1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 * 10 */ 11 12 #ifndef __UBOOT__ 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/ptrace.h> 16 #include <linux/seq_file.h> 17 #include <linux/string.h> 18 #include <linux/timer.h> 19 #include <linux/major.h> 20 #include <linux/fs.h> 21 #include <linux/err.h> 22 #include <linux/ioctl.h> 23 #include <linux/init.h> 24 #include <linux/proc_fs.h> 25 #include <linux/idr.h> 26 #include <linux/backing-dev.h> 27 #include <linux/gfp.h> 28 #include <linux/slab.h> 29 #else 30 #include <linux/err.h> 31 #include <ubi_uboot.h> 32 #endif 33 34 #include <linux/log2.h> 35 #include <linux/mtd/mtd.h> 36 #include <linux/mtd/partitions.h> 37 38 #include "mtdcore.h" 39 40 #ifndef __UBOOT__ 41 /* 42 * backing device capabilities for non-mappable devices (such as NAND flash) 43 * - permits private mappings, copies are taken of the data 44 */ 45 static struct backing_dev_info mtd_bdi_unmappable = { 46 .capabilities = BDI_CAP_MAP_COPY, 47 }; 48 49 /* 50 * backing device capabilities for R/O mappable devices (such as ROM) 51 * - permits private mappings, copies are taken of the data 52 * - permits non-writable shared mappings 53 */ 54 static struct backing_dev_info mtd_bdi_ro_mappable = { 55 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 56 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), 57 }; 58 59 /* 60 * backing device capabilities for writable mappable devices (such as RAM) 61 * - permits private mappings, copies are taken of the data 62 * - permits non-writable shared mappings 63 */ 64 static struct backing_dev_info mtd_bdi_rw_mappable = { 65 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 66 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | 67 BDI_CAP_WRITE_MAP), 68 }; 69 70 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 71 static int mtd_cls_resume(struct device *dev); 72 73 static struct class mtd_class = { 74 .name = "mtd", 75 .owner = THIS_MODULE, 76 .suspend = mtd_cls_suspend, 77 .resume = mtd_cls_resume, 78 }; 79 #else 80 struct mtd_info *mtd_table[MAX_MTD_DEVICES]; 81 82 #define MAX_IDR_ID 64 83 84 struct idr_layer { 85 int used; 86 void *ptr; 87 }; 88 89 struct idr { 90 struct idr_layer id[MAX_IDR_ID]; 91 }; 92 93 #define DEFINE_IDR(name) struct idr name; 94 95 void idr_remove(struct idr *idp, int id) 96 { 97 if (idp->id[id].used) 98 idp->id[id].used = 0; 99 100 return; 101 } 102 void *idr_find(struct idr *idp, int id) 103 { 104 if (idp->id[id].used) 105 return idp->id[id].ptr; 106 107 return NULL; 108 } 109 110 void *idr_get_next(struct idr *idp, int *next) 111 { 112 void *ret; 113 int id = *next; 114 115 ret = idr_find(idp, id); 116 if (ret) { 117 id ++; 118 if (!idp->id[id].used) 119 id = 0; 120 *next = id; 121 } else { 122 *next = 0; 123 } 124 125 return ret; 126 } 127 128 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask) 129 { 130 struct idr_layer *idl; 131 int i = 0; 132 133 while (i < MAX_IDR_ID) { 134 idl = &idp->id[i]; 135 if (idl->used == 0) { 136 idl->used = 1; 137 idl->ptr = ptr; 138 return i; 139 } 140 i++; 141 } 142 return -ENOSPC; 143 } 144 #endif 145 146 static DEFINE_IDR(mtd_idr); 147 148 /* These are exported solely for the purpose of mtd_blkdevs.c. You 149 should not use them for _anything_ else */ 150 DEFINE_MUTEX(mtd_table_mutex); 151 EXPORT_SYMBOL_GPL(mtd_table_mutex); 152 153 struct mtd_info *__mtd_next_device(int i) 154 { 155 return idr_get_next(&mtd_idr, &i); 156 } 157 EXPORT_SYMBOL_GPL(__mtd_next_device); 158 159 #ifndef __UBOOT__ 160 static LIST_HEAD(mtd_notifiers); 161 162 163 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 164 165 /* REVISIT once MTD uses the driver model better, whoever allocates 166 * the mtd_info will probably want to use the release() hook... 167 */ 168 static void mtd_release(struct device *dev) 169 { 170 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev); 171 dev_t index = MTD_DEVT(mtd->index); 172 173 /* remove /dev/mtdXro node if needed */ 174 if (index) 175 device_destroy(&mtd_class, index + 1); 176 } 177 178 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 179 { 180 struct mtd_info *mtd = dev_get_drvdata(dev); 181 182 return mtd ? mtd_suspend(mtd) : 0; 183 } 184 185 static int mtd_cls_resume(struct device *dev) 186 { 187 struct mtd_info *mtd = dev_get_drvdata(dev); 188 189 if (mtd) 190 mtd_resume(mtd); 191 return 0; 192 } 193 194 static ssize_t mtd_type_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196 { 197 struct mtd_info *mtd = dev_get_drvdata(dev); 198 char *type; 199 200 switch (mtd->type) { 201 case MTD_ABSENT: 202 type = "absent"; 203 break; 204 case MTD_RAM: 205 type = "ram"; 206 break; 207 case MTD_ROM: 208 type = "rom"; 209 break; 210 case MTD_NORFLASH: 211 type = "nor"; 212 break; 213 case MTD_NANDFLASH: 214 type = "nand"; 215 break; 216 case MTD_DATAFLASH: 217 type = "dataflash"; 218 break; 219 case MTD_UBIVOLUME: 220 type = "ubi"; 221 break; 222 case MTD_MLCNANDFLASH: 223 type = "mlc-nand"; 224 break; 225 default: 226 type = "unknown"; 227 } 228 229 return snprintf(buf, PAGE_SIZE, "%s\n", type); 230 } 231 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 232 233 static ssize_t mtd_flags_show(struct device *dev, 234 struct device_attribute *attr, char *buf) 235 { 236 struct mtd_info *mtd = dev_get_drvdata(dev); 237 238 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 239 240 } 241 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 242 243 static ssize_t mtd_size_show(struct device *dev, 244 struct device_attribute *attr, char *buf) 245 { 246 struct mtd_info *mtd = dev_get_drvdata(dev); 247 248 return snprintf(buf, PAGE_SIZE, "%llu\n", 249 (unsigned long long)mtd->size); 250 251 } 252 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 253 254 static ssize_t mtd_erasesize_show(struct device *dev, 255 struct device_attribute *attr, char *buf) 256 { 257 struct mtd_info *mtd = dev_get_drvdata(dev); 258 259 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 260 261 } 262 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 263 264 static ssize_t mtd_writesize_show(struct device *dev, 265 struct device_attribute *attr, char *buf) 266 { 267 struct mtd_info *mtd = dev_get_drvdata(dev); 268 269 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 270 271 } 272 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 273 274 static ssize_t mtd_subpagesize_show(struct device *dev, 275 struct device_attribute *attr, char *buf) 276 { 277 struct mtd_info *mtd = dev_get_drvdata(dev); 278 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 279 280 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 281 282 } 283 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 284 285 static ssize_t mtd_oobsize_show(struct device *dev, 286 struct device_attribute *attr, char *buf) 287 { 288 struct mtd_info *mtd = dev_get_drvdata(dev); 289 290 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 291 292 } 293 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 294 295 static ssize_t mtd_numeraseregions_show(struct device *dev, 296 struct device_attribute *attr, char *buf) 297 { 298 struct mtd_info *mtd = dev_get_drvdata(dev); 299 300 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 301 302 } 303 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 304 NULL); 305 306 static ssize_t mtd_name_show(struct device *dev, 307 struct device_attribute *attr, char *buf) 308 { 309 struct mtd_info *mtd = dev_get_drvdata(dev); 310 311 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 312 313 } 314 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 315 316 static ssize_t mtd_ecc_strength_show(struct device *dev, 317 struct device_attribute *attr, char *buf) 318 { 319 struct mtd_info *mtd = dev_get_drvdata(dev); 320 321 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 322 } 323 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 324 325 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 326 struct device_attribute *attr, 327 char *buf) 328 { 329 struct mtd_info *mtd = dev_get_drvdata(dev); 330 331 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 332 } 333 334 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 335 struct device_attribute *attr, 336 const char *buf, size_t count) 337 { 338 struct mtd_info *mtd = dev_get_drvdata(dev); 339 unsigned int bitflip_threshold; 340 int retval; 341 342 retval = kstrtouint(buf, 0, &bitflip_threshold); 343 if (retval) 344 return retval; 345 346 mtd->bitflip_threshold = bitflip_threshold; 347 return count; 348 } 349 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 350 mtd_bitflip_threshold_show, 351 mtd_bitflip_threshold_store); 352 353 static ssize_t mtd_ecc_step_size_show(struct device *dev, 354 struct device_attribute *attr, char *buf) 355 { 356 struct mtd_info *mtd = dev_get_drvdata(dev); 357 358 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 359 360 } 361 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 362 363 static struct attribute *mtd_attrs[] = { 364 &dev_attr_type.attr, 365 &dev_attr_flags.attr, 366 &dev_attr_size.attr, 367 &dev_attr_erasesize.attr, 368 &dev_attr_writesize.attr, 369 &dev_attr_subpagesize.attr, 370 &dev_attr_oobsize.attr, 371 &dev_attr_numeraseregions.attr, 372 &dev_attr_name.attr, 373 &dev_attr_ecc_strength.attr, 374 &dev_attr_ecc_step_size.attr, 375 &dev_attr_bitflip_threshold.attr, 376 NULL, 377 }; 378 ATTRIBUTE_GROUPS(mtd); 379 380 static struct device_type mtd_devtype = { 381 .name = "mtd", 382 .groups = mtd_groups, 383 .release = mtd_release, 384 }; 385 #endif 386 387 /** 388 * add_mtd_device - register an MTD device 389 * @mtd: pointer to new MTD device info structure 390 * 391 * Add a device to the list of MTD devices present in the system, and 392 * notify each currently active MTD 'user' of its arrival. Returns 393 * zero on success or 1 on failure, which currently will only happen 394 * if there is insufficient memory or a sysfs error. 395 */ 396 397 int add_mtd_device(struct mtd_info *mtd) 398 { 399 #ifndef __UBOOT__ 400 struct mtd_notifier *not; 401 #endif 402 int i, error; 403 404 #ifndef __UBOOT__ 405 if (!mtd->backing_dev_info) { 406 switch (mtd->type) { 407 case MTD_RAM: 408 mtd->backing_dev_info = &mtd_bdi_rw_mappable; 409 break; 410 case MTD_ROM: 411 mtd->backing_dev_info = &mtd_bdi_ro_mappable; 412 break; 413 default: 414 mtd->backing_dev_info = &mtd_bdi_unmappable; 415 break; 416 } 417 } 418 #endif 419 420 BUG_ON(mtd->writesize == 0); 421 mutex_lock(&mtd_table_mutex); 422 423 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 424 if (i < 0) 425 goto fail_locked; 426 427 mtd->index = i; 428 mtd->usecount = 0; 429 430 /* default value if not set by driver */ 431 if (mtd->bitflip_threshold == 0) 432 mtd->bitflip_threshold = mtd->ecc_strength; 433 434 if (is_power_of_2(mtd->erasesize)) 435 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 436 else 437 mtd->erasesize_shift = 0; 438 439 if (is_power_of_2(mtd->writesize)) 440 mtd->writesize_shift = ffs(mtd->writesize) - 1; 441 else 442 mtd->writesize_shift = 0; 443 444 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 445 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 446 447 /* Some chips always power up locked. Unlock them now */ 448 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 449 error = mtd_unlock(mtd, 0, mtd->size); 450 if (error && error != -EOPNOTSUPP) 451 printk(KERN_WARNING 452 "%s: unlock failed, writes may not work\n", 453 mtd->name); 454 } 455 456 #ifndef __UBOOT__ 457 /* Caller should have set dev.parent to match the 458 * physical device. 459 */ 460 mtd->dev.type = &mtd_devtype; 461 mtd->dev.class = &mtd_class; 462 mtd->dev.devt = MTD_DEVT(i); 463 dev_set_name(&mtd->dev, "mtd%d", i); 464 dev_set_drvdata(&mtd->dev, mtd); 465 if (device_register(&mtd->dev) != 0) 466 goto fail_added; 467 468 if (MTD_DEVT(i)) 469 device_create(&mtd_class, mtd->dev.parent, 470 MTD_DEVT(i) + 1, 471 NULL, "mtd%dro", i); 472 473 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 474 /* No need to get a refcount on the module containing 475 the notifier, since we hold the mtd_table_mutex */ 476 list_for_each_entry(not, &mtd_notifiers, list) 477 not->add(mtd); 478 #else 479 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 480 #endif 481 482 mutex_unlock(&mtd_table_mutex); 483 /* We _know_ we aren't being removed, because 484 our caller is still holding us here. So none 485 of this try_ nonsense, and no bitching about it 486 either. :) */ 487 __module_get(THIS_MODULE); 488 return 0; 489 490 #ifndef __UBOOT__ 491 fail_added: 492 idr_remove(&mtd_idr, i); 493 #endif 494 fail_locked: 495 mutex_unlock(&mtd_table_mutex); 496 return 1; 497 } 498 499 /** 500 * del_mtd_device - unregister an MTD device 501 * @mtd: pointer to MTD device info structure 502 * 503 * Remove a device from the list of MTD devices present in the system, 504 * and notify each currently active MTD 'user' of its departure. 505 * Returns zero on success or 1 on failure, which currently will happen 506 * if the requested device does not appear to be present in the list. 507 */ 508 509 int del_mtd_device(struct mtd_info *mtd) 510 { 511 int ret; 512 #ifndef __UBOOT__ 513 struct mtd_notifier *not; 514 #endif 515 516 mutex_lock(&mtd_table_mutex); 517 518 if (idr_find(&mtd_idr, mtd->index) != mtd) { 519 ret = -ENODEV; 520 goto out_error; 521 } 522 523 #ifndef __UBOOT__ 524 /* No need to get a refcount on the module containing 525 the notifier, since we hold the mtd_table_mutex */ 526 list_for_each_entry(not, &mtd_notifiers, list) 527 not->remove(mtd); 528 #endif 529 530 if (mtd->usecount) { 531 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 532 mtd->index, mtd->name, mtd->usecount); 533 ret = -EBUSY; 534 } else { 535 #ifndef __UBOOT__ 536 device_unregister(&mtd->dev); 537 #endif 538 539 idr_remove(&mtd_idr, mtd->index); 540 541 module_put(THIS_MODULE); 542 ret = 0; 543 } 544 545 out_error: 546 mutex_unlock(&mtd_table_mutex); 547 return ret; 548 } 549 550 #ifndef __UBOOT__ 551 /** 552 * mtd_device_parse_register - parse partitions and register an MTD device. 553 * 554 * @mtd: the MTD device to register 555 * @types: the list of MTD partition probes to try, see 556 * 'parse_mtd_partitions()' for more information 557 * @parser_data: MTD partition parser-specific data 558 * @parts: fallback partition information to register, if parsing fails; 559 * only valid if %nr_parts > %0 560 * @nr_parts: the number of partitions in parts, if zero then the full 561 * MTD device is registered if no partition info is found 562 * 563 * This function aggregates MTD partitions parsing (done by 564 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 565 * basically follows the most common pattern found in many MTD drivers: 566 * 567 * * It first tries to probe partitions on MTD device @mtd using parsers 568 * specified in @types (if @types is %NULL, then the default list of parsers 569 * is used, see 'parse_mtd_partitions()' for more information). If none are 570 * found this functions tries to fallback to information specified in 571 * @parts/@nr_parts. 572 * * If any partitioning info was found, this function registers the found 573 * partitions. 574 * * If no partitions were found this function just registers the MTD device 575 * @mtd and exits. 576 * 577 * Returns zero in case of success and a negative error code in case of failure. 578 */ 579 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 580 struct mtd_part_parser_data *parser_data, 581 const struct mtd_partition *parts, 582 int nr_parts) 583 { 584 int err; 585 struct mtd_partition *real_parts; 586 587 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 588 if (err <= 0 && nr_parts && parts) { 589 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 590 GFP_KERNEL); 591 if (!real_parts) 592 err = -ENOMEM; 593 else 594 err = nr_parts; 595 } 596 597 if (err > 0) { 598 err = add_mtd_partitions(mtd, real_parts, err); 599 kfree(real_parts); 600 } else if (err == 0) { 601 err = add_mtd_device(mtd); 602 if (err == 1) 603 err = -ENODEV; 604 } 605 606 return err; 607 } 608 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 609 610 /** 611 * mtd_device_unregister - unregister an existing MTD device. 612 * 613 * @master: the MTD device to unregister. This will unregister both the master 614 * and any partitions if registered. 615 */ 616 int mtd_device_unregister(struct mtd_info *master) 617 { 618 int err; 619 620 err = del_mtd_partitions(master); 621 if (err) 622 return err; 623 624 if (!device_is_registered(&master->dev)) 625 return 0; 626 627 return del_mtd_device(master); 628 } 629 EXPORT_SYMBOL_GPL(mtd_device_unregister); 630 631 /** 632 * register_mtd_user - register a 'user' of MTD devices. 633 * @new: pointer to notifier info structure 634 * 635 * Registers a pair of callbacks function to be called upon addition 636 * or removal of MTD devices. Causes the 'add' callback to be immediately 637 * invoked for each MTD device currently present in the system. 638 */ 639 void register_mtd_user (struct mtd_notifier *new) 640 { 641 struct mtd_info *mtd; 642 643 mutex_lock(&mtd_table_mutex); 644 645 list_add(&new->list, &mtd_notifiers); 646 647 __module_get(THIS_MODULE); 648 649 mtd_for_each_device(mtd) 650 new->add(mtd); 651 652 mutex_unlock(&mtd_table_mutex); 653 } 654 EXPORT_SYMBOL_GPL(register_mtd_user); 655 656 /** 657 * unregister_mtd_user - unregister a 'user' of MTD devices. 658 * @old: pointer to notifier info structure 659 * 660 * Removes a callback function pair from the list of 'users' to be 661 * notified upon addition or removal of MTD devices. Causes the 662 * 'remove' callback to be immediately invoked for each MTD device 663 * currently present in the system. 664 */ 665 int unregister_mtd_user (struct mtd_notifier *old) 666 { 667 struct mtd_info *mtd; 668 669 mutex_lock(&mtd_table_mutex); 670 671 module_put(THIS_MODULE); 672 673 mtd_for_each_device(mtd) 674 old->remove(mtd); 675 676 list_del(&old->list); 677 mutex_unlock(&mtd_table_mutex); 678 return 0; 679 } 680 EXPORT_SYMBOL_GPL(unregister_mtd_user); 681 #endif 682 683 /** 684 * get_mtd_device - obtain a validated handle for an MTD device 685 * @mtd: last known address of the required MTD device 686 * @num: internal device number of the required MTD device 687 * 688 * Given a number and NULL address, return the num'th entry in the device 689 * table, if any. Given an address and num == -1, search the device table 690 * for a device with that address and return if it's still present. Given 691 * both, return the num'th driver only if its address matches. Return 692 * error code if not. 693 */ 694 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 695 { 696 struct mtd_info *ret = NULL, *other; 697 int err = -ENODEV; 698 699 mutex_lock(&mtd_table_mutex); 700 701 if (num == -1) { 702 mtd_for_each_device(other) { 703 if (other == mtd) { 704 ret = mtd; 705 break; 706 } 707 } 708 } else if (num >= 0) { 709 ret = idr_find(&mtd_idr, num); 710 if (mtd && mtd != ret) 711 ret = NULL; 712 } 713 714 if (!ret) { 715 ret = ERR_PTR(err); 716 goto out; 717 } 718 719 err = __get_mtd_device(ret); 720 if (err) 721 ret = ERR_PTR(err); 722 out: 723 mutex_unlock(&mtd_table_mutex); 724 return ret; 725 } 726 EXPORT_SYMBOL_GPL(get_mtd_device); 727 728 729 int __get_mtd_device(struct mtd_info *mtd) 730 { 731 int err; 732 733 if (!try_module_get(mtd->owner)) 734 return -ENODEV; 735 736 if (mtd->_get_device) { 737 err = mtd->_get_device(mtd); 738 739 if (err) { 740 module_put(mtd->owner); 741 return err; 742 } 743 } 744 mtd->usecount++; 745 return 0; 746 } 747 EXPORT_SYMBOL_GPL(__get_mtd_device); 748 749 /** 750 * get_mtd_device_nm - obtain a validated handle for an MTD device by 751 * device name 752 * @name: MTD device name to open 753 * 754 * This function returns MTD device description structure in case of 755 * success and an error code in case of failure. 756 */ 757 struct mtd_info *get_mtd_device_nm(const char *name) 758 { 759 int err = -ENODEV; 760 struct mtd_info *mtd = NULL, *other; 761 762 mutex_lock(&mtd_table_mutex); 763 764 mtd_for_each_device(other) { 765 if (!strcmp(name, other->name)) { 766 mtd = other; 767 break; 768 } 769 } 770 771 if (!mtd) 772 goto out_unlock; 773 774 err = __get_mtd_device(mtd); 775 if (err) 776 goto out_unlock; 777 778 mutex_unlock(&mtd_table_mutex); 779 return mtd; 780 781 out_unlock: 782 mutex_unlock(&mtd_table_mutex); 783 return ERR_PTR(err); 784 } 785 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 786 787 #if defined(CONFIG_CMD_MTDPARTS_SPREAD) 788 /** 789 * mtd_get_len_incl_bad 790 * 791 * Check if length including bad blocks fits into device. 792 * 793 * @param mtd an MTD device 794 * @param offset offset in flash 795 * @param length image length 796 * @return image length including bad blocks in *len_incl_bad and whether or not 797 * the length returned was truncated in *truncated 798 */ 799 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, 800 const uint64_t length, uint64_t *len_incl_bad, 801 int *truncated) 802 { 803 *truncated = 0; 804 *len_incl_bad = 0; 805 806 if (!mtd->_block_isbad) { 807 *len_incl_bad = length; 808 return; 809 } 810 811 uint64_t len_excl_bad = 0; 812 uint64_t block_len; 813 814 while (len_excl_bad < length) { 815 if (offset >= mtd->size) { 816 *truncated = 1; 817 return; 818 } 819 820 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1)); 821 822 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) 823 len_excl_bad += block_len; 824 825 *len_incl_bad += block_len; 826 offset += block_len; 827 } 828 } 829 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */ 830 831 void put_mtd_device(struct mtd_info *mtd) 832 { 833 mutex_lock(&mtd_table_mutex); 834 __put_mtd_device(mtd); 835 mutex_unlock(&mtd_table_mutex); 836 837 } 838 EXPORT_SYMBOL_GPL(put_mtd_device); 839 840 void __put_mtd_device(struct mtd_info *mtd) 841 { 842 --mtd->usecount; 843 BUG_ON(mtd->usecount < 0); 844 845 if (mtd->_put_device) 846 mtd->_put_device(mtd); 847 848 module_put(mtd->owner); 849 } 850 EXPORT_SYMBOL_GPL(__put_mtd_device); 851 852 /* 853 * Erase is an asynchronous operation. Device drivers are supposed 854 * to call instr->callback() whenever the operation completes, even 855 * if it completes with a failure. 856 * Callers are supposed to pass a callback function and wait for it 857 * to be called before writing to the block. 858 */ 859 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 860 { 861 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) 862 return -EINVAL; 863 if (!(mtd->flags & MTD_WRITEABLE)) 864 return -EROFS; 865 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 866 if (!instr->len) { 867 instr->state = MTD_ERASE_DONE; 868 mtd_erase_callback(instr); 869 return 0; 870 } 871 return mtd->_erase(mtd, instr); 872 } 873 EXPORT_SYMBOL_GPL(mtd_erase); 874 875 #ifndef __UBOOT__ 876 /* 877 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 878 */ 879 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 880 void **virt, resource_size_t *phys) 881 { 882 *retlen = 0; 883 *virt = NULL; 884 if (phys) 885 *phys = 0; 886 if (!mtd->_point) 887 return -EOPNOTSUPP; 888 if (from < 0 || from > mtd->size || len > mtd->size - from) 889 return -EINVAL; 890 if (!len) 891 return 0; 892 return mtd->_point(mtd, from, len, retlen, virt, phys); 893 } 894 EXPORT_SYMBOL_GPL(mtd_point); 895 896 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 897 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 898 { 899 if (!mtd->_point) 900 return -EOPNOTSUPP; 901 if (from < 0 || from > mtd->size || len > mtd->size - from) 902 return -EINVAL; 903 if (!len) 904 return 0; 905 return mtd->_unpoint(mtd, from, len); 906 } 907 EXPORT_SYMBOL_GPL(mtd_unpoint); 908 #endif 909 910 /* 911 * Allow NOMMU mmap() to directly map the device (if not NULL) 912 * - return the address to which the offset maps 913 * - return -ENOSYS to indicate refusal to do the mapping 914 */ 915 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 916 unsigned long offset, unsigned long flags) 917 { 918 if (!mtd->_get_unmapped_area) 919 return -EOPNOTSUPP; 920 if (offset > mtd->size || len > mtd->size - offset) 921 return -EINVAL; 922 return mtd->_get_unmapped_area(mtd, len, offset, flags); 923 } 924 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 925 926 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 927 u_char *buf) 928 { 929 int ret_code; 930 *retlen = 0; 931 if (from < 0 || from > mtd->size || len > mtd->size - from) 932 return -EINVAL; 933 if (!len) 934 return 0; 935 936 /* 937 * In the absence of an error, drivers return a non-negative integer 938 * representing the maximum number of bitflips that were corrected on 939 * any one ecc region (if applicable; zero otherwise). 940 */ 941 ret_code = mtd->_read(mtd, from, len, retlen, buf); 942 if (unlikely(ret_code < 0)) 943 return ret_code; 944 if (mtd->ecc_strength == 0) 945 return 0; /* device lacks ecc */ 946 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 947 } 948 EXPORT_SYMBOL_GPL(mtd_read); 949 950 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 951 const u_char *buf) 952 { 953 *retlen = 0; 954 if (to < 0 || to > mtd->size || len > mtd->size - to) 955 return -EINVAL; 956 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 957 return -EROFS; 958 if (!len) 959 return 0; 960 return mtd->_write(mtd, to, len, retlen, buf); 961 } 962 EXPORT_SYMBOL_GPL(mtd_write); 963 964 /* 965 * In blackbox flight recorder like scenarios we want to make successful writes 966 * in interrupt context. panic_write() is only intended to be called when its 967 * known the kernel is about to panic and we need the write to succeed. Since 968 * the kernel is not going to be running for much longer, this function can 969 * break locks and delay to ensure the write succeeds (but not sleep). 970 */ 971 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 972 const u_char *buf) 973 { 974 *retlen = 0; 975 if (!mtd->_panic_write) 976 return -EOPNOTSUPP; 977 if (to < 0 || to > mtd->size || len > mtd->size - to) 978 return -EINVAL; 979 if (!(mtd->flags & MTD_WRITEABLE)) 980 return -EROFS; 981 if (!len) 982 return 0; 983 return mtd->_panic_write(mtd, to, len, retlen, buf); 984 } 985 EXPORT_SYMBOL_GPL(mtd_panic_write); 986 987 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 988 { 989 int ret_code; 990 ops->retlen = ops->oobretlen = 0; 991 if (!mtd->_read_oob) 992 return -EOPNOTSUPP; 993 /* 994 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 995 * similar to mtd->_read(), returning a non-negative integer 996 * representing max bitflips. In other cases, mtd->_read_oob() may 997 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 998 */ 999 ret_code = mtd->_read_oob(mtd, from, ops); 1000 if (unlikely(ret_code < 0)) 1001 return ret_code; 1002 if (mtd->ecc_strength == 0) 1003 return 0; /* device lacks ecc */ 1004 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1005 } 1006 EXPORT_SYMBOL_GPL(mtd_read_oob); 1007 1008 /* 1009 * Method to access the protection register area, present in some flash 1010 * devices. The user data is one time programmable but the factory data is read 1011 * only. 1012 */ 1013 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1014 struct otp_info *buf) 1015 { 1016 if (!mtd->_get_fact_prot_info) 1017 return -EOPNOTSUPP; 1018 if (!len) 1019 return 0; 1020 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1021 } 1022 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1023 1024 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1025 size_t *retlen, u_char *buf) 1026 { 1027 *retlen = 0; 1028 if (!mtd->_read_fact_prot_reg) 1029 return -EOPNOTSUPP; 1030 if (!len) 1031 return 0; 1032 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1033 } 1034 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1035 1036 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1037 struct otp_info *buf) 1038 { 1039 if (!mtd->_get_user_prot_info) 1040 return -EOPNOTSUPP; 1041 if (!len) 1042 return 0; 1043 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1044 } 1045 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1046 1047 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1048 size_t *retlen, u_char *buf) 1049 { 1050 *retlen = 0; 1051 if (!mtd->_read_user_prot_reg) 1052 return -EOPNOTSUPP; 1053 if (!len) 1054 return 0; 1055 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1056 } 1057 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1058 1059 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1060 size_t *retlen, u_char *buf) 1061 { 1062 int ret; 1063 1064 *retlen = 0; 1065 if (!mtd->_write_user_prot_reg) 1066 return -EOPNOTSUPP; 1067 if (!len) 1068 return 0; 1069 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1070 if (ret) 1071 return ret; 1072 1073 /* 1074 * If no data could be written at all, we are out of memory and 1075 * must return -ENOSPC. 1076 */ 1077 return (*retlen) ? 0 : -ENOSPC; 1078 } 1079 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1080 1081 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1082 { 1083 if (!mtd->_lock_user_prot_reg) 1084 return -EOPNOTSUPP; 1085 if (!len) 1086 return 0; 1087 return mtd->_lock_user_prot_reg(mtd, from, len); 1088 } 1089 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1090 1091 /* Chip-supported device locking */ 1092 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1093 { 1094 if (!mtd->_lock) 1095 return -EOPNOTSUPP; 1096 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1097 return -EINVAL; 1098 if (!len) 1099 return 0; 1100 return mtd->_lock(mtd, ofs, len); 1101 } 1102 EXPORT_SYMBOL_GPL(mtd_lock); 1103 1104 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1105 { 1106 if (!mtd->_unlock) 1107 return -EOPNOTSUPP; 1108 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1109 return -EINVAL; 1110 if (!len) 1111 return 0; 1112 return mtd->_unlock(mtd, ofs, len); 1113 } 1114 EXPORT_SYMBOL_GPL(mtd_unlock); 1115 1116 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1117 { 1118 if (!mtd->_is_locked) 1119 return -EOPNOTSUPP; 1120 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1121 return -EINVAL; 1122 if (!len) 1123 return 0; 1124 return mtd->_is_locked(mtd, ofs, len); 1125 } 1126 EXPORT_SYMBOL_GPL(mtd_is_locked); 1127 1128 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1129 { 1130 if (ofs < 0 || ofs > mtd->size) 1131 return -EINVAL; 1132 if (!mtd->_block_isreserved) 1133 return 0; 1134 return mtd->_block_isreserved(mtd, ofs); 1135 } 1136 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1137 1138 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1139 { 1140 if (ofs < 0 || ofs > mtd->size) 1141 return -EINVAL; 1142 if (!mtd->_block_isbad) 1143 return 0; 1144 return mtd->_block_isbad(mtd, ofs); 1145 } 1146 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1147 1148 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1149 { 1150 if (!mtd->_block_markbad) 1151 return -EOPNOTSUPP; 1152 if (ofs < 0 || ofs > mtd->size) 1153 return -EINVAL; 1154 if (!(mtd->flags & MTD_WRITEABLE)) 1155 return -EROFS; 1156 return mtd->_block_markbad(mtd, ofs); 1157 } 1158 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1159 1160 #ifndef __UBOOT__ 1161 /* 1162 * default_mtd_writev - the default writev method 1163 * @mtd: mtd device description object pointer 1164 * @vecs: the vectors to write 1165 * @count: count of vectors in @vecs 1166 * @to: the MTD device offset to write to 1167 * @retlen: on exit contains the count of bytes written to the MTD device. 1168 * 1169 * This function returns zero in case of success and a negative error code in 1170 * case of failure. 1171 */ 1172 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1173 unsigned long count, loff_t to, size_t *retlen) 1174 { 1175 unsigned long i; 1176 size_t totlen = 0, thislen; 1177 int ret = 0; 1178 1179 for (i = 0; i < count; i++) { 1180 if (!vecs[i].iov_len) 1181 continue; 1182 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1183 vecs[i].iov_base); 1184 totlen += thislen; 1185 if (ret || thislen != vecs[i].iov_len) 1186 break; 1187 to += vecs[i].iov_len; 1188 } 1189 *retlen = totlen; 1190 return ret; 1191 } 1192 1193 /* 1194 * mtd_writev - the vector-based MTD write method 1195 * @mtd: mtd device description object pointer 1196 * @vecs: the vectors to write 1197 * @count: count of vectors in @vecs 1198 * @to: the MTD device offset to write to 1199 * @retlen: on exit contains the count of bytes written to the MTD device. 1200 * 1201 * This function returns zero in case of success and a negative error code in 1202 * case of failure. 1203 */ 1204 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1205 unsigned long count, loff_t to, size_t *retlen) 1206 { 1207 *retlen = 0; 1208 if (!(mtd->flags & MTD_WRITEABLE)) 1209 return -EROFS; 1210 if (!mtd->_writev) 1211 return default_mtd_writev(mtd, vecs, count, to, retlen); 1212 return mtd->_writev(mtd, vecs, count, to, retlen); 1213 } 1214 EXPORT_SYMBOL_GPL(mtd_writev); 1215 1216 /** 1217 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1218 * @mtd: mtd device description object pointer 1219 * @size: a pointer to the ideal or maximum size of the allocation, points 1220 * to the actual allocation size on success. 1221 * 1222 * This routine attempts to allocate a contiguous kernel buffer up to 1223 * the specified size, backing off the size of the request exponentially 1224 * until the request succeeds or until the allocation size falls below 1225 * the system page size. This attempts to make sure it does not adversely 1226 * impact system performance, so when allocating more than one page, we 1227 * ask the memory allocator to avoid re-trying, swapping, writing back 1228 * or performing I/O. 1229 * 1230 * Note, this function also makes sure that the allocated buffer is aligned to 1231 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1232 * 1233 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1234 * to handle smaller (i.e. degraded) buffer allocations under low- or 1235 * fragmented-memory situations where such reduced allocations, from a 1236 * requested ideal, are allowed. 1237 * 1238 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1239 */ 1240 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1241 { 1242 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1243 __GFP_NORETRY | __GFP_NO_KSWAPD; 1244 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1245 void *kbuf; 1246 1247 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1248 1249 while (*size > min_alloc) { 1250 kbuf = kmalloc(*size, flags); 1251 if (kbuf) 1252 return kbuf; 1253 1254 *size >>= 1; 1255 *size = ALIGN(*size, mtd->writesize); 1256 } 1257 1258 /* 1259 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1260 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1261 */ 1262 return kmalloc(*size, GFP_KERNEL); 1263 } 1264 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1265 #endif 1266 1267 #ifdef CONFIG_PROC_FS 1268 1269 /*====================================================================*/ 1270 /* Support for /proc/mtd */ 1271 1272 static int mtd_proc_show(struct seq_file *m, void *v) 1273 { 1274 struct mtd_info *mtd; 1275 1276 seq_puts(m, "dev: size erasesize name\n"); 1277 mutex_lock(&mtd_table_mutex); 1278 mtd_for_each_device(mtd) { 1279 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1280 mtd->index, (unsigned long long)mtd->size, 1281 mtd->erasesize, mtd->name); 1282 } 1283 mutex_unlock(&mtd_table_mutex); 1284 return 0; 1285 } 1286 1287 static int mtd_proc_open(struct inode *inode, struct file *file) 1288 { 1289 return single_open(file, mtd_proc_show, NULL); 1290 } 1291 1292 static const struct file_operations mtd_proc_ops = { 1293 .open = mtd_proc_open, 1294 .read = seq_read, 1295 .llseek = seq_lseek, 1296 .release = single_release, 1297 }; 1298 #endif /* CONFIG_PROC_FS */ 1299 1300 /*====================================================================*/ 1301 /* Init code */ 1302 1303 #ifndef __UBOOT__ 1304 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1305 { 1306 int ret; 1307 1308 ret = bdi_init(bdi); 1309 if (!ret) 1310 ret = bdi_register(bdi, NULL, "%s", name); 1311 1312 if (ret) 1313 bdi_destroy(bdi); 1314 1315 return ret; 1316 } 1317 1318 static struct proc_dir_entry *proc_mtd; 1319 1320 static int __init init_mtd(void) 1321 { 1322 int ret; 1323 1324 ret = class_register(&mtd_class); 1325 if (ret) 1326 goto err_reg; 1327 1328 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap"); 1329 if (ret) 1330 goto err_bdi1; 1331 1332 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap"); 1333 if (ret) 1334 goto err_bdi2; 1335 1336 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap"); 1337 if (ret) 1338 goto err_bdi3; 1339 1340 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1341 1342 ret = init_mtdchar(); 1343 if (ret) 1344 goto out_procfs; 1345 1346 return 0; 1347 1348 out_procfs: 1349 if (proc_mtd) 1350 remove_proc_entry("mtd", NULL); 1351 err_bdi3: 1352 bdi_destroy(&mtd_bdi_ro_mappable); 1353 err_bdi2: 1354 bdi_destroy(&mtd_bdi_unmappable); 1355 err_bdi1: 1356 class_unregister(&mtd_class); 1357 err_reg: 1358 pr_err("Error registering mtd class or bdi: %d\n", ret); 1359 return ret; 1360 } 1361 1362 static void __exit cleanup_mtd(void) 1363 { 1364 cleanup_mtdchar(); 1365 if (proc_mtd) 1366 remove_proc_entry("mtd", NULL); 1367 class_unregister(&mtd_class); 1368 bdi_destroy(&mtd_bdi_unmappable); 1369 bdi_destroy(&mtd_bdi_ro_mappable); 1370 bdi_destroy(&mtd_bdi_rw_mappable); 1371 } 1372 1373 module_init(init_mtd); 1374 module_exit(cleanup_mtd); 1375 #endif 1376 1377 MODULE_LICENSE("GPL"); 1378 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1379 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1380