xref: /openbmc/u-boot/drivers/mtd/mtdcore.c (revision dd1033e4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  *
9  */
10 
11 #ifndef __UBOOT__
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/ptrace.h>
15 #include <linux/seq_file.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/major.h>
19 #include <linux/fs.h>
20 #include <linux/err.h>
21 #include <linux/ioctl.h>
22 #include <linux/init.h>
23 #include <linux/proc_fs.h>
24 #include <linux/idr.h>
25 #include <linux/backing-dev.h>
26 #include <linux/gfp.h>
27 #include <linux/slab.h>
28 #else
29 #include <linux/err.h>
30 #include <ubi_uboot.h>
31 #endif
32 
33 #include <linux/log2.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/partitions.h>
36 
37 #include "mtdcore.h"
38 
39 #ifndef __UBOOT__
40 /*
41  * backing device capabilities for non-mappable devices (such as NAND flash)
42  * - permits private mappings, copies are taken of the data
43  */
44 static struct backing_dev_info mtd_bdi_unmappable = {
45 	.capabilities	= BDI_CAP_MAP_COPY,
46 };
47 
48 /*
49  * backing device capabilities for R/O mappable devices (such as ROM)
50  * - permits private mappings, copies are taken of the data
51  * - permits non-writable shared mappings
52  */
53 static struct backing_dev_info mtd_bdi_ro_mappable = {
54 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
55 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
56 };
57 
58 /*
59  * backing device capabilities for writable mappable devices (such as RAM)
60  * - permits private mappings, copies are taken of the data
61  * - permits non-writable shared mappings
62  */
63 static struct backing_dev_info mtd_bdi_rw_mappable = {
64 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
65 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
66 			   BDI_CAP_WRITE_MAP),
67 };
68 
69 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
70 static int mtd_cls_resume(struct device *dev);
71 
72 static struct class mtd_class = {
73 	.name = "mtd",
74 	.owner = THIS_MODULE,
75 	.suspend = mtd_cls_suspend,
76 	.resume = mtd_cls_resume,
77 };
78 #else
79 struct mtd_info *mtd_table[MAX_MTD_DEVICES];
80 
81 #define MAX_IDR_ID	64
82 
83 struct idr_layer {
84 	int	used;
85 	void	*ptr;
86 };
87 
88 struct idr {
89 	struct idr_layer id[MAX_IDR_ID];
90 	bool updated;
91 };
92 
93 #define DEFINE_IDR(name)	struct idr name;
94 
95 void idr_remove(struct idr *idp, int id)
96 {
97 	if (idp->id[id].used) {
98 		idp->id[id].used = 0;
99 		idp->updated = true;
100 	}
101 
102 	return;
103 }
104 void *idr_find(struct idr *idp, int id)
105 {
106 	if (idp->id[id].used)
107 		return idp->id[id].ptr;
108 
109 	return NULL;
110 }
111 
112 void *idr_get_next(struct idr *idp, int *next)
113 {
114 	void *ret;
115 	int id = *next;
116 
117 	ret = idr_find(idp, id);
118 	if (ret) {
119 		id ++;
120 		if (!idp->id[id].used)
121 			id = 0;
122 		*next = id;
123 	} else {
124 		*next = 0;
125 	}
126 
127 	return ret;
128 }
129 
130 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
131 {
132 	struct idr_layer *idl;
133 	int i = 0;
134 
135 	while (i < MAX_IDR_ID) {
136 		idl = &idp->id[i];
137 		if (idl->used == 0) {
138 			idl->used = 1;
139 			idl->ptr = ptr;
140 			idp->updated = true;
141 			return i;
142 		}
143 		i++;
144 	}
145 	return -ENOSPC;
146 }
147 #endif
148 
149 static DEFINE_IDR(mtd_idr);
150 
151 /* These are exported solely for the purpose of mtd_blkdevs.c. You
152    should not use them for _anything_ else */
153 DEFINE_MUTEX(mtd_table_mutex);
154 EXPORT_SYMBOL_GPL(mtd_table_mutex);
155 
156 struct mtd_info *__mtd_next_device(int i)
157 {
158 	return idr_get_next(&mtd_idr, &i);
159 }
160 EXPORT_SYMBOL_GPL(__mtd_next_device);
161 
162 bool mtd_dev_list_updated(void)
163 {
164 	if (mtd_idr.updated) {
165 		mtd_idr.updated = false;
166 		return true;
167 	}
168 
169 	return false;
170 }
171 
172 #ifndef __UBOOT__
173 static LIST_HEAD(mtd_notifiers);
174 
175 
176 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
177 
178 /* REVISIT once MTD uses the driver model better, whoever allocates
179  * the mtd_info will probably want to use the release() hook...
180  */
181 static void mtd_release(struct device *dev)
182 {
183 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
184 	dev_t index = MTD_DEVT(mtd->index);
185 
186 	/* remove /dev/mtdXro node if needed */
187 	if (index)
188 		device_destroy(&mtd_class, index + 1);
189 }
190 
191 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
192 {
193 	struct mtd_info *mtd = dev_get_drvdata(dev);
194 
195 	return mtd ? mtd_suspend(mtd) : 0;
196 }
197 
198 static int mtd_cls_resume(struct device *dev)
199 {
200 	struct mtd_info *mtd = dev_get_drvdata(dev);
201 
202 	if (mtd)
203 		mtd_resume(mtd);
204 	return 0;
205 }
206 
207 static ssize_t mtd_type_show(struct device *dev,
208 		struct device_attribute *attr, char *buf)
209 {
210 	struct mtd_info *mtd = dev_get_drvdata(dev);
211 	char *type;
212 
213 	switch (mtd->type) {
214 	case MTD_ABSENT:
215 		type = "absent";
216 		break;
217 	case MTD_RAM:
218 		type = "ram";
219 		break;
220 	case MTD_ROM:
221 		type = "rom";
222 		break;
223 	case MTD_NORFLASH:
224 		type = "nor";
225 		break;
226 	case MTD_NANDFLASH:
227 		type = "nand";
228 		break;
229 	case MTD_DATAFLASH:
230 		type = "dataflash";
231 		break;
232 	case MTD_UBIVOLUME:
233 		type = "ubi";
234 		break;
235 	case MTD_MLCNANDFLASH:
236 		type = "mlc-nand";
237 		break;
238 	default:
239 		type = "unknown";
240 	}
241 
242 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
243 }
244 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
245 
246 static ssize_t mtd_flags_show(struct device *dev,
247 		struct device_attribute *attr, char *buf)
248 {
249 	struct mtd_info *mtd = dev_get_drvdata(dev);
250 
251 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
252 
253 }
254 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
255 
256 static ssize_t mtd_size_show(struct device *dev,
257 		struct device_attribute *attr, char *buf)
258 {
259 	struct mtd_info *mtd = dev_get_drvdata(dev);
260 
261 	return snprintf(buf, PAGE_SIZE, "%llu\n",
262 		(unsigned long long)mtd->size);
263 
264 }
265 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
266 
267 static ssize_t mtd_erasesize_show(struct device *dev,
268 		struct device_attribute *attr, char *buf)
269 {
270 	struct mtd_info *mtd = dev_get_drvdata(dev);
271 
272 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
273 
274 }
275 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
276 
277 static ssize_t mtd_writesize_show(struct device *dev,
278 		struct device_attribute *attr, char *buf)
279 {
280 	struct mtd_info *mtd = dev_get_drvdata(dev);
281 
282 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
283 
284 }
285 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
286 
287 static ssize_t mtd_subpagesize_show(struct device *dev,
288 		struct device_attribute *attr, char *buf)
289 {
290 	struct mtd_info *mtd = dev_get_drvdata(dev);
291 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
292 
293 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
294 
295 }
296 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
297 
298 static ssize_t mtd_oobsize_show(struct device *dev,
299 		struct device_attribute *attr, char *buf)
300 {
301 	struct mtd_info *mtd = dev_get_drvdata(dev);
302 
303 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
304 
305 }
306 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
307 
308 static ssize_t mtd_numeraseregions_show(struct device *dev,
309 		struct device_attribute *attr, char *buf)
310 {
311 	struct mtd_info *mtd = dev_get_drvdata(dev);
312 
313 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
314 
315 }
316 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
317 	NULL);
318 
319 static ssize_t mtd_name_show(struct device *dev,
320 		struct device_attribute *attr, char *buf)
321 {
322 	struct mtd_info *mtd = dev_get_drvdata(dev);
323 
324 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
325 
326 }
327 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
328 
329 static ssize_t mtd_ecc_strength_show(struct device *dev,
330 				     struct device_attribute *attr, char *buf)
331 {
332 	struct mtd_info *mtd = dev_get_drvdata(dev);
333 
334 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
335 }
336 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
337 
338 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
339 					  struct device_attribute *attr,
340 					  char *buf)
341 {
342 	struct mtd_info *mtd = dev_get_drvdata(dev);
343 
344 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
345 }
346 
347 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
348 					   struct device_attribute *attr,
349 					   const char *buf, size_t count)
350 {
351 	struct mtd_info *mtd = dev_get_drvdata(dev);
352 	unsigned int bitflip_threshold;
353 	int retval;
354 
355 	retval = kstrtouint(buf, 0, &bitflip_threshold);
356 	if (retval)
357 		return retval;
358 
359 	mtd->bitflip_threshold = bitflip_threshold;
360 	return count;
361 }
362 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
363 		   mtd_bitflip_threshold_show,
364 		   mtd_bitflip_threshold_store);
365 
366 static ssize_t mtd_ecc_step_size_show(struct device *dev,
367 		struct device_attribute *attr, char *buf)
368 {
369 	struct mtd_info *mtd = dev_get_drvdata(dev);
370 
371 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
372 
373 }
374 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
375 
376 static struct attribute *mtd_attrs[] = {
377 	&dev_attr_type.attr,
378 	&dev_attr_flags.attr,
379 	&dev_attr_size.attr,
380 	&dev_attr_erasesize.attr,
381 	&dev_attr_writesize.attr,
382 	&dev_attr_subpagesize.attr,
383 	&dev_attr_oobsize.attr,
384 	&dev_attr_numeraseregions.attr,
385 	&dev_attr_name.attr,
386 	&dev_attr_ecc_strength.attr,
387 	&dev_attr_ecc_step_size.attr,
388 	&dev_attr_bitflip_threshold.attr,
389 	NULL,
390 };
391 ATTRIBUTE_GROUPS(mtd);
392 
393 static struct device_type mtd_devtype = {
394 	.name		= "mtd",
395 	.groups		= mtd_groups,
396 	.release	= mtd_release,
397 };
398 #endif
399 
400 /**
401  *	add_mtd_device - register an MTD device
402  *	@mtd: pointer to new MTD device info structure
403  *
404  *	Add a device to the list of MTD devices present in the system, and
405  *	notify each currently active MTD 'user' of its arrival. Returns
406  *	zero on success or 1 on failure, which currently will only happen
407  *	if there is insufficient memory or a sysfs error.
408  */
409 
410 int add_mtd_device(struct mtd_info *mtd)
411 {
412 #ifndef __UBOOT__
413 	struct mtd_notifier *not;
414 #endif
415 	int i, error;
416 
417 #ifndef __UBOOT__
418 	if (!mtd->backing_dev_info) {
419 		switch (mtd->type) {
420 		case MTD_RAM:
421 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
422 			break;
423 		case MTD_ROM:
424 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
425 			break;
426 		default:
427 			mtd->backing_dev_info = &mtd_bdi_unmappable;
428 			break;
429 		}
430 	}
431 #endif
432 
433 	BUG_ON(mtd->writesize == 0);
434 	mutex_lock(&mtd_table_mutex);
435 
436 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
437 	if (i < 0)
438 		goto fail_locked;
439 
440 	mtd->index = i;
441 	mtd->usecount = 0;
442 
443 	INIT_LIST_HEAD(&mtd->partitions);
444 
445 	/* default value if not set by driver */
446 	if (mtd->bitflip_threshold == 0)
447 		mtd->bitflip_threshold = mtd->ecc_strength;
448 
449 	if (is_power_of_2(mtd->erasesize))
450 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
451 	else
452 		mtd->erasesize_shift = 0;
453 
454 	if (is_power_of_2(mtd->writesize))
455 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
456 	else
457 		mtd->writesize_shift = 0;
458 
459 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
460 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
461 
462 	/* Some chips always power up locked. Unlock them now */
463 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
464 		error = mtd_unlock(mtd, 0, mtd->size);
465 		if (error && error != -EOPNOTSUPP)
466 			printk(KERN_WARNING
467 			       "%s: unlock failed, writes may not work\n",
468 			       mtd->name);
469 	}
470 
471 #ifndef __UBOOT__
472 	/* Caller should have set dev.parent to match the
473 	 * physical device.
474 	 */
475 	mtd->dev.type = &mtd_devtype;
476 	mtd->dev.class = &mtd_class;
477 	mtd->dev.devt = MTD_DEVT(i);
478 	dev_set_name(&mtd->dev, "mtd%d", i);
479 	dev_set_drvdata(&mtd->dev, mtd);
480 	if (device_register(&mtd->dev) != 0)
481 		goto fail_added;
482 
483 	if (MTD_DEVT(i))
484 		device_create(&mtd_class, mtd->dev.parent,
485 			      MTD_DEVT(i) + 1,
486 			      NULL, "mtd%dro", i);
487 
488 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
489 	/* No need to get a refcount on the module containing
490 	   the notifier, since we hold the mtd_table_mutex */
491 	list_for_each_entry(not, &mtd_notifiers, list)
492 		not->add(mtd);
493 #else
494 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
495 #endif
496 
497 	mutex_unlock(&mtd_table_mutex);
498 	/* We _know_ we aren't being removed, because
499 	   our caller is still holding us here. So none
500 	   of this try_ nonsense, and no bitching about it
501 	   either. :) */
502 	__module_get(THIS_MODULE);
503 	return 0;
504 
505 #ifndef __UBOOT__
506 fail_added:
507 	idr_remove(&mtd_idr, i);
508 #endif
509 fail_locked:
510 	mutex_unlock(&mtd_table_mutex);
511 	return 1;
512 }
513 
514 /**
515  *	del_mtd_device - unregister an MTD device
516  *	@mtd: pointer to MTD device info structure
517  *
518  *	Remove a device from the list of MTD devices present in the system,
519  *	and notify each currently active MTD 'user' of its departure.
520  *	Returns zero on success or 1 on failure, which currently will happen
521  *	if the requested device does not appear to be present in the list.
522  */
523 
524 int del_mtd_device(struct mtd_info *mtd)
525 {
526 	int ret;
527 #ifndef __UBOOT__
528 	struct mtd_notifier *not;
529 #endif
530 
531 	ret = del_mtd_partitions(mtd);
532 	if (ret) {
533 		debug("Failed to delete MTD partitions attached to %s (err %d)\n",
534 		      mtd->name, ret);
535 		return ret;
536 	}
537 
538 	mutex_lock(&mtd_table_mutex);
539 
540 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
541 		ret = -ENODEV;
542 		goto out_error;
543 	}
544 
545 #ifndef __UBOOT__
546 	/* No need to get a refcount on the module containing
547 		the notifier, since we hold the mtd_table_mutex */
548 	list_for_each_entry(not, &mtd_notifiers, list)
549 		not->remove(mtd);
550 #endif
551 
552 	if (mtd->usecount) {
553 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
554 		       mtd->index, mtd->name, mtd->usecount);
555 		ret = -EBUSY;
556 	} else {
557 #ifndef __UBOOT__
558 		device_unregister(&mtd->dev);
559 #endif
560 
561 		idr_remove(&mtd_idr, mtd->index);
562 
563 		module_put(THIS_MODULE);
564 		ret = 0;
565 	}
566 
567 out_error:
568 	mutex_unlock(&mtd_table_mutex);
569 	return ret;
570 }
571 
572 #ifndef __UBOOT__
573 /**
574  * mtd_device_parse_register - parse partitions and register an MTD device.
575  *
576  * @mtd: the MTD device to register
577  * @types: the list of MTD partition probes to try, see
578  *         'parse_mtd_partitions()' for more information
579  * @parser_data: MTD partition parser-specific data
580  * @parts: fallback partition information to register, if parsing fails;
581  *         only valid if %nr_parts > %0
582  * @nr_parts: the number of partitions in parts, if zero then the full
583  *            MTD device is registered if no partition info is found
584  *
585  * This function aggregates MTD partitions parsing (done by
586  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
587  * basically follows the most common pattern found in many MTD drivers:
588  *
589  * * It first tries to probe partitions on MTD device @mtd using parsers
590  *   specified in @types (if @types is %NULL, then the default list of parsers
591  *   is used, see 'parse_mtd_partitions()' for more information). If none are
592  *   found this functions tries to fallback to information specified in
593  *   @parts/@nr_parts.
594  * * If any partitioning info was found, this function registers the found
595  *   partitions.
596  * * If no partitions were found this function just registers the MTD device
597  *   @mtd and exits.
598  *
599  * Returns zero in case of success and a negative error code in case of failure.
600  */
601 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
602 			      struct mtd_part_parser_data *parser_data,
603 			      const struct mtd_partition *parts,
604 			      int nr_parts)
605 {
606 	int err;
607 	struct mtd_partition *real_parts;
608 
609 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
610 	if (err <= 0 && nr_parts && parts) {
611 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
612 				     GFP_KERNEL);
613 		if (!real_parts)
614 			err = -ENOMEM;
615 		else
616 			err = nr_parts;
617 	}
618 
619 	if (err > 0) {
620 		err = add_mtd_partitions(mtd, real_parts, err);
621 		kfree(real_parts);
622 	} else if (err == 0) {
623 		err = add_mtd_device(mtd);
624 		if (err == 1)
625 			err = -ENODEV;
626 	}
627 
628 	return err;
629 }
630 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
631 
632 /**
633  * mtd_device_unregister - unregister an existing MTD device.
634  *
635  * @master: the MTD device to unregister.  This will unregister both the master
636  *          and any partitions if registered.
637  */
638 int mtd_device_unregister(struct mtd_info *master)
639 {
640 	int err;
641 
642 	err = del_mtd_partitions(master);
643 	if (err)
644 		return err;
645 
646 	if (!device_is_registered(&master->dev))
647 		return 0;
648 
649 	return del_mtd_device(master);
650 }
651 EXPORT_SYMBOL_GPL(mtd_device_unregister);
652 
653 /**
654  *	register_mtd_user - register a 'user' of MTD devices.
655  *	@new: pointer to notifier info structure
656  *
657  *	Registers a pair of callbacks function to be called upon addition
658  *	or removal of MTD devices. Causes the 'add' callback to be immediately
659  *	invoked for each MTD device currently present in the system.
660  */
661 void register_mtd_user (struct mtd_notifier *new)
662 {
663 	struct mtd_info *mtd;
664 
665 	mutex_lock(&mtd_table_mutex);
666 
667 	list_add(&new->list, &mtd_notifiers);
668 
669 	__module_get(THIS_MODULE);
670 
671 	mtd_for_each_device(mtd)
672 		new->add(mtd);
673 
674 	mutex_unlock(&mtd_table_mutex);
675 }
676 EXPORT_SYMBOL_GPL(register_mtd_user);
677 
678 /**
679  *	unregister_mtd_user - unregister a 'user' of MTD devices.
680  *	@old: pointer to notifier info structure
681  *
682  *	Removes a callback function pair from the list of 'users' to be
683  *	notified upon addition or removal of MTD devices. Causes the
684  *	'remove' callback to be immediately invoked for each MTD device
685  *	currently present in the system.
686  */
687 int unregister_mtd_user (struct mtd_notifier *old)
688 {
689 	struct mtd_info *mtd;
690 
691 	mutex_lock(&mtd_table_mutex);
692 
693 	module_put(THIS_MODULE);
694 
695 	mtd_for_each_device(mtd)
696 		old->remove(mtd);
697 
698 	list_del(&old->list);
699 	mutex_unlock(&mtd_table_mutex);
700 	return 0;
701 }
702 EXPORT_SYMBOL_GPL(unregister_mtd_user);
703 #endif
704 
705 /**
706  *	get_mtd_device - obtain a validated handle for an MTD device
707  *	@mtd: last known address of the required MTD device
708  *	@num: internal device number of the required MTD device
709  *
710  *	Given a number and NULL address, return the num'th entry in the device
711  *	table, if any.	Given an address and num == -1, search the device table
712  *	for a device with that address and return if it's still present. Given
713  *	both, return the num'th driver only if its address matches. Return
714  *	error code if not.
715  */
716 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
717 {
718 	struct mtd_info *ret = NULL, *other;
719 	int err = -ENODEV;
720 
721 	mutex_lock(&mtd_table_mutex);
722 
723 	if (num == -1) {
724 		mtd_for_each_device(other) {
725 			if (other == mtd) {
726 				ret = mtd;
727 				break;
728 			}
729 		}
730 	} else if (num >= 0) {
731 		ret = idr_find(&mtd_idr, num);
732 		if (mtd && mtd != ret)
733 			ret = NULL;
734 	}
735 
736 	if (!ret) {
737 		ret = ERR_PTR(err);
738 		goto out;
739 	}
740 
741 	err = __get_mtd_device(ret);
742 	if (err)
743 		ret = ERR_PTR(err);
744 out:
745 	mutex_unlock(&mtd_table_mutex);
746 	return ret;
747 }
748 EXPORT_SYMBOL_GPL(get_mtd_device);
749 
750 
751 int __get_mtd_device(struct mtd_info *mtd)
752 {
753 	int err;
754 
755 	if (!try_module_get(mtd->owner))
756 		return -ENODEV;
757 
758 	if (mtd->_get_device) {
759 		err = mtd->_get_device(mtd);
760 
761 		if (err) {
762 			module_put(mtd->owner);
763 			return err;
764 		}
765 	}
766 	mtd->usecount++;
767 	return 0;
768 }
769 EXPORT_SYMBOL_GPL(__get_mtd_device);
770 
771 /**
772  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
773  *	device name
774  *	@name: MTD device name to open
775  *
776  * 	This function returns MTD device description structure in case of
777  * 	success and an error code in case of failure.
778  */
779 struct mtd_info *get_mtd_device_nm(const char *name)
780 {
781 	int err = -ENODEV;
782 	struct mtd_info *mtd = NULL, *other;
783 
784 	mutex_lock(&mtd_table_mutex);
785 
786 	mtd_for_each_device(other) {
787 		if (!strcmp(name, other->name)) {
788 			mtd = other;
789 			break;
790 		}
791 	}
792 
793 	if (!mtd)
794 		goto out_unlock;
795 
796 	err = __get_mtd_device(mtd);
797 	if (err)
798 		goto out_unlock;
799 
800 	mutex_unlock(&mtd_table_mutex);
801 	return mtd;
802 
803 out_unlock:
804 	mutex_unlock(&mtd_table_mutex);
805 	return ERR_PTR(err);
806 }
807 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
808 
809 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
810 /**
811  * mtd_get_len_incl_bad
812  *
813  * Check if length including bad blocks fits into device.
814  *
815  * @param mtd an MTD device
816  * @param offset offset in flash
817  * @param length image length
818  * @return image length including bad blocks in *len_incl_bad and whether or not
819  *         the length returned was truncated in *truncated
820  */
821 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
822 			  const uint64_t length, uint64_t *len_incl_bad,
823 			  int *truncated)
824 {
825 	*truncated = 0;
826 	*len_incl_bad = 0;
827 
828 	if (!mtd->_block_isbad) {
829 		*len_incl_bad = length;
830 		return;
831 	}
832 
833 	uint64_t len_excl_bad = 0;
834 	uint64_t block_len;
835 
836 	while (len_excl_bad < length) {
837 		if (offset >= mtd->size) {
838 			*truncated = 1;
839 			return;
840 		}
841 
842 		block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
843 
844 		if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
845 			len_excl_bad += block_len;
846 
847 		*len_incl_bad += block_len;
848 		offset       += block_len;
849 	}
850 }
851 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
852 
853 void put_mtd_device(struct mtd_info *mtd)
854 {
855 	mutex_lock(&mtd_table_mutex);
856 	__put_mtd_device(mtd);
857 	mutex_unlock(&mtd_table_mutex);
858 
859 }
860 EXPORT_SYMBOL_GPL(put_mtd_device);
861 
862 void __put_mtd_device(struct mtd_info *mtd)
863 {
864 	--mtd->usecount;
865 	BUG_ON(mtd->usecount < 0);
866 
867 	if (mtd->_put_device)
868 		mtd->_put_device(mtd);
869 
870 	module_put(mtd->owner);
871 }
872 EXPORT_SYMBOL_GPL(__put_mtd_device);
873 
874 /*
875  * Erase is an asynchronous operation.  Device drivers are supposed
876  * to call instr->callback() whenever the operation completes, even
877  * if it completes with a failure.
878  * Callers are supposed to pass a callback function and wait for it
879  * to be called before writing to the block.
880  */
881 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
882 {
883 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
884 		return -EINVAL;
885 	if (!(mtd->flags & MTD_WRITEABLE))
886 		return -EROFS;
887 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
888 	if (!instr->len) {
889 		instr->state = MTD_ERASE_DONE;
890 		mtd_erase_callback(instr);
891 		return 0;
892 	}
893 	return mtd->_erase(mtd, instr);
894 }
895 EXPORT_SYMBOL_GPL(mtd_erase);
896 
897 #ifndef __UBOOT__
898 /*
899  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
900  */
901 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
902 	      void **virt, resource_size_t *phys)
903 {
904 	*retlen = 0;
905 	*virt = NULL;
906 	if (phys)
907 		*phys = 0;
908 	if (!mtd->_point)
909 		return -EOPNOTSUPP;
910 	if (from < 0 || from > mtd->size || len > mtd->size - from)
911 		return -EINVAL;
912 	if (!len)
913 		return 0;
914 	return mtd->_point(mtd, from, len, retlen, virt, phys);
915 }
916 EXPORT_SYMBOL_GPL(mtd_point);
917 
918 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
919 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
920 {
921 	if (!mtd->_point)
922 		return -EOPNOTSUPP;
923 	if (from < 0 || from > mtd->size || len > mtd->size - from)
924 		return -EINVAL;
925 	if (!len)
926 		return 0;
927 	return mtd->_unpoint(mtd, from, len);
928 }
929 EXPORT_SYMBOL_GPL(mtd_unpoint);
930 #endif
931 
932 /*
933  * Allow NOMMU mmap() to directly map the device (if not NULL)
934  * - return the address to which the offset maps
935  * - return -ENOSYS to indicate refusal to do the mapping
936  */
937 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
938 				    unsigned long offset, unsigned long flags)
939 {
940 	if (!mtd->_get_unmapped_area)
941 		return -EOPNOTSUPP;
942 	if (offset > mtd->size || len > mtd->size - offset)
943 		return -EINVAL;
944 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
945 }
946 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
947 
948 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
949 	     u_char *buf)
950 {
951 	int ret_code;
952 	*retlen = 0;
953 	if (from < 0 || from > mtd->size || len > mtd->size - from)
954 		return -EINVAL;
955 	if (!len)
956 		return 0;
957 
958 	/*
959 	 * In the absence of an error, drivers return a non-negative integer
960 	 * representing the maximum number of bitflips that were corrected on
961 	 * any one ecc region (if applicable; zero otherwise).
962 	 */
963 	if (mtd->_read) {
964 		ret_code = mtd->_read(mtd, from, len, retlen, buf);
965 	} else if (mtd->_read_oob) {
966 		struct mtd_oob_ops ops = {
967 			.len = len,
968 			.datbuf = buf,
969 		};
970 
971 		ret_code = mtd->_read_oob(mtd, from, &ops);
972 		*retlen = ops.retlen;
973 	} else {
974 		return -ENOTSUPP;
975 	}
976 
977 	if (unlikely(ret_code < 0))
978 		return ret_code;
979 	if (mtd->ecc_strength == 0)
980 		return 0;	/* device lacks ecc */
981 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
982 }
983 EXPORT_SYMBOL_GPL(mtd_read);
984 
985 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
986 	      const u_char *buf)
987 {
988 	*retlen = 0;
989 	if (to < 0 || to > mtd->size || len > mtd->size - to)
990 		return -EINVAL;
991 	if ((!mtd->_write && !mtd->_write_oob) ||
992 	    !(mtd->flags & MTD_WRITEABLE))
993 		return -EROFS;
994 	if (!len)
995 		return 0;
996 
997 	if (!mtd->_write) {
998 		struct mtd_oob_ops ops = {
999 			.len = len,
1000 			.datbuf = (u8 *)buf,
1001 		};
1002 		int ret;
1003 
1004 		ret = mtd->_write_oob(mtd, to, &ops);
1005 		*retlen = ops.retlen;
1006 		return ret;
1007 	}
1008 
1009 	return mtd->_write(mtd, to, len, retlen, buf);
1010 }
1011 EXPORT_SYMBOL_GPL(mtd_write);
1012 
1013 /*
1014  * In blackbox flight recorder like scenarios we want to make successful writes
1015  * in interrupt context. panic_write() is only intended to be called when its
1016  * known the kernel is about to panic and we need the write to succeed. Since
1017  * the kernel is not going to be running for much longer, this function can
1018  * break locks and delay to ensure the write succeeds (but not sleep).
1019  */
1020 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1021 		    const u_char *buf)
1022 {
1023 	*retlen = 0;
1024 	if (!mtd->_panic_write)
1025 		return -EOPNOTSUPP;
1026 	if (to < 0 || to > mtd->size || len > mtd->size - to)
1027 		return -EINVAL;
1028 	if (!(mtd->flags & MTD_WRITEABLE))
1029 		return -EROFS;
1030 	if (!len)
1031 		return 0;
1032 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1033 }
1034 EXPORT_SYMBOL_GPL(mtd_panic_write);
1035 
1036 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1037 			     struct mtd_oob_ops *ops)
1038 {
1039 	/*
1040 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1041 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1042 	 *  this case.
1043 	 */
1044 	if (!ops->datbuf)
1045 		ops->len = 0;
1046 
1047 	if (!ops->oobbuf)
1048 		ops->ooblen = 0;
1049 
1050 	if (offs < 0 || offs + ops->len > mtd->size)
1051 		return -EINVAL;
1052 
1053 	if (ops->ooblen) {
1054 		u64 maxooblen;
1055 
1056 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1057 			return -EINVAL;
1058 
1059 		maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1060 			      mtd_div_by_ws(offs, mtd)) *
1061 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1062 		if (ops->ooblen > maxooblen)
1063 			return -EINVAL;
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1070 {
1071 	int ret_code;
1072 	ops->retlen = ops->oobretlen = 0;
1073 
1074 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1075 	if (ret_code)
1076 		return ret_code;
1077 
1078 	/* Check the validity of a potential fallback on mtd->_read */
1079 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1080 		return -EOPNOTSUPP;
1081 
1082 	if (mtd->_read_oob)
1083 		ret_code = mtd->_read_oob(mtd, from, ops);
1084 	else
1085 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1086 				      ops->datbuf);
1087 
1088 	/*
1089 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1090 	 * similar to mtd->_read(), returning a non-negative integer
1091 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1092 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1093 	 */
1094 	if (unlikely(ret_code < 0))
1095 		return ret_code;
1096 	if (mtd->ecc_strength == 0)
1097 		return 0;	/* device lacks ecc */
1098 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1099 }
1100 EXPORT_SYMBOL_GPL(mtd_read_oob);
1101 
1102 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1103 				struct mtd_oob_ops *ops)
1104 {
1105 	int ret;
1106 
1107 	ops->retlen = ops->oobretlen = 0;
1108 
1109 	if (!(mtd->flags & MTD_WRITEABLE))
1110 		return -EROFS;
1111 
1112 	ret = mtd_check_oob_ops(mtd, to, ops);
1113 	if (ret)
1114 		return ret;
1115 
1116 	/* Check the validity of a potential fallback on mtd->_write */
1117 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1118 		return -EOPNOTSUPP;
1119 
1120 	if (mtd->_write_oob)
1121 		return mtd->_write_oob(mtd, to, ops);
1122 	else
1123 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1124 				   ops->datbuf);
1125 }
1126 EXPORT_SYMBOL_GPL(mtd_write_oob);
1127 
1128 /**
1129  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1130  * @mtd: MTD device structure
1131  * @section: ECC section. Depending on the layout you may have all the ECC
1132  *	     bytes stored in a single contiguous section, or one section
1133  *	     per ECC chunk (and sometime several sections for a single ECC
1134  *	     ECC chunk)
1135  * @oobecc: OOB region struct filled with the appropriate ECC position
1136  *	    information
1137  *
1138  * This function returns ECC section information in the OOB area. If you want
1139  * to get all the ECC bytes information, then you should call
1140  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1141  *
1142  * Returns zero on success, a negative error code otherwise.
1143  */
1144 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1145 		      struct mtd_oob_region *oobecc)
1146 {
1147 	memset(oobecc, 0, sizeof(*oobecc));
1148 
1149 	if (!mtd || section < 0)
1150 		return -EINVAL;
1151 
1152 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1153 		return -ENOTSUPP;
1154 
1155 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1156 }
1157 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1158 
1159 /**
1160  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1161  *			section
1162  * @mtd: MTD device structure
1163  * @section: Free section you are interested in. Depending on the layout
1164  *	     you may have all the free bytes stored in a single contiguous
1165  *	     section, or one section per ECC chunk plus an extra section
1166  *	     for the remaining bytes (or other funky layout).
1167  * @oobfree: OOB region struct filled with the appropriate free position
1168  *	     information
1169  *
1170  * This function returns free bytes position in the OOB area. If you want
1171  * to get all the free bytes information, then you should call
1172  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1173  *
1174  * Returns zero on success, a negative error code otherwise.
1175  */
1176 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1177 		       struct mtd_oob_region *oobfree)
1178 {
1179 	memset(oobfree, 0, sizeof(*oobfree));
1180 
1181 	if (!mtd || section < 0)
1182 		return -EINVAL;
1183 
1184 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1185 		return -ENOTSUPP;
1186 
1187 	return mtd->ooblayout->free(mtd, section, oobfree);
1188 }
1189 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1190 
1191 /**
1192  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1193  * @mtd: mtd info structure
1194  * @byte: the byte we are searching for
1195  * @sectionp: pointer where the section id will be stored
1196  * @oobregion: used to retrieve the ECC position
1197  * @iter: iterator function. Should be either mtd_ooblayout_free or
1198  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1199  *
1200  * This function returns the section id and oobregion information of a
1201  * specific byte. For example, say you want to know where the 4th ECC byte is
1202  * stored, you'll use:
1203  *
1204  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1205  *
1206  * Returns zero on success, a negative error code otherwise.
1207  */
1208 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1209 				int *sectionp, struct mtd_oob_region *oobregion,
1210 				int (*iter)(struct mtd_info *,
1211 					    int section,
1212 					    struct mtd_oob_region *oobregion))
1213 {
1214 	int pos = 0, ret, section = 0;
1215 
1216 	memset(oobregion, 0, sizeof(*oobregion));
1217 
1218 	while (1) {
1219 		ret = iter(mtd, section, oobregion);
1220 		if (ret)
1221 			return ret;
1222 
1223 		if (pos + oobregion->length > byte)
1224 			break;
1225 
1226 		pos += oobregion->length;
1227 		section++;
1228 	}
1229 
1230 	/*
1231 	 * Adjust region info to make it start at the beginning at the
1232 	 * 'start' ECC byte.
1233 	 */
1234 	oobregion->offset += byte - pos;
1235 	oobregion->length -= byte - pos;
1236 	*sectionp = section;
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1243  *				  ECC byte
1244  * @mtd: mtd info structure
1245  * @eccbyte: the byte we are searching for
1246  * @sectionp: pointer where the section id will be stored
1247  * @oobregion: OOB region information
1248  *
1249  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1250  * byte.
1251  *
1252  * Returns zero on success, a negative error code otherwise.
1253  */
1254 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1255 				 int *section,
1256 				 struct mtd_oob_region *oobregion)
1257 {
1258 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1259 					 mtd_ooblayout_ecc);
1260 }
1261 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1262 
1263 /**
1264  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1265  * @mtd: mtd info structure
1266  * @buf: destination buffer to store OOB bytes
1267  * @oobbuf: OOB buffer
1268  * @start: first byte to retrieve
1269  * @nbytes: number of bytes to retrieve
1270  * @iter: section iterator
1271  *
1272  * Extract bytes attached to a specific category (ECC or free)
1273  * from the OOB buffer and copy them into buf.
1274  *
1275  * Returns zero on success, a negative error code otherwise.
1276  */
1277 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1278 				const u8 *oobbuf, int start, int nbytes,
1279 				int (*iter)(struct mtd_info *,
1280 					    int section,
1281 					    struct mtd_oob_region *oobregion))
1282 {
1283 	struct mtd_oob_region oobregion;
1284 	int section, ret;
1285 
1286 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1287 					&oobregion, iter);
1288 
1289 	while (!ret) {
1290 		int cnt;
1291 
1292 		cnt = min_t(int, nbytes, oobregion.length);
1293 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1294 		buf += cnt;
1295 		nbytes -= cnt;
1296 
1297 		if (!nbytes)
1298 			break;
1299 
1300 		ret = iter(mtd, ++section, &oobregion);
1301 	}
1302 
1303 	return ret;
1304 }
1305 
1306 /**
1307  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1308  * @mtd: mtd info structure
1309  * @buf: source buffer to get OOB bytes from
1310  * @oobbuf: OOB buffer
1311  * @start: first OOB byte to set
1312  * @nbytes: number of OOB bytes to set
1313  * @iter: section iterator
1314  *
1315  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1316  * is selected by passing the appropriate iterator.
1317  *
1318  * Returns zero on success, a negative error code otherwise.
1319  */
1320 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1321 				u8 *oobbuf, int start, int nbytes,
1322 				int (*iter)(struct mtd_info *,
1323 					    int section,
1324 					    struct mtd_oob_region *oobregion))
1325 {
1326 	struct mtd_oob_region oobregion;
1327 	int section, ret;
1328 
1329 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1330 					&oobregion, iter);
1331 
1332 	while (!ret) {
1333 		int cnt;
1334 
1335 		cnt = min_t(int, nbytes, oobregion.length);
1336 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1337 		buf += cnt;
1338 		nbytes -= cnt;
1339 
1340 		if (!nbytes)
1341 			break;
1342 
1343 		ret = iter(mtd, ++section, &oobregion);
1344 	}
1345 
1346 	return ret;
1347 }
1348 
1349 /**
1350  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1351  * @mtd: mtd info structure
1352  * @iter: category iterator
1353  *
1354  * Count the number of bytes in a given category.
1355  *
1356  * Returns a positive value on success, a negative error code otherwise.
1357  */
1358 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1359 				int (*iter)(struct mtd_info *,
1360 					    int section,
1361 					    struct mtd_oob_region *oobregion))
1362 {
1363 	struct mtd_oob_region oobregion;
1364 	int section = 0, ret, nbytes = 0;
1365 
1366 	while (1) {
1367 		ret = iter(mtd, section++, &oobregion);
1368 		if (ret) {
1369 			if (ret == -ERANGE)
1370 				ret = nbytes;
1371 			break;
1372 		}
1373 
1374 		nbytes += oobregion.length;
1375 	}
1376 
1377 	return ret;
1378 }
1379 
1380 /**
1381  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1382  * @mtd: mtd info structure
1383  * @eccbuf: destination buffer to store ECC bytes
1384  * @oobbuf: OOB buffer
1385  * @start: first ECC byte to retrieve
1386  * @nbytes: number of ECC bytes to retrieve
1387  *
1388  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1389  *
1390  * Returns zero on success, a negative error code otherwise.
1391  */
1392 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1393 			       const u8 *oobbuf, int start, int nbytes)
1394 {
1395 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1396 				       mtd_ooblayout_ecc);
1397 }
1398 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1399 
1400 /**
1401  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1402  * @mtd: mtd info structure
1403  * @eccbuf: source buffer to get ECC bytes from
1404  * @oobbuf: OOB buffer
1405  * @start: first ECC byte to set
1406  * @nbytes: number of ECC bytes to set
1407  *
1408  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1409  *
1410  * Returns zero on success, a negative error code otherwise.
1411  */
1412 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1413 			       u8 *oobbuf, int start, int nbytes)
1414 {
1415 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1416 				       mtd_ooblayout_ecc);
1417 }
1418 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1419 
1420 /**
1421  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1422  * @mtd: mtd info structure
1423  * @databuf: destination buffer to store ECC bytes
1424  * @oobbuf: OOB buffer
1425  * @start: first ECC byte to retrieve
1426  * @nbytes: number of ECC bytes to retrieve
1427  *
1428  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1429  *
1430  * Returns zero on success, a negative error code otherwise.
1431  */
1432 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1433 				const u8 *oobbuf, int start, int nbytes)
1434 {
1435 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1436 				       mtd_ooblayout_free);
1437 }
1438 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1439 
1440 /**
1441  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1442  * @mtd: mtd info structure
1443  * @eccbuf: source buffer to get data bytes from
1444  * @oobbuf: OOB buffer
1445  * @start: first ECC byte to set
1446  * @nbytes: number of ECC bytes to set
1447  *
1448  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1449  *
1450  * Returns zero on success, a negative error code otherwise.
1451  */
1452 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1453 				u8 *oobbuf, int start, int nbytes)
1454 {
1455 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1456 				       mtd_ooblayout_free);
1457 }
1458 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1459 
1460 /**
1461  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1462  * @mtd: mtd info structure
1463  *
1464  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1465  *
1466  * Returns zero on success, a negative error code otherwise.
1467  */
1468 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1469 {
1470 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1471 }
1472 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1473 
1474 /**
1475  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1476  * @mtd: mtd info structure
1477  *
1478  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1479  *
1480  * Returns zero on success, a negative error code otherwise.
1481  */
1482 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1483 {
1484 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1485 }
1486 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1487 
1488 /*
1489  * Method to access the protection register area, present in some flash
1490  * devices. The user data is one time programmable but the factory data is read
1491  * only.
1492  */
1493 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1494 			   struct otp_info *buf)
1495 {
1496 	if (!mtd->_get_fact_prot_info)
1497 		return -EOPNOTSUPP;
1498 	if (!len)
1499 		return 0;
1500 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1501 }
1502 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1503 
1504 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1505 			   size_t *retlen, u_char *buf)
1506 {
1507 	*retlen = 0;
1508 	if (!mtd->_read_fact_prot_reg)
1509 		return -EOPNOTSUPP;
1510 	if (!len)
1511 		return 0;
1512 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1513 }
1514 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1515 
1516 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1517 			   struct otp_info *buf)
1518 {
1519 	if (!mtd->_get_user_prot_info)
1520 		return -EOPNOTSUPP;
1521 	if (!len)
1522 		return 0;
1523 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1524 }
1525 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1526 
1527 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1528 			   size_t *retlen, u_char *buf)
1529 {
1530 	*retlen = 0;
1531 	if (!mtd->_read_user_prot_reg)
1532 		return -EOPNOTSUPP;
1533 	if (!len)
1534 		return 0;
1535 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1536 }
1537 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1538 
1539 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1540 			    size_t *retlen, u_char *buf)
1541 {
1542 	int ret;
1543 
1544 	*retlen = 0;
1545 	if (!mtd->_write_user_prot_reg)
1546 		return -EOPNOTSUPP;
1547 	if (!len)
1548 		return 0;
1549 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1550 	if (ret)
1551 		return ret;
1552 
1553 	/*
1554 	 * If no data could be written at all, we are out of memory and
1555 	 * must return -ENOSPC.
1556 	 */
1557 	return (*retlen) ? 0 : -ENOSPC;
1558 }
1559 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1560 
1561 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1562 {
1563 	if (!mtd->_lock_user_prot_reg)
1564 		return -EOPNOTSUPP;
1565 	if (!len)
1566 		return 0;
1567 	return mtd->_lock_user_prot_reg(mtd, from, len);
1568 }
1569 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1570 
1571 /* Chip-supported device locking */
1572 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1573 {
1574 	if (!mtd->_lock)
1575 		return -EOPNOTSUPP;
1576 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1577 		return -EINVAL;
1578 	if (!len)
1579 		return 0;
1580 	return mtd->_lock(mtd, ofs, len);
1581 }
1582 EXPORT_SYMBOL_GPL(mtd_lock);
1583 
1584 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1585 {
1586 	if (!mtd->_unlock)
1587 		return -EOPNOTSUPP;
1588 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1589 		return -EINVAL;
1590 	if (!len)
1591 		return 0;
1592 	return mtd->_unlock(mtd, ofs, len);
1593 }
1594 EXPORT_SYMBOL_GPL(mtd_unlock);
1595 
1596 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1597 {
1598 	if (!mtd->_is_locked)
1599 		return -EOPNOTSUPP;
1600 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1601 		return -EINVAL;
1602 	if (!len)
1603 		return 0;
1604 	return mtd->_is_locked(mtd, ofs, len);
1605 }
1606 EXPORT_SYMBOL_GPL(mtd_is_locked);
1607 
1608 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1609 {
1610 	if (ofs < 0 || ofs > mtd->size)
1611 		return -EINVAL;
1612 	if (!mtd->_block_isreserved)
1613 		return 0;
1614 	return mtd->_block_isreserved(mtd, ofs);
1615 }
1616 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1617 
1618 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1619 {
1620 	if (ofs < 0 || ofs > mtd->size)
1621 		return -EINVAL;
1622 	if (!mtd->_block_isbad)
1623 		return 0;
1624 	return mtd->_block_isbad(mtd, ofs);
1625 }
1626 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1627 
1628 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1629 {
1630 	if (!mtd->_block_markbad)
1631 		return -EOPNOTSUPP;
1632 	if (ofs < 0 || ofs > mtd->size)
1633 		return -EINVAL;
1634 	if (!(mtd->flags & MTD_WRITEABLE))
1635 		return -EROFS;
1636 	return mtd->_block_markbad(mtd, ofs);
1637 }
1638 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1639 
1640 #ifndef __UBOOT__
1641 /*
1642  * default_mtd_writev - the default writev method
1643  * @mtd: mtd device description object pointer
1644  * @vecs: the vectors to write
1645  * @count: count of vectors in @vecs
1646  * @to: the MTD device offset to write to
1647  * @retlen: on exit contains the count of bytes written to the MTD device.
1648  *
1649  * This function returns zero in case of success and a negative error code in
1650  * case of failure.
1651  */
1652 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1653 			      unsigned long count, loff_t to, size_t *retlen)
1654 {
1655 	unsigned long i;
1656 	size_t totlen = 0, thislen;
1657 	int ret = 0;
1658 
1659 	for (i = 0; i < count; i++) {
1660 		if (!vecs[i].iov_len)
1661 			continue;
1662 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1663 				vecs[i].iov_base);
1664 		totlen += thislen;
1665 		if (ret || thislen != vecs[i].iov_len)
1666 			break;
1667 		to += vecs[i].iov_len;
1668 	}
1669 	*retlen = totlen;
1670 	return ret;
1671 }
1672 
1673 /*
1674  * mtd_writev - the vector-based MTD write method
1675  * @mtd: mtd device description object pointer
1676  * @vecs: the vectors to write
1677  * @count: count of vectors in @vecs
1678  * @to: the MTD device offset to write to
1679  * @retlen: on exit contains the count of bytes written to the MTD device.
1680  *
1681  * This function returns zero in case of success and a negative error code in
1682  * case of failure.
1683  */
1684 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1685 	       unsigned long count, loff_t to, size_t *retlen)
1686 {
1687 	*retlen = 0;
1688 	if (!(mtd->flags & MTD_WRITEABLE))
1689 		return -EROFS;
1690 	if (!mtd->_writev)
1691 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1692 	return mtd->_writev(mtd, vecs, count, to, retlen);
1693 }
1694 EXPORT_SYMBOL_GPL(mtd_writev);
1695 
1696 /**
1697  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1698  * @mtd: mtd device description object pointer
1699  * @size: a pointer to the ideal or maximum size of the allocation, points
1700  *        to the actual allocation size on success.
1701  *
1702  * This routine attempts to allocate a contiguous kernel buffer up to
1703  * the specified size, backing off the size of the request exponentially
1704  * until the request succeeds or until the allocation size falls below
1705  * the system page size. This attempts to make sure it does not adversely
1706  * impact system performance, so when allocating more than one page, we
1707  * ask the memory allocator to avoid re-trying, swapping, writing back
1708  * or performing I/O.
1709  *
1710  * Note, this function also makes sure that the allocated buffer is aligned to
1711  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1712  *
1713  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1714  * to handle smaller (i.e. degraded) buffer allocations under low- or
1715  * fragmented-memory situations where such reduced allocations, from a
1716  * requested ideal, are allowed.
1717  *
1718  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1719  */
1720 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1721 {
1722 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1723 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1724 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1725 	void *kbuf;
1726 
1727 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1728 
1729 	while (*size > min_alloc) {
1730 		kbuf = kmalloc(*size, flags);
1731 		if (kbuf)
1732 			return kbuf;
1733 
1734 		*size >>= 1;
1735 		*size = ALIGN(*size, mtd->writesize);
1736 	}
1737 
1738 	/*
1739 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1740 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1741 	 */
1742 	return kmalloc(*size, GFP_KERNEL);
1743 }
1744 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1745 #endif
1746 
1747 #ifdef CONFIG_PROC_FS
1748 
1749 /*====================================================================*/
1750 /* Support for /proc/mtd */
1751 
1752 static int mtd_proc_show(struct seq_file *m, void *v)
1753 {
1754 	struct mtd_info *mtd;
1755 
1756 	seq_puts(m, "dev:    size   erasesize  name\n");
1757 	mutex_lock(&mtd_table_mutex);
1758 	mtd_for_each_device(mtd) {
1759 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1760 			   mtd->index, (unsigned long long)mtd->size,
1761 			   mtd->erasesize, mtd->name);
1762 	}
1763 	mutex_unlock(&mtd_table_mutex);
1764 	return 0;
1765 }
1766 
1767 static int mtd_proc_open(struct inode *inode, struct file *file)
1768 {
1769 	return single_open(file, mtd_proc_show, NULL);
1770 }
1771 
1772 static const struct file_operations mtd_proc_ops = {
1773 	.open		= mtd_proc_open,
1774 	.read		= seq_read,
1775 	.llseek		= seq_lseek,
1776 	.release	= single_release,
1777 };
1778 #endif /* CONFIG_PROC_FS */
1779 
1780 /*====================================================================*/
1781 /* Init code */
1782 
1783 #ifndef __UBOOT__
1784 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1785 {
1786 	int ret;
1787 
1788 	ret = bdi_init(bdi);
1789 	if (!ret)
1790 		ret = bdi_register(bdi, NULL, "%s", name);
1791 
1792 	if (ret)
1793 		bdi_destroy(bdi);
1794 
1795 	return ret;
1796 }
1797 
1798 static struct proc_dir_entry *proc_mtd;
1799 
1800 static int __init init_mtd(void)
1801 {
1802 	int ret;
1803 
1804 	ret = class_register(&mtd_class);
1805 	if (ret)
1806 		goto err_reg;
1807 
1808 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1809 	if (ret)
1810 		goto err_bdi1;
1811 
1812 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1813 	if (ret)
1814 		goto err_bdi2;
1815 
1816 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1817 	if (ret)
1818 		goto err_bdi3;
1819 
1820 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1821 
1822 	ret = init_mtdchar();
1823 	if (ret)
1824 		goto out_procfs;
1825 
1826 	return 0;
1827 
1828 out_procfs:
1829 	if (proc_mtd)
1830 		remove_proc_entry("mtd", NULL);
1831 err_bdi3:
1832 	bdi_destroy(&mtd_bdi_ro_mappable);
1833 err_bdi2:
1834 	bdi_destroy(&mtd_bdi_unmappable);
1835 err_bdi1:
1836 	class_unregister(&mtd_class);
1837 err_reg:
1838 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1839 	return ret;
1840 }
1841 
1842 static void __exit cleanup_mtd(void)
1843 {
1844 	cleanup_mtdchar();
1845 	if (proc_mtd)
1846 		remove_proc_entry("mtd", NULL);
1847 	class_unregister(&mtd_class);
1848 	bdi_destroy(&mtd_bdi_unmappable);
1849 	bdi_destroy(&mtd_bdi_ro_mappable);
1850 	bdi_destroy(&mtd_bdi_rw_mappable);
1851 }
1852 
1853 module_init(init_mtd);
1854 module_exit(cleanup_mtd);
1855 #endif
1856 
1857 MODULE_LICENSE("GPL");
1858 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1859 MODULE_DESCRIPTION("Core MTD registration and access routines");
1860