xref: /openbmc/u-boot/drivers/mtd/mtdcore.c (revision d9b88d25)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  *
10  */
11 
12 #ifndef __UBOOT__
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/ptrace.h>
16 #include <linux/seq_file.h>
17 #include <linux/string.h>
18 #include <linux/timer.h>
19 #include <linux/major.h>
20 #include <linux/fs.h>
21 #include <linux/err.h>
22 #include <linux/ioctl.h>
23 #include <linux/init.h>
24 #include <linux/proc_fs.h>
25 #include <linux/idr.h>
26 #include <linux/backing-dev.h>
27 #include <linux/gfp.h>
28 #include <linux/slab.h>
29 #else
30 #include <linux/err.h>
31 #include <ubi_uboot.h>
32 #endif
33 
34 #include <linux/log2.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/partitions.h>
37 
38 #include "mtdcore.h"
39 
40 #ifndef __UBOOT__
41 /*
42  * backing device capabilities for non-mappable devices (such as NAND flash)
43  * - permits private mappings, copies are taken of the data
44  */
45 static struct backing_dev_info mtd_bdi_unmappable = {
46 	.capabilities	= BDI_CAP_MAP_COPY,
47 };
48 
49 /*
50  * backing device capabilities for R/O mappable devices (such as ROM)
51  * - permits private mappings, copies are taken of the data
52  * - permits non-writable shared mappings
53  */
54 static struct backing_dev_info mtd_bdi_ro_mappable = {
55 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
56 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
57 };
58 
59 /*
60  * backing device capabilities for writable mappable devices (such as RAM)
61  * - permits private mappings, copies are taken of the data
62  * - permits non-writable shared mappings
63  */
64 static struct backing_dev_info mtd_bdi_rw_mappable = {
65 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
66 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
67 			   BDI_CAP_WRITE_MAP),
68 };
69 
70 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
71 static int mtd_cls_resume(struct device *dev);
72 
73 static struct class mtd_class = {
74 	.name = "mtd",
75 	.owner = THIS_MODULE,
76 	.suspend = mtd_cls_suspend,
77 	.resume = mtd_cls_resume,
78 };
79 #else
80 struct mtd_info *mtd_table[MAX_MTD_DEVICES];
81 
82 #define MAX_IDR_ID	64
83 
84 struct idr_layer {
85 	int	used;
86 	void	*ptr;
87 };
88 
89 struct idr {
90 	struct idr_layer id[MAX_IDR_ID];
91 };
92 
93 #define DEFINE_IDR(name)	struct idr name;
94 
95 void idr_remove(struct idr *idp, int id)
96 {
97 	if (idp->id[id].used)
98 		idp->id[id].used = 0;
99 
100 	return;
101 }
102 void *idr_find(struct idr *idp, int id)
103 {
104 	if (idp->id[id].used)
105 		return idp->id[id].ptr;
106 
107 	return NULL;
108 }
109 
110 void *idr_get_next(struct idr *idp, int *next)
111 {
112 	void *ret;
113 	int id = *next;
114 
115 	ret = idr_find(idp, id);
116 	if (ret) {
117 		id ++;
118 		if (!idp->id[id].used)
119 			id = 0;
120 		*next = id;
121 	} else {
122 		*next = 0;
123 	}
124 
125 	return ret;
126 }
127 
128 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
129 {
130 	struct idr_layer *idl;
131 	int i = 0;
132 
133 	while (i < MAX_IDR_ID) {
134 		idl = &idp->id[i];
135 		if (idl->used == 0) {
136 			idl->used = 1;
137 			idl->ptr = ptr;
138 			return i;
139 		}
140 		i++;
141 	}
142 	return -ENOSPC;
143 }
144 #endif
145 
146 static DEFINE_IDR(mtd_idr);
147 
148 /* These are exported solely for the purpose of mtd_blkdevs.c. You
149    should not use them for _anything_ else */
150 DEFINE_MUTEX(mtd_table_mutex);
151 EXPORT_SYMBOL_GPL(mtd_table_mutex);
152 
153 struct mtd_info *__mtd_next_device(int i)
154 {
155 	return idr_get_next(&mtd_idr, &i);
156 }
157 EXPORT_SYMBOL_GPL(__mtd_next_device);
158 
159 #ifndef __UBOOT__
160 static LIST_HEAD(mtd_notifiers);
161 
162 
163 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
164 
165 /* REVISIT once MTD uses the driver model better, whoever allocates
166  * the mtd_info will probably want to use the release() hook...
167  */
168 static void mtd_release(struct device *dev)
169 {
170 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
171 	dev_t index = MTD_DEVT(mtd->index);
172 
173 	/* remove /dev/mtdXro node if needed */
174 	if (index)
175 		device_destroy(&mtd_class, index + 1);
176 }
177 
178 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
179 {
180 	struct mtd_info *mtd = dev_get_drvdata(dev);
181 
182 	return mtd ? mtd_suspend(mtd) : 0;
183 }
184 
185 static int mtd_cls_resume(struct device *dev)
186 {
187 	struct mtd_info *mtd = dev_get_drvdata(dev);
188 
189 	if (mtd)
190 		mtd_resume(mtd);
191 	return 0;
192 }
193 
194 static ssize_t mtd_type_show(struct device *dev,
195 		struct device_attribute *attr, char *buf)
196 {
197 	struct mtd_info *mtd = dev_get_drvdata(dev);
198 	char *type;
199 
200 	switch (mtd->type) {
201 	case MTD_ABSENT:
202 		type = "absent";
203 		break;
204 	case MTD_RAM:
205 		type = "ram";
206 		break;
207 	case MTD_ROM:
208 		type = "rom";
209 		break;
210 	case MTD_NORFLASH:
211 		type = "nor";
212 		break;
213 	case MTD_NANDFLASH:
214 		type = "nand";
215 		break;
216 	case MTD_DATAFLASH:
217 		type = "dataflash";
218 		break;
219 	case MTD_UBIVOLUME:
220 		type = "ubi";
221 		break;
222 	case MTD_MLCNANDFLASH:
223 		type = "mlc-nand";
224 		break;
225 	default:
226 		type = "unknown";
227 	}
228 
229 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
230 }
231 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
232 
233 static ssize_t mtd_flags_show(struct device *dev,
234 		struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
239 
240 }
241 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
242 
243 static ssize_t mtd_size_show(struct device *dev,
244 		struct device_attribute *attr, char *buf)
245 {
246 	struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248 	return snprintf(buf, PAGE_SIZE, "%llu\n",
249 		(unsigned long long)mtd->size);
250 
251 }
252 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
253 
254 static ssize_t mtd_erasesize_show(struct device *dev,
255 		struct device_attribute *attr, char *buf)
256 {
257 	struct mtd_info *mtd = dev_get_drvdata(dev);
258 
259 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
260 
261 }
262 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
263 
264 static ssize_t mtd_writesize_show(struct device *dev,
265 		struct device_attribute *attr, char *buf)
266 {
267 	struct mtd_info *mtd = dev_get_drvdata(dev);
268 
269 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
270 
271 }
272 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
273 
274 static ssize_t mtd_subpagesize_show(struct device *dev,
275 		struct device_attribute *attr, char *buf)
276 {
277 	struct mtd_info *mtd = dev_get_drvdata(dev);
278 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
279 
280 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
281 
282 }
283 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
284 
285 static ssize_t mtd_oobsize_show(struct device *dev,
286 		struct device_attribute *attr, char *buf)
287 {
288 	struct mtd_info *mtd = dev_get_drvdata(dev);
289 
290 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
291 
292 }
293 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
294 
295 static ssize_t mtd_numeraseregions_show(struct device *dev,
296 		struct device_attribute *attr, char *buf)
297 {
298 	struct mtd_info *mtd = dev_get_drvdata(dev);
299 
300 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
301 
302 }
303 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
304 	NULL);
305 
306 static ssize_t mtd_name_show(struct device *dev,
307 		struct device_attribute *attr, char *buf)
308 {
309 	struct mtd_info *mtd = dev_get_drvdata(dev);
310 
311 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
312 
313 }
314 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
315 
316 static ssize_t mtd_ecc_strength_show(struct device *dev,
317 				     struct device_attribute *attr, char *buf)
318 {
319 	struct mtd_info *mtd = dev_get_drvdata(dev);
320 
321 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
322 }
323 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
324 
325 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
326 					  struct device_attribute *attr,
327 					  char *buf)
328 {
329 	struct mtd_info *mtd = dev_get_drvdata(dev);
330 
331 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
332 }
333 
334 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
335 					   struct device_attribute *attr,
336 					   const char *buf, size_t count)
337 {
338 	struct mtd_info *mtd = dev_get_drvdata(dev);
339 	unsigned int bitflip_threshold;
340 	int retval;
341 
342 	retval = kstrtouint(buf, 0, &bitflip_threshold);
343 	if (retval)
344 		return retval;
345 
346 	mtd->bitflip_threshold = bitflip_threshold;
347 	return count;
348 }
349 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
350 		   mtd_bitflip_threshold_show,
351 		   mtd_bitflip_threshold_store);
352 
353 static ssize_t mtd_ecc_step_size_show(struct device *dev,
354 		struct device_attribute *attr, char *buf)
355 {
356 	struct mtd_info *mtd = dev_get_drvdata(dev);
357 
358 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
359 
360 }
361 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
362 
363 static struct attribute *mtd_attrs[] = {
364 	&dev_attr_type.attr,
365 	&dev_attr_flags.attr,
366 	&dev_attr_size.attr,
367 	&dev_attr_erasesize.attr,
368 	&dev_attr_writesize.attr,
369 	&dev_attr_subpagesize.attr,
370 	&dev_attr_oobsize.attr,
371 	&dev_attr_numeraseregions.attr,
372 	&dev_attr_name.attr,
373 	&dev_attr_ecc_strength.attr,
374 	&dev_attr_ecc_step_size.attr,
375 	&dev_attr_bitflip_threshold.attr,
376 	NULL,
377 };
378 ATTRIBUTE_GROUPS(mtd);
379 
380 static struct device_type mtd_devtype = {
381 	.name		= "mtd",
382 	.groups		= mtd_groups,
383 	.release	= mtd_release,
384 };
385 #endif
386 
387 /**
388  *	add_mtd_device - register an MTD device
389  *	@mtd: pointer to new MTD device info structure
390  *
391  *	Add a device to the list of MTD devices present in the system, and
392  *	notify each currently active MTD 'user' of its arrival. Returns
393  *	zero on success or 1 on failure, which currently will only happen
394  *	if there is insufficient memory or a sysfs error.
395  */
396 
397 int add_mtd_device(struct mtd_info *mtd)
398 {
399 #ifndef __UBOOT__
400 	struct mtd_notifier *not;
401 #endif
402 	int i, error;
403 
404 #ifndef __UBOOT__
405 	if (!mtd->backing_dev_info) {
406 		switch (mtd->type) {
407 		case MTD_RAM:
408 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
409 			break;
410 		case MTD_ROM:
411 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
412 			break;
413 		default:
414 			mtd->backing_dev_info = &mtd_bdi_unmappable;
415 			break;
416 		}
417 	}
418 #endif
419 
420 	BUG_ON(mtd->writesize == 0);
421 	mutex_lock(&mtd_table_mutex);
422 
423 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
424 	if (i < 0)
425 		goto fail_locked;
426 
427 	mtd->index = i;
428 	mtd->usecount = 0;
429 
430 	/* default value if not set by driver */
431 	if (mtd->bitflip_threshold == 0)
432 		mtd->bitflip_threshold = mtd->ecc_strength;
433 
434 	if (is_power_of_2(mtd->erasesize))
435 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
436 	else
437 		mtd->erasesize_shift = 0;
438 
439 	if (is_power_of_2(mtd->writesize))
440 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
441 	else
442 		mtd->writesize_shift = 0;
443 
444 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
445 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
446 
447 	/* Some chips always power up locked. Unlock them now */
448 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
449 		error = mtd_unlock(mtd, 0, mtd->size);
450 		if (error && error != -EOPNOTSUPP)
451 			printk(KERN_WARNING
452 			       "%s: unlock failed, writes may not work\n",
453 			       mtd->name);
454 	}
455 
456 #ifndef __UBOOT__
457 	/* Caller should have set dev.parent to match the
458 	 * physical device.
459 	 */
460 	mtd->dev.type = &mtd_devtype;
461 	mtd->dev.class = &mtd_class;
462 	mtd->dev.devt = MTD_DEVT(i);
463 	dev_set_name(&mtd->dev, "mtd%d", i);
464 	dev_set_drvdata(&mtd->dev, mtd);
465 	if (device_register(&mtd->dev) != 0)
466 		goto fail_added;
467 
468 	if (MTD_DEVT(i))
469 		device_create(&mtd_class, mtd->dev.parent,
470 			      MTD_DEVT(i) + 1,
471 			      NULL, "mtd%dro", i);
472 
473 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
474 	/* No need to get a refcount on the module containing
475 	   the notifier, since we hold the mtd_table_mutex */
476 	list_for_each_entry(not, &mtd_notifiers, list)
477 		not->add(mtd);
478 #else
479 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
480 #endif
481 
482 	mutex_unlock(&mtd_table_mutex);
483 	/* We _know_ we aren't being removed, because
484 	   our caller is still holding us here. So none
485 	   of this try_ nonsense, and no bitching about it
486 	   either. :) */
487 	__module_get(THIS_MODULE);
488 	return 0;
489 
490 #ifndef __UBOOT__
491 fail_added:
492 	idr_remove(&mtd_idr, i);
493 #endif
494 fail_locked:
495 	mutex_unlock(&mtd_table_mutex);
496 	return 1;
497 }
498 
499 /**
500  *	del_mtd_device - unregister an MTD device
501  *	@mtd: pointer to MTD device info structure
502  *
503  *	Remove a device from the list of MTD devices present in the system,
504  *	and notify each currently active MTD 'user' of its departure.
505  *	Returns zero on success or 1 on failure, which currently will happen
506  *	if the requested device does not appear to be present in the list.
507  */
508 
509 int del_mtd_device(struct mtd_info *mtd)
510 {
511 	int ret;
512 #ifndef __UBOOT__
513 	struct mtd_notifier *not;
514 #endif
515 
516 	mutex_lock(&mtd_table_mutex);
517 
518 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
519 		ret = -ENODEV;
520 		goto out_error;
521 	}
522 
523 #ifndef __UBOOT__
524 	/* No need to get a refcount on the module containing
525 		the notifier, since we hold the mtd_table_mutex */
526 	list_for_each_entry(not, &mtd_notifiers, list)
527 		not->remove(mtd);
528 #endif
529 
530 	if (mtd->usecount) {
531 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
532 		       mtd->index, mtd->name, mtd->usecount);
533 		ret = -EBUSY;
534 	} else {
535 #ifndef __UBOOT__
536 		device_unregister(&mtd->dev);
537 #endif
538 
539 		idr_remove(&mtd_idr, mtd->index);
540 
541 		module_put(THIS_MODULE);
542 		ret = 0;
543 	}
544 
545 out_error:
546 	mutex_unlock(&mtd_table_mutex);
547 	return ret;
548 }
549 
550 #ifndef __UBOOT__
551 /**
552  * mtd_device_parse_register - parse partitions and register an MTD device.
553  *
554  * @mtd: the MTD device to register
555  * @types: the list of MTD partition probes to try, see
556  *         'parse_mtd_partitions()' for more information
557  * @parser_data: MTD partition parser-specific data
558  * @parts: fallback partition information to register, if parsing fails;
559  *         only valid if %nr_parts > %0
560  * @nr_parts: the number of partitions in parts, if zero then the full
561  *            MTD device is registered if no partition info is found
562  *
563  * This function aggregates MTD partitions parsing (done by
564  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
565  * basically follows the most common pattern found in many MTD drivers:
566  *
567  * * It first tries to probe partitions on MTD device @mtd using parsers
568  *   specified in @types (if @types is %NULL, then the default list of parsers
569  *   is used, see 'parse_mtd_partitions()' for more information). If none are
570  *   found this functions tries to fallback to information specified in
571  *   @parts/@nr_parts.
572  * * If any partitioning info was found, this function registers the found
573  *   partitions.
574  * * If no partitions were found this function just registers the MTD device
575  *   @mtd and exits.
576  *
577  * Returns zero in case of success and a negative error code in case of failure.
578  */
579 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
580 			      struct mtd_part_parser_data *parser_data,
581 			      const struct mtd_partition *parts,
582 			      int nr_parts)
583 {
584 	int err;
585 	struct mtd_partition *real_parts;
586 
587 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
588 	if (err <= 0 && nr_parts && parts) {
589 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
590 				     GFP_KERNEL);
591 		if (!real_parts)
592 			err = -ENOMEM;
593 		else
594 			err = nr_parts;
595 	}
596 
597 	if (err > 0) {
598 		err = add_mtd_partitions(mtd, real_parts, err);
599 		kfree(real_parts);
600 	} else if (err == 0) {
601 		err = add_mtd_device(mtd);
602 		if (err == 1)
603 			err = -ENODEV;
604 	}
605 
606 	return err;
607 }
608 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
609 
610 /**
611  * mtd_device_unregister - unregister an existing MTD device.
612  *
613  * @master: the MTD device to unregister.  This will unregister both the master
614  *          and any partitions if registered.
615  */
616 int mtd_device_unregister(struct mtd_info *master)
617 {
618 	int err;
619 
620 	err = del_mtd_partitions(master);
621 	if (err)
622 		return err;
623 
624 	if (!device_is_registered(&master->dev))
625 		return 0;
626 
627 	return del_mtd_device(master);
628 }
629 EXPORT_SYMBOL_GPL(mtd_device_unregister);
630 
631 /**
632  *	register_mtd_user - register a 'user' of MTD devices.
633  *	@new: pointer to notifier info structure
634  *
635  *	Registers a pair of callbacks function to be called upon addition
636  *	or removal of MTD devices. Causes the 'add' callback to be immediately
637  *	invoked for each MTD device currently present in the system.
638  */
639 void register_mtd_user (struct mtd_notifier *new)
640 {
641 	struct mtd_info *mtd;
642 
643 	mutex_lock(&mtd_table_mutex);
644 
645 	list_add(&new->list, &mtd_notifiers);
646 
647 	__module_get(THIS_MODULE);
648 
649 	mtd_for_each_device(mtd)
650 		new->add(mtd);
651 
652 	mutex_unlock(&mtd_table_mutex);
653 }
654 EXPORT_SYMBOL_GPL(register_mtd_user);
655 
656 /**
657  *	unregister_mtd_user - unregister a 'user' of MTD devices.
658  *	@old: pointer to notifier info structure
659  *
660  *	Removes a callback function pair from the list of 'users' to be
661  *	notified upon addition or removal of MTD devices. Causes the
662  *	'remove' callback to be immediately invoked for each MTD device
663  *	currently present in the system.
664  */
665 int unregister_mtd_user (struct mtd_notifier *old)
666 {
667 	struct mtd_info *mtd;
668 
669 	mutex_lock(&mtd_table_mutex);
670 
671 	module_put(THIS_MODULE);
672 
673 	mtd_for_each_device(mtd)
674 		old->remove(mtd);
675 
676 	list_del(&old->list);
677 	mutex_unlock(&mtd_table_mutex);
678 	return 0;
679 }
680 EXPORT_SYMBOL_GPL(unregister_mtd_user);
681 #endif
682 
683 /**
684  *	get_mtd_device - obtain a validated handle for an MTD device
685  *	@mtd: last known address of the required MTD device
686  *	@num: internal device number of the required MTD device
687  *
688  *	Given a number and NULL address, return the num'th entry in the device
689  *	table, if any.	Given an address and num == -1, search the device table
690  *	for a device with that address and return if it's still present. Given
691  *	both, return the num'th driver only if its address matches. Return
692  *	error code if not.
693  */
694 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
695 {
696 	struct mtd_info *ret = NULL, *other;
697 	int err = -ENODEV;
698 
699 	mutex_lock(&mtd_table_mutex);
700 
701 	if (num == -1) {
702 		mtd_for_each_device(other) {
703 			if (other == mtd) {
704 				ret = mtd;
705 				break;
706 			}
707 		}
708 	} else if (num >= 0) {
709 		ret = idr_find(&mtd_idr, num);
710 		if (mtd && mtd != ret)
711 			ret = NULL;
712 	}
713 
714 	if (!ret) {
715 		ret = ERR_PTR(err);
716 		goto out;
717 	}
718 
719 	err = __get_mtd_device(ret);
720 	if (err)
721 		ret = ERR_PTR(err);
722 out:
723 	mutex_unlock(&mtd_table_mutex);
724 	return ret;
725 }
726 EXPORT_SYMBOL_GPL(get_mtd_device);
727 
728 
729 int __get_mtd_device(struct mtd_info *mtd)
730 {
731 	int err;
732 
733 	if (!try_module_get(mtd->owner))
734 		return -ENODEV;
735 
736 	if (mtd->_get_device) {
737 		err = mtd->_get_device(mtd);
738 
739 		if (err) {
740 			module_put(mtd->owner);
741 			return err;
742 		}
743 	}
744 	mtd->usecount++;
745 	return 0;
746 }
747 EXPORT_SYMBOL_GPL(__get_mtd_device);
748 
749 /**
750  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
751  *	device name
752  *	@name: MTD device name to open
753  *
754  * 	This function returns MTD device description structure in case of
755  * 	success and an error code in case of failure.
756  */
757 struct mtd_info *get_mtd_device_nm(const char *name)
758 {
759 	int err = -ENODEV;
760 	struct mtd_info *mtd = NULL, *other;
761 
762 	mutex_lock(&mtd_table_mutex);
763 
764 	mtd_for_each_device(other) {
765 		if (!strcmp(name, other->name)) {
766 			mtd = other;
767 			break;
768 		}
769 	}
770 
771 	if (!mtd)
772 		goto out_unlock;
773 
774 	err = __get_mtd_device(mtd);
775 	if (err)
776 		goto out_unlock;
777 
778 	mutex_unlock(&mtd_table_mutex);
779 	return mtd;
780 
781 out_unlock:
782 	mutex_unlock(&mtd_table_mutex);
783 	return ERR_PTR(err);
784 }
785 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
786 
787 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
788 /**
789  * mtd_get_len_incl_bad
790  *
791  * Check if length including bad blocks fits into device.
792  *
793  * @param mtd an MTD device
794  * @param offset offset in flash
795  * @param length image length
796  * @return image length including bad blocks in *len_incl_bad and whether or not
797  *         the length returned was truncated in *truncated
798  */
799 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
800 			  const uint64_t length, uint64_t *len_incl_bad,
801 			  int *truncated)
802 {
803 	*truncated = 0;
804 	*len_incl_bad = 0;
805 
806 	if (!mtd->_block_isbad) {
807 		*len_incl_bad = length;
808 		return;
809 	}
810 
811 	uint64_t len_excl_bad = 0;
812 	uint64_t block_len;
813 
814 	while (len_excl_bad < length) {
815 		if (offset >= mtd->size) {
816 			*truncated = 1;
817 			return;
818 		}
819 
820 		block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
821 
822 		if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
823 			len_excl_bad += block_len;
824 
825 		*len_incl_bad += block_len;
826 		offset       += block_len;
827 	}
828 }
829 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
830 
831 void put_mtd_device(struct mtd_info *mtd)
832 {
833 	mutex_lock(&mtd_table_mutex);
834 	__put_mtd_device(mtd);
835 	mutex_unlock(&mtd_table_mutex);
836 
837 }
838 EXPORT_SYMBOL_GPL(put_mtd_device);
839 
840 void __put_mtd_device(struct mtd_info *mtd)
841 {
842 	--mtd->usecount;
843 	BUG_ON(mtd->usecount < 0);
844 
845 	if (mtd->_put_device)
846 		mtd->_put_device(mtd);
847 
848 	module_put(mtd->owner);
849 }
850 EXPORT_SYMBOL_GPL(__put_mtd_device);
851 
852 /*
853  * Erase is an asynchronous operation.  Device drivers are supposed
854  * to call instr->callback() whenever the operation completes, even
855  * if it completes with a failure.
856  * Callers are supposed to pass a callback function and wait for it
857  * to be called before writing to the block.
858  */
859 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
860 {
861 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
862 		return -EINVAL;
863 	if (!(mtd->flags & MTD_WRITEABLE))
864 		return -EROFS;
865 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
866 	if (!instr->len) {
867 		instr->state = MTD_ERASE_DONE;
868 		mtd_erase_callback(instr);
869 		return 0;
870 	}
871 	return mtd->_erase(mtd, instr);
872 }
873 EXPORT_SYMBOL_GPL(mtd_erase);
874 
875 #ifndef __UBOOT__
876 /*
877  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
878  */
879 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
880 	      void **virt, resource_size_t *phys)
881 {
882 	*retlen = 0;
883 	*virt = NULL;
884 	if (phys)
885 		*phys = 0;
886 	if (!mtd->_point)
887 		return -EOPNOTSUPP;
888 	if (from < 0 || from > mtd->size || len > mtd->size - from)
889 		return -EINVAL;
890 	if (!len)
891 		return 0;
892 	return mtd->_point(mtd, from, len, retlen, virt, phys);
893 }
894 EXPORT_SYMBOL_GPL(mtd_point);
895 
896 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
897 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
898 {
899 	if (!mtd->_point)
900 		return -EOPNOTSUPP;
901 	if (from < 0 || from > mtd->size || len > mtd->size - from)
902 		return -EINVAL;
903 	if (!len)
904 		return 0;
905 	return mtd->_unpoint(mtd, from, len);
906 }
907 EXPORT_SYMBOL_GPL(mtd_unpoint);
908 #endif
909 
910 /*
911  * Allow NOMMU mmap() to directly map the device (if not NULL)
912  * - return the address to which the offset maps
913  * - return -ENOSYS to indicate refusal to do the mapping
914  */
915 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
916 				    unsigned long offset, unsigned long flags)
917 {
918 	if (!mtd->_get_unmapped_area)
919 		return -EOPNOTSUPP;
920 	if (offset > mtd->size || len > mtd->size - offset)
921 		return -EINVAL;
922 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
923 }
924 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
925 
926 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
927 	     u_char *buf)
928 {
929 	int ret_code;
930 	*retlen = 0;
931 	if (from < 0 || from > mtd->size || len > mtd->size - from)
932 		return -EINVAL;
933 	if (!len)
934 		return 0;
935 
936 	/*
937 	 * In the absence of an error, drivers return a non-negative integer
938 	 * representing the maximum number of bitflips that were corrected on
939 	 * any one ecc region (if applicable; zero otherwise).
940 	 */
941 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
942 	if (unlikely(ret_code < 0))
943 		return ret_code;
944 	if (mtd->ecc_strength == 0)
945 		return 0;	/* device lacks ecc */
946 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
947 }
948 EXPORT_SYMBOL_GPL(mtd_read);
949 
950 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
951 	      const u_char *buf)
952 {
953 	*retlen = 0;
954 	if (to < 0 || to > mtd->size || len > mtd->size - to)
955 		return -EINVAL;
956 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
957 		return -EROFS;
958 	if (!len)
959 		return 0;
960 	return mtd->_write(mtd, to, len, retlen, buf);
961 }
962 EXPORT_SYMBOL_GPL(mtd_write);
963 
964 /*
965  * In blackbox flight recorder like scenarios we want to make successful writes
966  * in interrupt context. panic_write() is only intended to be called when its
967  * known the kernel is about to panic and we need the write to succeed. Since
968  * the kernel is not going to be running for much longer, this function can
969  * break locks and delay to ensure the write succeeds (but not sleep).
970  */
971 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
972 		    const u_char *buf)
973 {
974 	*retlen = 0;
975 	if (!mtd->_panic_write)
976 		return -EOPNOTSUPP;
977 	if (to < 0 || to > mtd->size || len > mtd->size - to)
978 		return -EINVAL;
979 	if (!(mtd->flags & MTD_WRITEABLE))
980 		return -EROFS;
981 	if (!len)
982 		return 0;
983 	return mtd->_panic_write(mtd, to, len, retlen, buf);
984 }
985 EXPORT_SYMBOL_GPL(mtd_panic_write);
986 
987 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
988 {
989 	int ret_code;
990 	ops->retlen = ops->oobretlen = 0;
991 	if (!mtd->_read_oob)
992 		return -EOPNOTSUPP;
993 	/*
994 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
995 	 * similar to mtd->_read(), returning a non-negative integer
996 	 * representing max bitflips. In other cases, mtd->_read_oob() may
997 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
998 	 */
999 	ret_code = mtd->_read_oob(mtd, from, ops);
1000 	if (unlikely(ret_code < 0))
1001 		return ret_code;
1002 	if (mtd->ecc_strength == 0)
1003 		return 0;	/* device lacks ecc */
1004 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1005 }
1006 EXPORT_SYMBOL_GPL(mtd_read_oob);
1007 
1008 /*
1009  * Method to access the protection register area, present in some flash
1010  * devices. The user data is one time programmable but the factory data is read
1011  * only.
1012  */
1013 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1014 			   struct otp_info *buf)
1015 {
1016 	if (!mtd->_get_fact_prot_info)
1017 		return -EOPNOTSUPP;
1018 	if (!len)
1019 		return 0;
1020 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1021 }
1022 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1023 
1024 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1025 			   size_t *retlen, u_char *buf)
1026 {
1027 	*retlen = 0;
1028 	if (!mtd->_read_fact_prot_reg)
1029 		return -EOPNOTSUPP;
1030 	if (!len)
1031 		return 0;
1032 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1033 }
1034 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1035 
1036 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1037 			   struct otp_info *buf)
1038 {
1039 	if (!mtd->_get_user_prot_info)
1040 		return -EOPNOTSUPP;
1041 	if (!len)
1042 		return 0;
1043 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1044 }
1045 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1046 
1047 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1048 			   size_t *retlen, u_char *buf)
1049 {
1050 	*retlen = 0;
1051 	if (!mtd->_read_user_prot_reg)
1052 		return -EOPNOTSUPP;
1053 	if (!len)
1054 		return 0;
1055 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1056 }
1057 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1058 
1059 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1060 			    size_t *retlen, u_char *buf)
1061 {
1062 	int ret;
1063 
1064 	*retlen = 0;
1065 	if (!mtd->_write_user_prot_reg)
1066 		return -EOPNOTSUPP;
1067 	if (!len)
1068 		return 0;
1069 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1070 	if (ret)
1071 		return ret;
1072 
1073 	/*
1074 	 * If no data could be written at all, we are out of memory and
1075 	 * must return -ENOSPC.
1076 	 */
1077 	return (*retlen) ? 0 : -ENOSPC;
1078 }
1079 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1080 
1081 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1082 {
1083 	if (!mtd->_lock_user_prot_reg)
1084 		return -EOPNOTSUPP;
1085 	if (!len)
1086 		return 0;
1087 	return mtd->_lock_user_prot_reg(mtd, from, len);
1088 }
1089 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1090 
1091 /* Chip-supported device locking */
1092 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1093 {
1094 	if (!mtd->_lock)
1095 		return -EOPNOTSUPP;
1096 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1097 		return -EINVAL;
1098 	if (!len)
1099 		return 0;
1100 	return mtd->_lock(mtd, ofs, len);
1101 }
1102 EXPORT_SYMBOL_GPL(mtd_lock);
1103 
1104 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1105 {
1106 	if (!mtd->_unlock)
1107 		return -EOPNOTSUPP;
1108 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1109 		return -EINVAL;
1110 	if (!len)
1111 		return 0;
1112 	return mtd->_unlock(mtd, ofs, len);
1113 }
1114 EXPORT_SYMBOL_GPL(mtd_unlock);
1115 
1116 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1117 {
1118 	if (!mtd->_is_locked)
1119 		return -EOPNOTSUPP;
1120 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1121 		return -EINVAL;
1122 	if (!len)
1123 		return 0;
1124 	return mtd->_is_locked(mtd, ofs, len);
1125 }
1126 EXPORT_SYMBOL_GPL(mtd_is_locked);
1127 
1128 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1129 {
1130 	if (ofs < 0 || ofs > mtd->size)
1131 		return -EINVAL;
1132 	if (!mtd->_block_isreserved)
1133 		return 0;
1134 	return mtd->_block_isreserved(mtd, ofs);
1135 }
1136 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1137 
1138 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1139 {
1140 	if (ofs < 0 || ofs > mtd->size)
1141 		return -EINVAL;
1142 	if (!mtd->_block_isbad)
1143 		return 0;
1144 	return mtd->_block_isbad(mtd, ofs);
1145 }
1146 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1147 
1148 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1149 {
1150 	if (!mtd->_block_markbad)
1151 		return -EOPNOTSUPP;
1152 	if (ofs < 0 || ofs > mtd->size)
1153 		return -EINVAL;
1154 	if (!(mtd->flags & MTD_WRITEABLE))
1155 		return -EROFS;
1156 	return mtd->_block_markbad(mtd, ofs);
1157 }
1158 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1159 
1160 #ifndef __UBOOT__
1161 /*
1162  * default_mtd_writev - the default writev method
1163  * @mtd: mtd device description object pointer
1164  * @vecs: the vectors to write
1165  * @count: count of vectors in @vecs
1166  * @to: the MTD device offset to write to
1167  * @retlen: on exit contains the count of bytes written to the MTD device.
1168  *
1169  * This function returns zero in case of success and a negative error code in
1170  * case of failure.
1171  */
1172 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1173 			      unsigned long count, loff_t to, size_t *retlen)
1174 {
1175 	unsigned long i;
1176 	size_t totlen = 0, thislen;
1177 	int ret = 0;
1178 
1179 	for (i = 0; i < count; i++) {
1180 		if (!vecs[i].iov_len)
1181 			continue;
1182 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1183 				vecs[i].iov_base);
1184 		totlen += thislen;
1185 		if (ret || thislen != vecs[i].iov_len)
1186 			break;
1187 		to += vecs[i].iov_len;
1188 	}
1189 	*retlen = totlen;
1190 	return ret;
1191 }
1192 
1193 /*
1194  * mtd_writev - the vector-based MTD write method
1195  * @mtd: mtd device description object pointer
1196  * @vecs: the vectors to write
1197  * @count: count of vectors in @vecs
1198  * @to: the MTD device offset to write to
1199  * @retlen: on exit contains the count of bytes written to the MTD device.
1200  *
1201  * This function returns zero in case of success and a negative error code in
1202  * case of failure.
1203  */
1204 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1205 	       unsigned long count, loff_t to, size_t *retlen)
1206 {
1207 	*retlen = 0;
1208 	if (!(mtd->flags & MTD_WRITEABLE))
1209 		return -EROFS;
1210 	if (!mtd->_writev)
1211 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1212 	return mtd->_writev(mtd, vecs, count, to, retlen);
1213 }
1214 EXPORT_SYMBOL_GPL(mtd_writev);
1215 
1216 /**
1217  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1218  * @mtd: mtd device description object pointer
1219  * @size: a pointer to the ideal or maximum size of the allocation, points
1220  *        to the actual allocation size on success.
1221  *
1222  * This routine attempts to allocate a contiguous kernel buffer up to
1223  * the specified size, backing off the size of the request exponentially
1224  * until the request succeeds or until the allocation size falls below
1225  * the system page size. This attempts to make sure it does not adversely
1226  * impact system performance, so when allocating more than one page, we
1227  * ask the memory allocator to avoid re-trying, swapping, writing back
1228  * or performing I/O.
1229  *
1230  * Note, this function also makes sure that the allocated buffer is aligned to
1231  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1232  *
1233  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1234  * to handle smaller (i.e. degraded) buffer allocations under low- or
1235  * fragmented-memory situations where such reduced allocations, from a
1236  * requested ideal, are allowed.
1237  *
1238  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1239  */
1240 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1241 {
1242 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1243 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1244 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1245 	void *kbuf;
1246 
1247 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1248 
1249 	while (*size > min_alloc) {
1250 		kbuf = kmalloc(*size, flags);
1251 		if (kbuf)
1252 			return kbuf;
1253 
1254 		*size >>= 1;
1255 		*size = ALIGN(*size, mtd->writesize);
1256 	}
1257 
1258 	/*
1259 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1260 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1261 	 */
1262 	return kmalloc(*size, GFP_KERNEL);
1263 }
1264 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1265 #endif
1266 
1267 #ifdef CONFIG_PROC_FS
1268 
1269 /*====================================================================*/
1270 /* Support for /proc/mtd */
1271 
1272 static int mtd_proc_show(struct seq_file *m, void *v)
1273 {
1274 	struct mtd_info *mtd;
1275 
1276 	seq_puts(m, "dev:    size   erasesize  name\n");
1277 	mutex_lock(&mtd_table_mutex);
1278 	mtd_for_each_device(mtd) {
1279 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1280 			   mtd->index, (unsigned long long)mtd->size,
1281 			   mtd->erasesize, mtd->name);
1282 	}
1283 	mutex_unlock(&mtd_table_mutex);
1284 	return 0;
1285 }
1286 
1287 static int mtd_proc_open(struct inode *inode, struct file *file)
1288 {
1289 	return single_open(file, mtd_proc_show, NULL);
1290 }
1291 
1292 static const struct file_operations mtd_proc_ops = {
1293 	.open		= mtd_proc_open,
1294 	.read		= seq_read,
1295 	.llseek		= seq_lseek,
1296 	.release	= single_release,
1297 };
1298 #endif /* CONFIG_PROC_FS */
1299 
1300 /*====================================================================*/
1301 /* Init code */
1302 
1303 #ifndef __UBOOT__
1304 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1305 {
1306 	int ret;
1307 
1308 	ret = bdi_init(bdi);
1309 	if (!ret)
1310 		ret = bdi_register(bdi, NULL, "%s", name);
1311 
1312 	if (ret)
1313 		bdi_destroy(bdi);
1314 
1315 	return ret;
1316 }
1317 
1318 static struct proc_dir_entry *proc_mtd;
1319 
1320 static int __init init_mtd(void)
1321 {
1322 	int ret;
1323 
1324 	ret = class_register(&mtd_class);
1325 	if (ret)
1326 		goto err_reg;
1327 
1328 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1329 	if (ret)
1330 		goto err_bdi1;
1331 
1332 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1333 	if (ret)
1334 		goto err_bdi2;
1335 
1336 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1337 	if (ret)
1338 		goto err_bdi3;
1339 
1340 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1341 
1342 	ret = init_mtdchar();
1343 	if (ret)
1344 		goto out_procfs;
1345 
1346 	return 0;
1347 
1348 out_procfs:
1349 	if (proc_mtd)
1350 		remove_proc_entry("mtd", NULL);
1351 err_bdi3:
1352 	bdi_destroy(&mtd_bdi_ro_mappable);
1353 err_bdi2:
1354 	bdi_destroy(&mtd_bdi_unmappable);
1355 err_bdi1:
1356 	class_unregister(&mtd_class);
1357 err_reg:
1358 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1359 	return ret;
1360 }
1361 
1362 static void __exit cleanup_mtd(void)
1363 {
1364 	cleanup_mtdchar();
1365 	if (proc_mtd)
1366 		remove_proc_entry("mtd", NULL);
1367 	class_unregister(&mtd_class);
1368 	bdi_destroy(&mtd_bdi_unmappable);
1369 	bdi_destroy(&mtd_bdi_ro_mappable);
1370 	bdi_destroy(&mtd_bdi_rw_mappable);
1371 }
1372 
1373 module_init(init_mtd);
1374 module_exit(cleanup_mtd);
1375 #endif
1376 
1377 MODULE_LICENSE("GPL");
1378 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1379 MODULE_DESCRIPTION("Core MTD registration and access routines");
1380