to new MTD device info structure 403 * 404 * Add a device to the list of MTD devices present in the system, and 405 * notify each currently active MTD 'user' of its arrival. Returns 406 * zero on success or 1 on failure, which currently will only happen 407 * if there is insufficient memory or a sysfs error. 408 */ 409 410 int add_mtd_device(struct mtd_info *mtd) 411 { 412 #ifndef __UBOOT__ 413 struct mtd_notifier *not; 414 #endif 415 int i, error; 416 417 #ifndef __UBOOT__ 418 if (!mtd->backing_dev_info) { 419 switch (mtd->type) { 420 case MTD_RAM: 421 mtd->backing_dev_info = &mtd_bdi_rw_mappable; 422 break; 423 case MTD_ROM: 424 mtd->backing_dev_info = &mtd_bdi_ro_mappable; 425 break; 426 default: 427 mtd->backing_dev_info = &mtd_bdi_unmappable; 428 break; 429 } 430 } 431 #endif 432 433 BUG_ON(mtd->writesize == 0); 434 mutex_lock(&mtd_table_mutex); 435 436 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 437 if (i < 0) 438 goto fail_locked; 439 440 mtd->index = i; 441 mtd->usecount = 0; 442 443 INIT_LIST_HEAD(&mtd->partitions); 444 445 /* default value if not set by driver */ 446 if (mtd->bitflip_threshold == 0) 447 mtd->bitflip_threshold = mtd->ecc_strength; 448 449 if (is_power_of_2(mtd->erasesize)) 450 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 451 else 452 mtd->erasesize_shift = 0; 453 454 if (is_power_of_2(mtd->writesize)) 455 mtd->writesize_shift = ffs(mtd->writesize) - 1; 456 else 457 mtd->writesize_shift = 0; 458 459 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 460 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 461 462 /* Some chips always power up locked. Unlock them now */ 463 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 464 error = mtd_unlock(mtd, 0, mtd->size); 465 if (error && error != -EOPNOTSUPP) 466 printk(KERN_WARNING 467 "%s: unlock failed, writes may not work\n", 468 mtd->name); 469 } 470 471 #ifndef __UBOOT__ 472 /* Caller should have set dev.parent to match the 473 * physical device. 474 */ 475 mtd->dev.type = &mtd_devtype; 476 mtd->dev.class = &mtd_class; 477 mtd->dev.devt = MTD_DEVT(i); 478 dev_set_name(&mtd->dev, "mtd%d", i); 479 dev_set_drvdata(&mtd->dev, mtd); 480 if (device_register(&mtd->dev) != 0) 481 goto fail_added; 482 483 if (MTD_DEVT(i)) 484 device_create(&mtd_class, mtd->dev.parent, 485 MTD_DEVT(i) + 1, 486 NULL, "mtd%dro", i); 487 488 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 489 /* No need to get a refcount on the module containing 490 the notifier, since we hold the mtd_table_mutex */ 491 list_for_each_entry(not, &mtd_notifiers, list) 492 not->add(mtd); 493 #else 494 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 495 #endif 496 497 mutex_unlock(&mtd_table_mutex); 498 /* We _know_ we aren't being removed, because 499 our caller is still holding us here. So none 500 of this try_ nonsense, and no bitching about it 501 either. :) */ 502 __module_get(THIS_MODULE); 503 return 0; 504 505 #ifndef __UBOOT__ 506 fail_added: 507 idr_remove(&mtd_idr, i); 508 #endif 509 fail_locked: 510 mutex_unlock(&mtd_table_mutex); 511 return 1; 512 } 513 514 /** 515 * del_mtd_device - unregister an MTD device 516 * @mtd: pointer to MTD device info structure 517 * 518 * Remove a device from the list of MTD devices present in the system, 519 * and notify each currently active MTD 'user' of its departure. 520 * Returns zero on success or 1 on failure, which currently will happen 521 * if the requested device does not appear to be present in the list. 522 */ 523 524 int del_mtd_device(struct mtd_info *mtd) 525 { 526 int ret; 527 #ifndef __UBOOT__ 528 struct mtd_notifier *not; 529 #endif 530 531 ret = del_mtd_partitions(mtd); 532 if (ret) { 533 debug("Failed to delete MTD partitions attached to %s (err %d)\n", 534 mtd->name, ret); 535 return ret; 536 } 537 538 mutex_lock(&mtd_table_mutex); 539 540 if (idr_find(&mtd_idr, mtd->index) != mtd) { 541 ret = -ENODEV; 542 goto out_error; 543 } 544 545 #ifndef __UBOOT__ 546 /* No need to get a refcount on the module containing 547 the notifier, since we hold the mtd_table_mutex */ 548 list_for_each_entry(not, &mtd_notifiers, list) 549 not->remove(mtd); 550 #endif 551 552 if (mtd->usecount) { 553 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 554 mtd->index, mtd->name, mtd->usecount); 555 ret = -EBUSY; 556 } else { 557 #ifndef __UBOOT__ 558 device_unregister(&mtd->dev); 559 #endif 560 561 idr_remove(&mtd_idr, mtd->index); 562 563 module_put(THIS_MODULE); 564 ret = 0; 565 } 566 567 out_error: 568 mutex_unlock(&mtd_table_mutex); 569 return ret; 570 } 571 572 #ifndef __UBOOT__ 573 /** 574 * mtd_device_parse_register - parse partitions and register an MTD device. 575 * 576 * @mtd: the MTD device to register 577 * @types: the list of MTD partition probes to try, see 578 * 'parse_mtd_partitions()' for more information 579 * @parser_data: MTD partition parser-specific data 580 * @parts: fallback partition information to register, if parsing fails; 581 * only valid if %nr_parts > %0 582 * @nr_parts: the number of partitions in parts, if zero then the full 583 * MTD device is registered if no partition info is found 584 * 585 * This function aggregates MTD partitions parsing (done by 586 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 587 * basically follows the most common pattern found in many MTD drivers: 588 * 589 * * It first tries to probe partitions on MTD device @mtd using parsers 590 * specified in @types (if @types is %NULL, then the default list of parsers 591 * is used, see 'parse_mtd_partitions()' for more information). If none are 592 * found this functions tries to fallback to information specified in 593 * @parts/@nr_parts. 594 * * If any partitioning info was found, this function registers the found 595 * partitions. 596 * * If no partitions were found this function just registers the MTD device 597 * @mtd and exits. 598 * 599 * Returns zero in case of success and a negative error code in case of failure. 600 */ 601 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 602 struct mtd_part_parser_data *parser_data, 603 const struct mtd_partition *parts, 604 int nr_parts) 605 { 606 int err; 607 struct mtd_partition *real_parts; 608 609 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 610 if (err <= 0 && nr_parts && parts) { 611 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 612 GFP_KERNEL); 613 if (!real_parts) 614 err = -ENOMEM; 615 else 616 err = nr_parts; 617 } 618 619 if (err > 0) { 620 err = add_mtd_partitions(mtd, real_parts, err); 621 kfree(real_parts); 622 } else if (err == 0) { 623 err = add_mtd_device(mtd); 624 if (err == 1) 625 err = -ENODEV; 626 } 627 628 return err; 629 } 630 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 631 632 /** 633 * mtd_device_unregister - unregister an existing MTD device. 634 * 635 * @master: the MTD device to unregister. This will unregister both the master 636 * and any partitions if registered. 637 */ 638 int mtd_device_unregister(struct mtd_info *master) 639 { 640 int err; 641 642 err = del_mtd_partitions(master); 643 if (err) 644 return err; 645 646 if (!device_is_registered(&master->dev)) 647 return 0; 648 649 return del_mtd_device(master); 650 } 651 EXPORT_SYMBOL_GPL(mtd_device_unregister); 652 653 /** 654 * register_mtd_user - register a 'user' of MTD devices. 655 * @new: pointer to notifier info structure 656 * 657 * Registers a pair of callbacks function to be called upon addition 658 * or removal of MTD devices. Causes the 'add' callback to be immediately 659 * invoked for each MTD device currently present in the system. 660 */ 661 void register_mtd_user (struct mtd_notifier *new) 662 { 663 struct mtd_info *mtd; 664 665 mutex_lock(&mtd_table_mutex); 666 667 list_add(&new->list, &mtd_notifiers); 668 669 __module_get(THIS_MODULE); 670 671 mtd_for_each_device(mtd) 672 new->add(mtd); 673 674 mutex_unlock(&mtd_table_mutex); 675 } 676 EXPORT_SYMBOL_GPL(register_mtd_user); 677 678 /** 679 * unregister_mtd_user - unregister a 'user' of MTD devices. 680 * @old: pointer to notifier info structure 681 * 682 * Removes a callback function pair from the list of 'users' to be 683 * notified upon addition or removal of MTD devices. Causes the 684 * 'remove' callback to be immediately invoked for each MTD device 685 * currently present in the system. 686 */ 687 int unregister_mtd_user (struct mtd_notifier *old) 688 { 689 struct mtd_info *mtd; 690 691 mutex_lock(&mtd_table_mutex); 692 693 module_put(THIS_MODULE); 694 695 mtd_for_each_device(mtd) 696 old->remove(mtd); 697 698 list_del(&old->list); 699 mutex_unlock(&mtd_table_mutex); 700 return 0; 701 } 702 EXPORT_SYMBOL_GPL(unregister_mtd_user); 703 #endif 704 705 /** 706 * get_mtd_device - obtain a validated handle for an MTD device 707 * @mtd: last known address of the required MTD device 708 * @num: internal device number of the required MTD device 709 * 710 * Given a number and NULL address, return the num'th entry in the device 711 * table, if any. Given an address and num == -1, search the device table 712 * for a device with that address and return if it's still present. Given 713 * both, return the num'th driver only if its address matches. Return 714 * error code if not. 715 */ 716 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 717 { 718 struct mtd_info *ret = NULL, *other; 719 int err = -ENODEV; 720 721 mutex_lock(&mtd_table_mutex); 722 723 if (num == -1) { 724 mtd_for_each_device(other) { 725 if (other == mtd) { 726 ret = mtd; 727 break; 728 } 729 } 730 } else if (num >= 0) { 731 ret = idr_find(&mtd_idr, num); 732 if (mtd && mtd != ret) 733 ret = NULL; 734 } 735 736 if (!ret) { 737 ret = ERR_PTR(err); 738 goto out; 739 } 740 741 err = __get_mtd_device(ret); 742 if (err) 743 ret = ERR_PTR(err); 744 out: 745 mutex_unlock(&mtd_table_mutex); 746 return ret; 747 } 748 EXPORT_SYMBOL_GPL(get_mtd_device); 749 750 751 int __get_mtd_device(struct mtd_info *mtd) 752 { 753 int err; 754 755 if (!try_module_get(mtd->owner)) 756 return -ENODEV; 757 758 if (mtd->_get_device) { 759 err = mtd->_get_device(mtd); 760 761 if (err) { 762 module_put(mtd->owner); 763 return err; 764 } 765 } 766 mtd->usecount++; 767 return 0; 768 } 769 EXPORT_SYMBOL_GPL(__get_mtd_device); 770 771 /** 772 * get_mtd_device_nm - obtain a validated handle for an MTD device by 773 * device name 774 * @name: MTD device name to open 775 * 776 * This function returns MTD device description structure in case of 777 * success and an error code in case of failure. 778 */ 779 struct mtd_info *get_mtd_device_nm(const char *name) 780 { 781 int err = -ENODEV; 782 struct mtd_info *mtd = NULL, *other; 783 784 mutex_lock(&mtd_table_mutex); 785 786 mtd_for_each_device(other) { 787 if (!strcmp(name, other->name)) { 788 mtd = other; 789 break; 790 } 791 } 792 793 if (!mtd) 794 goto out_unlock; 795 796 err = __get_mtd_device(mtd); 797 if (err) 798 goto out_unlock; 799 800 mutex_unlock(&mtd_table_mutex); 801 return mtd; 802 803 out_unlock: 804 mutex_unlock(&mtd_table_mutex); 805 return ERR_PTR(err); 806 } 807 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 808 809 #if defined(CONFIG_CMD_MTDPARTS_SPREAD) 810 /** 811 * mtd_get_len_incl_bad 812 * 813 * Check if length including bad blocks fits into device. 814 * 815 * @param mtd an MTD device 816 * @param offset offset in flash 817 * @param length image length 818 * @return image length including bad blocks in *len_incl_bad and whether or not 819 * the length returned was truncated in *truncated 820 */ 821 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, 822 const uint64_t length, uint64_t *len_incl_bad, 823 int *truncated) 824 { 825 *truncated = 0; 826 *len_incl_bad = 0; 827 828 if (!mtd->_block_isbad) { 829 *len_incl_bad = length; 830 return; 831 } 832 833 uint64_t len_excl_bad = 0; 834 uint64_t block_len; 835 836 while (len_excl_bad < length) { 837 if (offset >= mtd->size) { 838 *truncated = 1; 839 return; 840 } 841 842 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1)); 843 844 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) 845 len_excl_bad += block_len; 846 847 *len_incl_bad += block_len; 848 offset += block_len; 849 } 850 } 851 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */ 852 853 void put_mtd_device(struct mtd_info *mtd) 854 { 855 mutex_lock(&mtd_table_mutex); 856 __put_mtd_device(mtd); 857 mutex_unlock(&mtd_table_mutex); 858 859 } 860 EXPORT_SYMBOL_GPL(put_mtd_device); 861 862 void __put_mtd_device(struct mtd_info *mtd) 863 { 864 --mtd->usecount; 865 BUG_ON(mtd->usecount < 0); 866 867 if (mtd->_put_device) 868 mtd->_put_device(mtd); 869 870 module_put(mtd->owner); 871 } 872 EXPORT_SYMBOL_GPL(__put_mtd_device); 873 874 /* 875 * Erase is an asynchronous operation. Device drivers are supposed 876 * to call instr->callback() whenever the operation completes, even 877 * if it completes with a failure. 878 * Callers are supposed to pass a callback function and wait for it 879 * to be called before writing to the block. 880 */ 881 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 882 { 883 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) 884 return -EINVAL; 885 if (!(mtd->flags & MTD_WRITEABLE)) 886 return -EROFS; 887 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 888 if (!instr->len) { 889 instr->state = MTD_ERASE_DONE; 890 mtd_erase_callback(instr); 891 return 0; 892 } 893 return mtd->_erase(mtd, instr); 894 } 895 EXPORT_SYMBOL_GPL(mtd_erase); 896 897 #ifndef __UBOOT__ 898 /* 899 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 900 */ 901 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 902 void **virt, resource_size_t *phys) 903 { 904 *retlen = 0; 905 *virt = NULL; 906 if (phys) 907 *phys = 0; 908 if (!mtd->_point) 909 return -EOPNOTSUPP; 910 if (from < 0 || from > mtd->size || len > mtd->size - from) 911 return -EINVAL; 912 if (!len) 913 return 0; 914 return mtd->_point(mtd, from, len, retlen, virt, phys); 915 } 916 EXPORT_SYMBOL_GPL(mtd_point); 917 918 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 919 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 920 { 921 if (!mtd->_point) 922 return -EOPNOTSUPP; 923 if (from < 0 || from > mtd->size || len > mtd->size - from) 924 return -EINVAL; 925 if (!len) 926 return 0; 927 return mtd->_unpoint(mtd, from, len); 928 } 929 EXPORT_SYMBOL_GPL(mtd_unpoint); 930 #endif 931 932 /* 933 * Allow NOMMU mmap() to directly map the device (if not NULL) 934 * - return the address to which the offset maps 935 * - return -ENOSYS to indicate refusal to do the mapping 936 */ 937 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 938 unsigned long offset, unsigned long flags) 939 { 940 if (!mtd->_get_unmapped_area) 941 return -EOPNOTSUPP; 942 if (offset > mtd->size || len > mtd->size - offset) 943 return -EINVAL; 944 return mtd->_get_unmapped_area(mtd, len, offset, flags); 945 } 946 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 947 948 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 949 u_char *buf) 950 { 951 int ret_code; 952 *retlen = 0; 953 if (from < 0 || from > mtd->size || len > mtd->size - from) 954 return -EINVAL; 955 if (!len) 956 return 0; 957 958 /* 959 * In the absence of an error, drivers return a non-negative integer 960 * representing the maximum number of bitflips that were corrected on 961 * any one ecc region (if applicable; zero otherwise). 962 */ 963 if (mtd->_read) { 964 ret_code = mtd->_read(mtd, from, len, retlen, buf); 965 } else if (mtd->_read_oob) { 966 struct mtd_oob_ops ops = { 967 .len = len, 968 .datbuf = buf, 969 }; 970 971 ret_code = mtd->_read_oob(mtd, from, &ops); 972 *retlen = ops.retlen; 973 } else { 974 return -ENOTSUPP; 975 } 976 977 if (unlikely(ret_code < 0)) 978 return ret_code; 979 if (mtd->ecc_strength == 0) 980 return 0; /* device lacks ecc */ 981 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 982 } 983 EXPORT_SYMBOL_GPL(mtd_read); 984 985 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 986 const u_char *buf) 987 { 988 *retlen = 0; 989 if (to < 0 || to > mtd->size || len > mtd->size - to) 990 return -EINVAL; 991 if ((!mtd->_write && !mtd->_write_oob) || 992 !(mtd->flags & MTD_WRITEABLE)) 993 return -EROFS; 994 if (!len) 995 return 0; 996 997 if (!mtd->_write) { 998 struct mtd_oob_ops ops = { 999 .len = len, 1000 .datbuf = (u8 *)buf, 1001 }; 1002 int ret; 1003 1004 ret = mtd->_write_oob(mtd, to, &ops); 1005 *retlen = ops.retlen; 1006 return ret; 1007 } 1008 1009 return mtd->_write(mtd, to, len, retlen, buf); 1010 } 1011 EXPORT_SYMBOL_GPL(mtd_write); 1012 1013 /* 1014 * In blackbox flight recorder like scenarios we want to make successful writes 1015 * in interrupt context. panic_write() is only intended to be called when its 1016 * known the kernel is about to panic and we need the write to succeed. Since 1017 * the kernel is not going to be running for much longer, this function can 1018 * break locks and delay to ensure the write succeeds (but not sleep). 1019 */ 1020 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1021 const u_char *buf) 1022 { 1023 *retlen = 0; 1024 if (!mtd->_panic_write) 1025 return -EOPNOTSUPP; 1026 if (to < 0 || to > mtd->size || len > mtd->size - to) 1027 return -EINVAL; 1028 if (!(mtd->flags & MTD_WRITEABLE)) 1029 return -EROFS; 1030 if (!len) 1031 return 0; 1032 return mtd->_panic_write(mtd, to, len, retlen, buf); 1033 } 1034 EXPORT_SYMBOL_GPL(mtd_panic_write); 1035 1036 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1037 struct mtd_oob_ops *ops) 1038 { 1039 /* 1040 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1041 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1042 * this case. 1043 */ 1044 if (!ops->datbuf) 1045 ops->len = 0; 1046 1047 if (!ops->oobbuf) 1048 ops->ooblen = 0; 1049 1050 if (offs < 0 || offs + ops->len > mtd->size) 1051 return -EINVAL; 1052 1053 if (ops->ooblen) { 1054 u64 maxooblen; 1055 1056 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1057 return -EINVAL; 1058 1059 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) - 1060 mtd_div_by_ws(offs, mtd)) * 1061 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1062 if (ops->ooblen > maxooblen) 1063 return -EINVAL; 1064 } 1065 1066 return 0; 1067 } 1068 1069 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1070 { 1071 int ret_code; 1072 ops->retlen = ops->oobretlen = 0; 1073 1074 ret_code = mtd_check_oob_ops(mtd, from, ops); 1075 if (ret_code) 1076 return ret_code; 1077 1078 /* Check the validity of a potential fallback on mtd->_read */ 1079 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf)) 1080 return -EOPNOTSUPP; 1081 1082 if (mtd->_read_oob) 1083 ret_code = mtd->_read_oob(mtd, from, ops); 1084 else 1085 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen, 1086 ops->datbuf); 1087 1088 /* 1089 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1090 * similar to mtd->_read(), returning a non-negative integer 1091 * representing max bitflips. In other cases, mtd->_read_oob() may 1092 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1093 */ 1094 if (unlikely(ret_code < 0)) 1095 return ret_code; 1096 if (mtd->ecc_strength == 0) 1097 return 0; /* device lacks ecc */ 1098 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1099 } 1100 EXPORT_SYMBOL_GPL(mtd_read_oob); 1101 1102 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1103 struct mtd_oob_ops *ops) 1104 { 1105 int ret; 1106 1107 ops->retlen = ops->oobretlen = 0; 1108 1109 if (!(mtd->flags & MTD_WRITEABLE)) 1110 return -EROFS; 1111 1112 ret = mtd_check_oob_ops(mtd, to, ops); 1113 if (ret) 1114 return ret; 1115 1116 /* Check the validity of a potential fallback on mtd->_write */ 1117 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf)) 1118 return -EOPNOTSUPP; 1119 1120 if (mtd->_write_oob) 1121 return mtd->_write_oob(mtd, to, ops); 1122 else 1123 return mtd->_write(mtd, to, ops->len, &ops->retlen, 1124 ops->datbuf); 1125 } 1126 EXPORT_SYMBOL_GPL(mtd_write_oob); 1127 1128 /** 1129 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1130 * @mtd: MTD device structure 1131 * @section: ECC section. Depending on the layout you may have all the ECC 1132 * bytes stored in a single contiguous section, or one section 1133 * per ECC chunk (and sometime several sections for a single ECC 1134 * ECC chunk) 1135 * @oobecc: OOB region struct filled with the appropriate ECC position 1136 * information 1137 * 1138 * This function returns ECC section information in the OOB area. If you want 1139 * to get all the ECC bytes information, then you should call 1140 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1141 * 1142 * Returns zero on success, a negative error code otherwise. 1143 */ 1144 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1145 struct mtd_oob_region *oobecc) 1146 { 1147 memset(oobecc, 0, sizeof(*oobecc)); 1148 1149 if (!mtd || section < 0) 1150 return -EINVAL; 1151 1152 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1153 return -ENOTSUPP; 1154 1155 return mtd->ooblayout->ecc(mtd, section, oobecc); 1156 } 1157 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1158 1159 /** 1160 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1161 * section 1162 * @mtd: MTD device structure 1163 * @section: Free section you are interested in. Depending on the layout 1164 * you may have all the free bytes stored in a single contiguous 1165 * section, or one section per ECC chunk plus an extra section 1166 * for the remaining bytes (or other funky layout). 1167 * @oobfree: OOB region struct filled with the appropriate free position 1168 * information 1169 * 1170 * This function returns free bytes position in the OOB area. If you want 1171 * to get all the free bytes information, then you should call 1172 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1173 * 1174 * Returns zero on success, a negative error code otherwise. 1175 */ 1176 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1177 struct mtd_oob_region *oobfree) 1178 { 1179 memset(oobfree, 0, sizeof(*oobfree)); 1180 1181 if (!mtd || section < 0) 1182 return -EINVAL; 1183 1184 if (!mtd->ooblayout || !mtd->ooblayout->free) 1185 return -ENOTSUPP; 1186 1187 return mtd->ooblayout->free(mtd, section, oobfree); 1188 } 1189 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1190 1191 /** 1192 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1193 * @mtd: mtd info structure 1194 * @byte: the byte we are searching for 1195 * @sectionp: pointer where the section id will be stored 1196 * @oobregion: used to retrieve the ECC position 1197 * @iter: iterator function. Should be either mtd_ooblayout_free or 1198 * mtd_ooblayout_ecc depending on the region type you're searching for 1199 * 1200 * This function returns the section id and oobregion information of a 1201 * specific byte. For example, say you want to know where the 4th ECC byte is 1202 * stored, you'll use: 1203 * 1204 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1205 * 1206 * Returns zero on success, a negative error code otherwise. 1207 */ 1208 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1209 int *sectionp, struct mtd_oob_region *oobregion, 1210 int (*iter)(struct mtd_info *, 1211 int section, 1212 struct mtd_oob_region *oobregion)) 1213 { 1214 int pos = 0, ret, section = 0; 1215 1216 memset(oobregion, 0, sizeof(*oobregion)); 1217 1218 while (1) { 1219 ret = iter(mtd, section, oobregion); 1220 if (ret) 1221 return ret; 1222 1223 if (pos + oobregion->length > byte) 1224 break; 1225 1226 pos += oobregion->length; 1227 section++; 1228 } 1229 1230 /* 1231 * Adjust region info to make it start at the beginning at the 1232 * 'start' ECC byte. 1233 */ 1234 oobregion->offset += byte - pos; 1235 oobregion->length -= byte - pos; 1236 *sectionp = section; 1237 1238 return 0; 1239 } 1240 1241 /** 1242 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1243 * ECC byte 1244 * @mtd: mtd info structure 1245 * @eccbyte: the byte we are searching for 1246 * @sectionp: pointer where the section id will be stored 1247 * @oobregion: OOB region information 1248 * 1249 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1250 * byte. 1251 * 1252 * Returns zero on success, a negative error code otherwise. 1253 */ 1254 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1255 int *section, 1256 struct mtd_oob_region *oobregion) 1257 { 1258 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1259 mtd_ooblayout_ecc); 1260 } 1261 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1262 1263 /** 1264 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1265 * @mtd: mtd info structure 1266 * @buf: destination buffer to store OOB bytes 1267 * @oobbuf: OOB buffer 1268 * @start: first byte to retrieve 1269 * @nbytes: number of bytes to retrieve 1270 * @iter: section iterator 1271 * 1272 * Extract bytes attached to a specific category (ECC or free) 1273 * from the OOB buffer and copy them into buf. 1274 * 1275 * Returns zero on success, a negative error code otherwise. 1276 */ 1277 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1278 const u8 *oobbuf, int start, int nbytes, 1279 int (*iter)(struct mtd_info *, 1280 int section, 1281 struct mtd_oob_region *oobregion)) 1282 { 1283 struct mtd_oob_region oobregion; 1284 int section, ret; 1285 1286 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1287 &oobregion, iter); 1288 1289 while (!ret) { 1290 int cnt; 1291 1292 cnt = min_t(int, nbytes, oobregion.length); 1293 memcpy(buf, oobbuf + oobregion.offset, cnt); 1294 buf += cnt; 1295 nbytes -= cnt; 1296 1297 if (!nbytes) 1298 break; 1299 1300 ret = iter(mtd, ++section, &oobregion); 1301 } 1302 1303 return ret; 1304 } 1305 1306 /** 1307 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1308 * @mtd: mtd info structure 1309 * @buf: source buffer to get OOB bytes from 1310 * @oobbuf: OOB buffer 1311 * @start: first OOB byte to set 1312 * @nbytes: number of OOB bytes to set 1313 * @iter: section iterator 1314 * 1315 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1316 * is selected by passing the appropriate iterator. 1317 * 1318 * Returns zero on success, a negative error code otherwise. 1319 */ 1320 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1321 u8 *oobbuf, int start, int nbytes, 1322 int (*iter)(struct mtd_info *, 1323 int section, 1324 struct mtd_oob_region *oobregion)) 1325 { 1326 struct mtd_oob_region oobregion; 1327 int section, ret; 1328 1329 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1330 &oobregion, iter); 1331 1332 while (!ret) { 1333 int cnt; 1334 1335 cnt = min_t(int, nbytes, oobregion.length); 1336 memcpy(oobbuf + oobregion.offset, buf, cnt); 1337 buf += cnt; 1338 nbytes -= cnt; 1339 1340 if (!nbytes) 1341 break; 1342 1343 ret = iter(mtd, ++section, &oobregion); 1344 } 1345 1346 return ret; 1347 } 1348 1349 /** 1350 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1351 * @mtd: mtd info structure 1352 * @iter: category iterator 1353 * 1354 * Count the number of bytes in a given category. 1355 * 1356 * Returns a positive value on success, a negative error code otherwise. 1357 */ 1358 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1359 int (*iter)(struct mtd_info *, 1360 int section, 1361 struct mtd_oob_region *oobregion)) 1362 { 1363 struct mtd_oob_region oobregion; 1364 int section = 0, ret, nbytes = 0; 1365 1366 while (1) { 1367 ret = iter(mtd, section++, &oobregion); 1368 if (ret) { 1369 if (ret == -ERANGE) 1370 ret = nbytes; 1371 break; 1372 } 1373 1374 nbytes += oobregion.length; 1375 } 1376 1377 return ret; 1378 } 1379 1380 /** 1381 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1382 * @mtd: mtd info structure 1383 * @eccbuf: destination buffer to store ECC bytes 1384 * @oobbuf: OOB buffer 1385 * @start: first ECC byte to retrieve 1386 * @nbytes: number of ECC bytes to retrieve 1387 * 1388 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1389 * 1390 * Returns zero on success, a negative error code otherwise. 1391 */ 1392 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1393 const u8 *oobbuf, int start, int nbytes) 1394 { 1395 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1396 mtd_ooblayout_ecc); 1397 } 1398 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1399 1400 /** 1401 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1402 * @mtd: mtd info structure 1403 * @eccbuf: source buffer to get ECC bytes from 1404 * @oobbuf: OOB buffer 1405 * @start: first ECC byte to set 1406 * @nbytes: number of ECC bytes to set 1407 * 1408 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1409 * 1410 * Returns zero on success, a negative error code otherwise. 1411 */ 1412 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1413 u8 *oobbuf, int start, int nbytes) 1414 { 1415 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1416 mtd_ooblayout_ecc); 1417 } 1418 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1419 1420 /** 1421 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1422 * @mtd: mtd info structure 1423 * @databuf: destination buffer to store ECC bytes 1424 * @oobbuf: OOB buffer 1425 * @start: first ECC byte to retrieve 1426 * @nbytes: number of ECC bytes to retrieve 1427 * 1428 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1429 * 1430 * Returns zero on success, a negative error code otherwise. 1431 */ 1432 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1433 const u8 *oobbuf, int start, int nbytes) 1434 { 1435 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1436 mtd_ooblayout_free); 1437 } 1438 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1439 1440 /** 1441 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1442 * @mtd: mtd info structure 1443 * @eccbuf: source buffer to get data bytes from 1444 * @oobbuf: OOB buffer 1445 * @start: first ECC byte to set 1446 * @nbytes: number of ECC bytes to set 1447 * 1448 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1449 * 1450 * Returns zero on success, a negative error code otherwise. 1451 */ 1452 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1453 u8 *oobbuf, int start, int nbytes) 1454 { 1455 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1456 mtd_ooblayout_free); 1457 } 1458 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1459 1460 /** 1461 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1462 * @mtd: mtd info structure 1463 * 1464 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1465 * 1466 * Returns zero on success, a negative error code otherwise. 1467 */ 1468 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1469 { 1470 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1471 } 1472 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1473 1474 /** 1475 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1476 * @mtd: mtd info structure 1477 * 1478 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1479 * 1480 * Returns zero on success, a negative error code otherwise. 1481 */ 1482 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1483 { 1484 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1485 } 1486 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1487 1488 /* 1489 * Method to access the protection register area, present in some flash 1490 * devices. The user data is one time programmable but the factory data is read 1491 * only. 1492 */ 1493 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1494 struct otp_info *buf) 1495 { 1496 if (!mtd->_get_fact_prot_info) 1497 return -EOPNOTSUPP; 1498 if (!len) 1499 return 0; 1500 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1501 } 1502 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1503 1504 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1505 size_t *retlen, u_char *buf) 1506 { 1507 *retlen = 0; 1508 if (!mtd->_read_fact_prot_reg) 1509 return -EOPNOTSUPP; 1510 if (!len) 1511 return 0; 1512 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1513 } 1514 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1515 1516 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1517 struct otp_info *buf) 1518 { 1519 if (!mtd->_get_user_prot_info) 1520 return -EOPNOTSUPP; 1521 if (!len) 1522 return 0; 1523 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1524 } 1525 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1526 1527 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1528 size_t *retlen, u_char *buf) 1529 { 1530 *retlen = 0; 1531 if (!mtd->_read_user_prot_reg) 1532 return -EOPNOTSUPP; 1533 if (!len) 1534 return 0; 1535 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1536 } 1537 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1538 1539 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1540 size_t *retlen, u_char *buf) 1541 { 1542 int ret; 1543 1544 *retlen = 0; 1545 if (!mtd->_write_user_prot_reg) 1546 return -EOPNOTSUPP; 1547 if (!len) 1548 return 0; 1549 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1550 if (ret) 1551 return ret; 1552 1553 /* 1554 * If no data could be written at all, we are out of memory and 1555 * must return -ENOSPC. 1556 */ 1557 return (*retlen) ? 0 : -ENOSPC; 1558 } 1559 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1560 1561 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1562 { 1563 if (!mtd->_lock_user_prot_reg) 1564 return -EOPNOTSUPP; 1565 if (!len) 1566 return 0; 1567 return mtd->_lock_user_prot_reg(mtd, from, len); 1568 } 1569 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1570 1571 /* Chip-supported device locking */ 1572 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1573 { 1574 if (!mtd->_lock) 1575 return -EOPNOTSUPP; 1576 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1577 return -EINVAL; 1578 if (!len) 1579 return 0; 1580 return mtd->_lock(mtd, ofs, len); 1581 } 1582 EXPORT_SYMBOL_GPL(mtd_lock); 1583 1584 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1585 { 1586 if (!mtd->_unlock) 1587 return -EOPNOTSUPP; 1588 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1589 return -EINVAL; 1590 if (!len) 1591 return 0; 1592 return mtd->_unlock(mtd, ofs, len); 1593 } 1594 EXPORT_SYMBOL_GPL(mtd_unlock); 1595 1596 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1597 { 1598 if (!mtd->_is_locked) 1599 return -EOPNOTSUPP; 1600 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1601 return -EINVAL; 1602 if (!len) 1603 return 0; 1604 return mtd->_is_locked(mtd, ofs, len); 1605 } 1606 EXPORT_SYMBOL_GPL(mtd_is_locked); 1607 1608 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1609 { 1610 if (ofs < 0 || ofs > mtd->size) 1611 return -EINVAL; 1612 if (!mtd->_block_isreserved) 1613 return 0; 1614 return mtd->_block_isreserved(mtd, ofs); 1615 } 1616 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1617 1618 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1619 { 1620 if (ofs < 0 || ofs > mtd->size) 1621 return -EINVAL; 1622 if (!mtd->_block_isbad) 1623 return 0; 1624 return mtd->_block_isbad(mtd, ofs); 1625 } 1626 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1627 1628 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1629 { 1630 if (!mtd->_block_markbad) 1631 return -EOPNOTSUPP; 1632 if (ofs < 0 || ofs > mtd->size) 1633 return -EINVAL; 1634 if (!(mtd->flags & MTD_WRITEABLE)) 1635 return -EROFS; 1636 return mtd->_block_markbad(mtd, ofs); 1637 } 1638 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1639 1640 #ifndef __UBOOT__ 1641 /* 1642 * default_mtd_writev - the default writev method 1643 * @mtd: mtd device description object pointer 1644 * @vecs: the vectors to write 1645 * @count: count of vectors in @vecs 1646 * @to: the MTD device offset to write to 1647 * @retlen: on exit contains the count of bytes written to the MTD device. 1648 * 1649 * This function returns zero in case of success and a negative error code in 1650 * case of failure. 1651 */ 1652 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1653 unsigned long count, loff_t to, size_t *retlen) 1654 { 1655 unsigned long i; 1656 size_t totlen = 0, thislen; 1657 int ret = 0; 1658 1659 for (i = 0; i < count; i++) { 1660 if (!vecs[i].iov_len) 1661 continue; 1662 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1663 vecs[i].iov_base); 1664 totlen += thislen; 1665 if (ret || thislen != vecs[i].iov_len) 1666 break; 1667 to += vecs[i].iov_len; 1668 } 1669 *retlen = totlen; 1670 return ret; 1671 } 1672 1673 /* 1674 * mtd_writev - the vector-based MTD write method 1675 * @mtd: mtd device description object pointer 1676 * @vecs: the vectors to write 1677 * @count: count of vectors in @vecs 1678 * @to: the MTD device offset to write to 1679 * @retlen: on exit contains the count of bytes written to the MTD device. 1680 * 1681 * This function returns zero in case of success and a negative error code in 1682 * case of failure. 1683 */ 1684 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1685 unsigned long count, loff_t to, size_t *retlen) 1686 { 1687 *retlen = 0; 1688 if (!(mtd->flags & MTD_WRITEABLE)) 1689 return -EROFS; 1690 if (!mtd->_writev) 1691 return default_mtd_writev(mtd, vecs, count, to, retlen); 1692 return mtd->_writev(mtd, vecs, count, to, retlen); 1693 } 1694 EXPORT_SYMBOL_GPL(mtd_writev); 1695 1696 /** 1697 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1698 * @mtd: mtd device description object pointer 1699 * @size: a pointer to the ideal or maximum size of the allocation, points 1700 * to the actual allocation size on success. 1701 * 1702 * This routine attempts to allocate a contiguous kernel buffer up to 1703 * the specified size, backing off the size of the request exponentially 1704 * until the request succeeds or until the allocation size falls below 1705 * the system page size. This attempts to make sure it does not adversely 1706 * impact system performance, so when allocating more than one page, we 1707 * ask the memory allocator to avoid re-trying, swapping, writing back 1708 * or performing I/O. 1709 * 1710 * Note, this function also makes sure that the allocated buffer is aligned to 1711 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1712 * 1713 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1714 * to handle smaller (i.e. degraded) buffer allocations under low- or 1715 * fragmented-memory situations where such reduced allocations, from a 1716 * requested ideal, are allowed. 1717 * 1718 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1719 */ 1720 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1721 { 1722 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1723 __GFP_NORETRY | __GFP_NO_KSWAPD; 1724 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1725 void *kbuf; 1726 1727 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1728 1729 while (*size > min_alloc) { 1730 kbuf = kmalloc(*size, flags); 1731 if (kbuf) 1732 return kbuf; 1733 1734 *size >>= 1; 1735 *size = ALIGN(*size, mtd->writesize); 1736 } 1737 1738 /* 1739 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1740 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1741 */ 1742 return kmalloc(*size, GFP_KERNEL); 1743 } 1744 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1745 #endif 1746 1747 #ifdef CONFIG_PROC_FS 1748 1749 /*====================================================================*/ 1750 /* Support for /proc/mtd */ 1751 1752 static int mtd_proc_show(struct seq_file *m, void *v) 1753 { 1754 struct mtd_info *mtd; 1755 1756 seq_puts(m, "dev: size erasesize name\n"); 1757 mutex_lock(&mtd_table_mutex); 1758 mtd_for_each_device(mtd) { 1759 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1760 mtd->index, (unsigned long long)mtd->size, 1761 mtd->erasesize, mtd->name); 1762 } 1763 mutex_unlock(&mtd_table_mutex); 1764 return 0; 1765 } 1766 1767 static int mtd_proc_open(struct inode *inode, struct file *file) 1768 { 1769 return single_open(file, mtd_proc_show, NULL); 1770 } 1771 1772 static const struct file_operations mtd_proc_ops = { 1773 .open = mtd_proc_open, 1774 .read = seq_read, 1775 .llseek = seq_lseek, 1776 .release = single_release, 1777 }; 1778 #endif /* CONFIG_PROC_FS */ 1779 1780 /*====================================================================*/ 1781 /* Init code */ 1782 1783 #ifndef __UBOOT__ 1784 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1785 { 1786 int ret; 1787 1788 ret = bdi_init(bdi); 1789 if (!ret) 1790 ret = bdi_register(bdi, NULL, "%s", name); 1791 1792 if (ret) 1793 bdi_destroy(bdi); 1794 1795 return ret; 1796 } 1797 1798 static struct proc_dir_entry *proc_mtd; 1799 1800 static int __init init_mtd(void) 1801 { 1802 int ret; 1803 1804 ret = class_register(&mtd_class); 1805 if (ret) 1806 goto err_reg; 1807 1808 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap"); 1809 if (ret) 1810 goto err_bdi1; 1811 1812 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap"); 1813 if (ret) 1814 goto err_bdi2; 1815 1816 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap"); 1817 if (ret) 1818 goto err_bdi3; 1819 1820 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1821 1822 ret = init_mtdchar(); 1823 if (ret) 1824 goto out_procfs; 1825 1826 return 0; 1827 1828 out_procfs: 1829 if (proc_mtd) 1830 remove_proc_entry("mtd", NULL); 1831 err_bdi3: 1832 bdi_destroy(&mtd_bdi_ro_mappable); 1833 err_bdi2: 1834 bdi_destroy(&mtd_bdi_unmappable); 1835 err_bdi1: 1836 class_unregister(&mtd_class); 1837 err_reg: 1838 pr_err("Error registering mtd class or bdi: %d\n", ret); 1839 return ret; 1840 } 1841 1842 static void __exit cleanup_mtd(void) 1843 { 1844 cleanup_mtdchar(); 1845 if (proc_mtd) 1846 remove_proc_entry("mtd", NULL); 1847 class_unregister(&mtd_class); 1848 bdi_destroy(&mtd_bdi_unmappable); 1849 bdi_destroy(&mtd_bdi_ro_mappable); 1850 bdi_destroy(&mtd_bdi_rw_mappable); 1851 } 1852 1853 module_init(init_mtd); 1854 module_exit(cleanup_mtd); 1855 #endif 1856 1857 MODULE_LICENSE("GPL"); 1858 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1859 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1860