1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 * 10 */ 11 12 #ifndef __UBOOT__ 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/ptrace.h> 16 #include <linux/seq_file.h> 17 #include <linux/string.h> 18 #include <linux/timer.h> 19 #include <linux/major.h> 20 #include <linux/fs.h> 21 #include <linux/err.h> 22 #include <linux/ioctl.h> 23 #include <linux/init.h> 24 #include <linux/proc_fs.h> 25 #include <linux/idr.h> 26 #include <linux/backing-dev.h> 27 #include <linux/gfp.h> 28 #include <linux/slab.h> 29 #else 30 #include <linux/err.h> 31 #include <ubi_uboot.h> 32 #endif 33 34 #include <linux/log2.h> 35 #include <linux/mtd/mtd.h> 36 #include <linux/mtd/partitions.h> 37 38 #include "mtdcore.h" 39 40 #ifndef __UBOOT__ 41 /* 42 * backing device capabilities for non-mappable devices (such as NAND flash) 43 * - permits private mappings, copies are taken of the data 44 */ 45 static struct backing_dev_info mtd_bdi_unmappable = { 46 .capabilities = BDI_CAP_MAP_COPY, 47 }; 48 49 /* 50 * backing device capabilities for R/O mappable devices (such as ROM) 51 * - permits private mappings, copies are taken of the data 52 * - permits non-writable shared mappings 53 */ 54 static struct backing_dev_info mtd_bdi_ro_mappable = { 55 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 56 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), 57 }; 58 59 /* 60 * backing device capabilities for writable mappable devices (such as RAM) 61 * - permits private mappings, copies are taken of the data 62 * - permits non-writable shared mappings 63 */ 64 static struct backing_dev_info mtd_bdi_rw_mappable = { 65 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 66 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | 67 BDI_CAP_WRITE_MAP), 68 }; 69 70 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 71 static int mtd_cls_resume(struct device *dev); 72 73 static struct class mtd_class = { 74 .name = "mtd", 75 .owner = THIS_MODULE, 76 .suspend = mtd_cls_suspend, 77 .resume = mtd_cls_resume, 78 }; 79 #else 80 struct mtd_info *mtd_table[MAX_MTD_DEVICES]; 81 82 #define MAX_IDR_ID 64 83 84 struct idr_layer { 85 int used; 86 void *ptr; 87 }; 88 89 struct idr { 90 struct idr_layer id[MAX_IDR_ID]; 91 }; 92 93 #define DEFINE_IDR(name) struct idr name; 94 95 void idr_remove(struct idr *idp, int id) 96 { 97 if (idp->id[id].used) 98 idp->id[id].used = 0; 99 100 return; 101 } 102 void *idr_find(struct idr *idp, int id) 103 { 104 if (idp->id[id].used) 105 return idp->id[id].ptr; 106 107 return NULL; 108 } 109 110 void *idr_get_next(struct idr *idp, int *next) 111 { 112 void *ret; 113 int id = *next; 114 115 ret = idr_find(idp, id); 116 if (ret) { 117 id ++; 118 if (!idp->id[id].used) 119 id = 0; 120 *next = id; 121 } else { 122 *next = 0; 123 } 124 125 return ret; 126 } 127 128 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask) 129 { 130 struct idr_layer *idl; 131 int i = 0; 132 133 while (i < MAX_IDR_ID) { 134 idl = &idp->id[i]; 135 if (idl->used == 0) { 136 idl->used = 1; 137 idl->ptr = ptr; 138 return i; 139 } 140 i++; 141 } 142 return -ENOSPC; 143 } 144 #endif 145 146 static DEFINE_IDR(mtd_idr); 147 148 /* These are exported solely for the purpose of mtd_blkdevs.c. You 149 should not use them for _anything_ else */ 150 DEFINE_MUTEX(mtd_table_mutex); 151 EXPORT_SYMBOL_GPL(mtd_table_mutex); 152 153 struct mtd_info *__mtd_next_device(int i) 154 { 155 return idr_get_next(&mtd_idr, &i); 156 } 157 EXPORT_SYMBOL_GPL(__mtd_next_device); 158 159 #ifndef __UBOOT__ 160 static LIST_HEAD(mtd_notifiers); 161 162 163 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 164 165 /* REVISIT once MTD uses the driver model better, whoever allocates 166 * the mtd_info will probably want to use the release() hook... 167 */ 168 static void mtd_release(struct device *dev) 169 { 170 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev); 171 dev_t index = MTD_DEVT(mtd->index); 172 173 /* remove /dev/mtdXro node if needed */ 174 if (index) 175 device_destroy(&mtd_class, index + 1); 176 } 177 178 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 179 { 180 struct mtd_info *mtd = dev_get_drvdata(dev); 181 182 return mtd ? mtd_suspend(mtd) : 0; 183 } 184 185 static int mtd_cls_resume(struct device *dev) 186 { 187 struct mtd_info *mtd = dev_get_drvdata(dev); 188 189 if (mtd) 190 mtd_resume(mtd); 191 return 0; 192 } 193 194 static ssize_t mtd_type_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196 { 197 struct mtd_info *mtd = dev_get_drvdata(dev); 198 char *type; 199 200 switch (mtd->type) { 201 case MTD_ABSENT: 202 type = "absent"; 203 break; 204 case MTD_RAM: 205 type = "ram"; 206 break; 207 case MTD_ROM: 208 type = "rom"; 209 break; 210 case MTD_NORFLASH: 211 type = "nor"; 212 break; 213 case MTD_NANDFLASH: 214 type = "nand"; 215 break; 216 case MTD_DATAFLASH: 217 type = "dataflash"; 218 break; 219 case MTD_UBIVOLUME: 220 type = "ubi"; 221 break; 222 case MTD_MLCNANDFLASH: 223 type = "mlc-nand"; 224 break; 225 default: 226 type = "unknown"; 227 } 228 229 return snprintf(buf, PAGE_SIZE, "%s\n", type); 230 } 231 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 232 233 static ssize_t mtd_flags_show(struct device *dev, 234 struct device_attribute *attr, char *buf) 235 { 236 struct mtd_info *mtd = dev_get_drvdata(dev); 237 238 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 239 240 } 241 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 242 243 static ssize_t mtd_size_show(struct device *dev, 244 struct device_attribute *attr, char *buf) 245 { 246 struct mtd_info *mtd = dev_get_drvdata(dev); 247 248 return snprintf(buf, PAGE_SIZE, "%llu\n", 249 (unsigned long long)mtd->size); 250 251 } 252 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 253 254 static ssize_t mtd_erasesize_show(struct device *dev, 255 struct device_attribute *attr, char *buf) 256 { 257 struct mtd_info *mtd = dev_get_drvdata(dev); 258 259 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 260 261 } 262 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 263 264 static ssize_t mtd_writesize_show(struct device *dev, 265 struct device_attribute *attr, char *buf) 266 { 267 struct mtd_info *mtd = dev_get_drvdata(dev); 268 269 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 270 271 } 272 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 273 274 static ssize_t mtd_subpagesize_show(struct device *dev, 275 struct device_attribute *attr, char *buf) 276 { 277 struct mtd_info *mtd = dev_get_drvdata(dev); 278 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 279 280 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 281 282 } 283 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 284 285 static ssize_t mtd_oobsize_show(struct device *dev, 286 struct device_attribute *attr, char *buf) 287 { 288 struct mtd_info *mtd = dev_get_drvdata(dev); 289 290 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 291 292 } 293 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 294 295 static ssize_t mtd_numeraseregions_show(struct device *dev, 296 struct device_attribute *attr, char *buf) 297 { 298 struct mtd_info *mtd = dev_get_drvdata(dev); 299 300 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 301 302 } 303 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 304 NULL); 305 306 static ssize_t mtd_name_show(struct device *dev, 307 struct device_attribute *attr, char *buf) 308 { 309 struct mtd_info *mtd = dev_get_drvdata(dev); 310 311 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 312 313 } 314 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 315 316 static ssize_t mtd_ecc_strength_show(struct device *dev, 317 struct device_attribute *attr, char *buf) 318 { 319 struct mtd_info *mtd = dev_get_drvdata(dev); 320 321 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 322 } 323 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 324 325 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 326 struct device_attribute *attr, 327 char *buf) 328 { 329 struct mtd_info *mtd = dev_get_drvdata(dev); 330 331 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 332 } 333 334 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 335 struct device_attribute *attr, 336 const char *buf, size_t count) 337 { 338 struct mtd_info *mtd = dev_get_drvdata(dev); 339 unsigned int bitflip_threshold; 340 int retval; 341 342 retval = kstrtouint(buf, 0, &bitflip_threshold); 343 if (retval) 344 return retval; 345 346 mtd->bitflip_threshold = bitflip_threshold; 347 return count; 348 } 349 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 350 mtd_bitflip_threshold_show, 351 mtd_bitflip_threshold_store); 352 353 static ssize_t mtd_ecc_step_size_show(struct device *dev, 354 struct device_attribute *attr, char *buf) 355 { 356 struct mtd_info *mtd = dev_get_drvdata(dev); 357 358 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 359 360 } 361 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 362 363 static struct attribute *mtd_attrs[] = { 364 &dev_attr_type.attr, 365 &dev_attr_flags.attr, 366 &dev_attr_size.attr, 367 &dev_attr_erasesize.attr, 368 &dev_attr_writesize.attr, 369 &dev_attr_subpagesize.attr, 370 &dev_attr_oobsize.attr, 371 &dev_attr_numeraseregions.attr, 372 &dev_attr_name.attr, 373 &dev_attr_ecc_strength.attr, 374 &dev_attr_ecc_step_size.attr, 375 &dev_attr_bitflip_threshold.attr, 376 NULL, 377 }; 378 ATTRIBUTE_GROUPS(mtd); 379 380 static struct device_type mtd_devtype = { 381 .name = "mtd", 382 .groups = mtd_groups, 383 .release = mtd_release, 384 }; 385 #endif 386 387 /** 388 * add_mtd_device - register an MTD device 389 * @mtd: pointer to new MTD device info structure 390 * 391 * Add a device to the list of MTD devices present in the system, and 392 * notify each currently active MTD 'user' of its arrival. Returns 393 * zero on success or 1 on failure, which currently will only happen 394 * if there is insufficient memory or a sysfs error. 395 */ 396 397 int add_mtd_device(struct mtd_info *mtd) 398 { 399 #ifndef __UBOOT__ 400 struct mtd_notifier *not; 401 #endif 402 int i, error; 403 404 #ifndef __UBOOT__ 405 if (!mtd->backing_dev_info) { 406 switch (mtd->type) { 407 case MTD_RAM: 408 mtd->backing_dev_info = &mtd_bdi_rw_mappable; 409 break; 410 case MTD_ROM: 411 mtd->backing_dev_info = &mtd_bdi_ro_mappable; 412 break; 413 default: 414 mtd->backing_dev_info = &mtd_bdi_unmappable; 415 break; 416 } 417 } 418 #endif 419 420 BUG_ON(mtd->writesize == 0); 421 mutex_lock(&mtd_table_mutex); 422 423 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 424 if (i < 0) 425 goto fail_locked; 426 427 mtd->index = i; 428 mtd->usecount = 0; 429 430 /* default value if not set by driver */ 431 if (mtd->bitflip_threshold == 0) 432 mtd->bitflip_threshold = mtd->ecc_strength; 433 434 if (is_power_of_2(mtd->erasesize)) 435 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 436 else 437 mtd->erasesize_shift = 0; 438 439 if (is_power_of_2(mtd->writesize)) 440 mtd->writesize_shift = ffs(mtd->writesize) - 1; 441 else 442 mtd->writesize_shift = 0; 443 444 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 445 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 446 447 /* Some chips always power up locked. Unlock them now */ 448 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 449 error = mtd_unlock(mtd, 0, mtd->size); 450 if (error && error != -EOPNOTSUPP) 451 printk(KERN_WARNING 452 "%s: unlock failed, writes may not work\n", 453 mtd->name); 454 } 455 456 #ifndef __UBOOT__ 457 /* Caller should have set dev.parent to match the 458 * physical device. 459 */ 460 mtd->dev.type = &mtd_devtype; 461 mtd->dev.class = &mtd_class; 462 mtd->dev.devt = MTD_DEVT(i); 463 dev_set_name(&mtd->dev, "mtd%d", i); 464 dev_set_drvdata(&mtd->dev, mtd); 465 if (device_register(&mtd->dev) != 0) 466 goto fail_added; 467 468 if (MTD_DEVT(i)) 469 device_create(&mtd_class, mtd->dev.parent, 470 MTD_DEVT(i) + 1, 471 NULL, "mtd%dro", i); 472 473 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 474 /* No need to get a refcount on the module containing 475 the notifier, since we hold the mtd_table_mutex */ 476 list_for_each_entry(not, &mtd_notifiers, list) 477 not->add(mtd); 478 #else 479 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 480 #endif 481 482 mutex_unlock(&mtd_table_mutex); 483 /* We _know_ we aren't being removed, because 484 our caller is still holding us here. So none 485 of this try_ nonsense, and no bitching about it 486 either. :) */ 487 __module_get(THIS_MODULE); 488 return 0; 489 490 #ifndef __UBOOT__ 491 fail_added: 492 idr_remove(&mtd_idr, i); 493 #endif 494 fail_locked: 495 mutex_unlock(&mtd_table_mutex); 496 return 1; 497 } 498 499 /** 500 * del_mtd_device - unregister an MTD device 501 * @mtd: pointer to MTD device info structure 502 * 503 * Remove a device from the list of MTD devices present in the system, 504 * and notify each currently active MTD 'user' of its departure. 505 * Returns zero on success or 1 on failure, which currently will happen 506 * if the requested device does not appear to be present in the list. 507 */ 508 509 int del_mtd_device(struct mtd_info *mtd) 510 { 511 int ret; 512 #ifndef __UBOOT__ 513 struct mtd_notifier *not; 514 #endif 515 516 mutex_lock(&mtd_table_mutex); 517 518 if (idr_find(&mtd_idr, mtd->index) != mtd) { 519 ret = -ENODEV; 520 goto out_error; 521 } 522 523 #ifndef __UBOOT__ 524 /* No need to get a refcount on the module containing 525 the notifier, since we hold the mtd_table_mutex */ 526 list_for_each_entry(not, &mtd_notifiers, list) 527 not->remove(mtd); 528 #endif 529 530 if (mtd->usecount) { 531 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 532 mtd->index, mtd->name, mtd->usecount); 533 ret = -EBUSY; 534 } else { 535 #ifndef __UBOOT__ 536 device_unregister(&mtd->dev); 537 #endif 538 539 idr_remove(&mtd_idr, mtd->index); 540 541 module_put(THIS_MODULE); 542 ret = 0; 543 } 544 545 out_error: 546 mutex_unlock(&mtd_table_mutex); 547 return ret; 548 } 549 550 #ifndef __UBOOT__ 551 /** 552 * mtd_device_parse_register - parse partitions and register an MTD device. 553 * 554 * @mtd: the MTD device to register 555 * @types: the list of MTD partition probes to try, see 556 * 'parse_mtd_partitions()' for more information 557 * @parser_data: MTD partition parser-specific data 558 * @parts: fallback partition information to register, if parsing fails; 559 * only valid if %nr_parts > %0 560 * @nr_parts: the number of partitions in parts, if zero then the full 561 * MTD device is registered if no partition info is found 562 * 563 * This function aggregates MTD partitions parsing (done by 564 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 565 * basically follows the most common pattern found in many MTD drivers: 566 * 567 * * It first tries to probe partitions on MTD device @mtd using parsers 568 * specified in @types (if @types is %NULL, then the default list of parsers 569 * is used, see 'parse_mtd_partitions()' for more information). If none are 570 * found this functions tries to fallback to information specified in 571 * @parts/@nr_parts. 572 * * If any partitioning info was found, this function registers the found 573 * partitions. 574 * * If no partitions were found this function just registers the MTD device 575 * @mtd and exits. 576 * 577 * Returns zero in case of success and a negative error code in case of failure. 578 */ 579 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 580 struct mtd_part_parser_data *parser_data, 581 const struct mtd_partition *parts, 582 int nr_parts) 583 { 584 int err; 585 struct mtd_partition *real_parts; 586 587 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 588 if (err <= 0 && nr_parts && parts) { 589 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 590 GFP_KERNEL); 591 if (!real_parts) 592 err = -ENOMEM; 593 else 594 err = nr_parts; 595 } 596 597 if (err > 0) { 598 err = add_mtd_partitions(mtd, real_parts, err); 599 kfree(real_parts); 600 } else if (err == 0) { 601 err = add_mtd_device(mtd); 602 if (err == 1) 603 err = -ENODEV; 604 } 605 606 return err; 607 } 608 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 609 610 /** 611 * mtd_device_unregister - unregister an existing MTD device. 612 * 613 * @master: the MTD device to unregister. This will unregister both the master 614 * and any partitions if registered. 615 */ 616 int mtd_device_unregister(struct mtd_info *master) 617 { 618 int err; 619 620 err = del_mtd_partitions(master); 621 if (err) 622 return err; 623 624 if (!device_is_registered(&master->dev)) 625 return 0; 626 627 return del_mtd_device(master); 628 } 629 EXPORT_SYMBOL_GPL(mtd_device_unregister); 630 631 /** 632 * register_mtd_user - register a 'user' of MTD devices. 633 * @new: pointer to notifier info structure 634 * 635 * Registers a pair of callbacks function to be called upon addition 636 * or removal of MTD devices. Causes the 'add' callback to be immediately 637 * invoked for each MTD device currently present in the system. 638 */ 639 void register_mtd_user (struct mtd_notifier *new) 640 { 641 struct mtd_info *mtd; 642 643 mutex_lock(&mtd_table_mutex); 644 645 list_add(&new->list, &mtd_notifiers); 646 647 __module_get(THIS_MODULE); 648 649 mtd_for_each_device(mtd) 650 new->add(mtd); 651 652 mutex_unlock(&mtd_table_mutex); 653 } 654 EXPORT_SYMBOL_GPL(register_mtd_user); 655 656 /** 657 * unregister_mtd_user - unregister a 'user' of MTD devices. 658 * @old: pointer to notifier info structure 659 * 660 * Removes a callback function pair from the list of 'users' to be 661 * notified upon addition or removal of MTD devices. Causes the 662 * 'remove' callback to be immediately invoked for each MTD device 663 * currently present in the system. 664 */ 665 int unregister_mtd_user (struct mtd_notifier *old) 666 { 667 struct mtd_info *mtd; 668 669 mutex_lock(&mtd_table_mutex); 670 671 module_put(THIS_MODULE); 672 673 mtd_for_each_device(mtd) 674 old->remove(mtd); 675 676 list_del(&old->list); 677 mutex_unlock(&mtd_table_mutex); 678 return 0; 679 } 680 EXPORT_SYMBOL_GPL(unregister_mtd_user); 681 #endif 682 683 /** 684 * get_mtd_device - obtain a validated handle for an MTD device 685 * @mtd: last known address of the required MTD device 686 * @num: internal device number of the required MTD device 687 * 688 * Given a number and NULL address, return the num'th entry in the device 689 * table, if any. Given an address and num == -1, search the device table 690 * for a device with that address and return if it's still present. Given 691 * both, return the num'th driver only if its address matches. Return 692 * error code if not. 693 */ 694 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 695 { 696 struct mtd_info *ret = NULL, *other; 697 int err = -ENODEV; 698 699 mutex_lock(&mtd_table_mutex); 700 701 if (num == -1) { 702 mtd_for_each_device(other) { 703 if (other == mtd) { 704 ret = mtd; 705 break; 706 } 707 } 708 } else if (num >= 0) { 709 ret = idr_find(&mtd_idr, num); 710 if (mtd && mtd != ret) 711 ret = NULL; 712 } 713 714 if (!ret) { 715 ret = ERR_PTR(err); 716 goto out; 717 } 718 719 err = __get_mtd_device(ret); 720 if (err) 721 ret = ERR_PTR(err); 722 out: 723 mutex_unlock(&mtd_table_mutex); 724 return ret; 725 } 726 EXPORT_SYMBOL_GPL(get_mtd_device); 727 728 729 int __get_mtd_device(struct mtd_info *mtd) 730 { 731 int err; 732 733 if (!try_module_get(mtd->owner)) 734 return -ENODEV; 735 736 if (mtd->_get_device) { 737 err = mtd->_get_device(mtd); 738 739 if (err) { 740 module_put(mtd->owner); 741 return err; 742 } 743 } 744 mtd->usecount++; 745 return 0; 746 } 747 EXPORT_SYMBOL_GPL(__get_mtd_device); 748 749 /** 750 * get_mtd_device_nm - obtain a validated handle for an MTD device by 751 * device name 752 * @name: MTD device name to open 753 * 754 * This function returns MTD device description structure in case of 755 * success and an error code in case of failure. 756 */ 757 struct mtd_info *get_mtd_device_nm(const char *name) 758 { 759 int err = -ENODEV; 760 struct mtd_info *mtd = NULL, *other; 761 762 mutex_lock(&mtd_table_mutex); 763 764 mtd_for_each_device(other) { 765 if (!strcmp(name, other->name)) { 766 mtd = other; 767 break; 768 } 769 } 770 771 if (!mtd) 772 goto out_unlock; 773 774 err = __get_mtd_device(mtd); 775 if (err) 776 goto out_unlock; 777 778 mutex_unlock(&mtd_table_mutex); 779 return mtd; 780 781 out_unlock: 782 mutex_unlock(&mtd_table_mutex); 783 return ERR_PTR(err); 784 } 785 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 786 787 #if defined(CONFIG_CMD_MTDPARTS_SPREAD) 788 /** 789 * mtd_get_len_incl_bad 790 * 791 * Check if length including bad blocks fits into device. 792 * 793 * @param mtd an MTD device 794 * @param offset offset in flash 795 * @param length image length 796 * @return image length including bad blocks in *len_incl_bad and whether or not 797 * the length returned was truncated in *truncated 798 */ 799 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, 800 const uint64_t length, uint64_t *len_incl_bad, 801 int *truncated) 802 { 803 *truncated = 0; 804 *len_incl_bad = 0; 805 806 if (!mtd->_block_isbad) { 807 *len_incl_bad = length; 808 return; 809 } 810 811 uint64_t len_excl_bad = 0; 812 uint64_t block_len; 813 814 while (len_excl_bad < length) { 815 if (offset >= mtd->size) { 816 *truncated = 1; 817 return; 818 } 819 820 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1)); 821 822 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) 823 len_excl_bad += block_len; 824 825 *len_incl_bad += block_len; 826 offset += block_len; 827 } 828 } 829 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */ 830 831 void put_mtd_device(struct mtd_info *mtd) 832 { 833 mutex_lock(&mtd_table_mutex); 834 __put_mtd_device(mtd); 835 mutex_unlock(&mtd_table_mutex); 836 837 } 838 EXPORT_SYMBOL_GPL(put_mtd_device); 839 840 void __put_mtd_device(struct mtd_info *mtd) 841 { 842 --mtd->usecount; 843 BUG_ON(mtd->usecount < 0); 844 845 if (mtd->_put_device) 846 mtd->_put_device(mtd); 847 848 module_put(mtd->owner); 849 } 850 EXPORT_SYMBOL_GPL(__put_mtd_device); 851 852 /* 853 * Erase is an asynchronous operation. Device drivers are supposed 854 * to call instr->callback() whenever the operation completes, even 855 * if it completes with a failure. 856 * Callers are supposed to pass a callback function and wait for it 857 * to be called before writing to the block. 858 */ 859 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 860 { 861 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) 862 return -EINVAL; 863 if (!(mtd->flags & MTD_WRITEABLE)) 864 return -EROFS; 865 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 866 if (!instr->len) { 867 instr->state = MTD_ERASE_DONE; 868 mtd_erase_callback(instr); 869 return 0; 870 } 871 return mtd->_erase(mtd, instr); 872 } 873 EXPORT_SYMBOL_GPL(mtd_erase); 874 875 #ifndef __UBOOT__ 876 /* 877 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 878 */ 879 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 880 void **virt, resource_size_t *phys) 881 { 882 *retlen = 0; 883 *virt = NULL; 884 if (phys) 885 *phys = 0; 886 if (!mtd->_point) 887 return -EOPNOTSUPP; 888 if (from < 0 || from > mtd->size || len > mtd->size - from) 889 return -EINVAL; 890 if (!len) 891 return 0; 892 return mtd->_point(mtd, from, len, retlen, virt, phys); 893 } 894 EXPORT_SYMBOL_GPL(mtd_point); 895 896 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 897 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 898 { 899 if (!mtd->_point) 900 return -EOPNOTSUPP; 901 if (from < 0 || from > mtd->size || len > mtd->size - from) 902 return -EINVAL; 903 if (!len) 904 return 0; 905 return mtd->_unpoint(mtd, from, len); 906 } 907 EXPORT_SYMBOL_GPL(mtd_unpoint); 908 #endif 909 910 /* 911 * Allow NOMMU mmap() to directly map the device (if not NULL) 912 * - return the address to which the offset maps 913 * - return -ENOSYS to indicate refusal to do the mapping 914 */ 915 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 916 unsigned long offset, unsigned long flags) 917 { 918 if (!mtd->_get_unmapped_area) 919 return -EOPNOTSUPP; 920 if (offset > mtd->size || len > mtd->size - offset) 921 return -EINVAL; 922 return mtd->_get_unmapped_area(mtd, len, offset, flags); 923 } 924 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 925 926 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 927 u_char *buf) 928 { 929 int ret_code; 930 *retlen = 0; 931 if (from < 0 || from > mtd->size || len > mtd->size - from) 932 return -EINVAL; 933 if (!len) 934 return 0; 935 936 /* 937 * In the absence of an error, drivers return a non-negative integer 938 * representing the maximum number of bitflips that were corrected on 939 * any one ecc region (if applicable; zero otherwise). 940 */ 941 ret_code = mtd->_read(mtd, from, len, retlen, buf); 942 if (unlikely(ret_code < 0)) 943 return ret_code; 944 if (mtd->ecc_strength == 0) 945 return 0; /* device lacks ecc */ 946 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 947 } 948 EXPORT_SYMBOL_GPL(mtd_read); 949 950 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 951 const u_char *buf) 952 { 953 *retlen = 0; 954 if (to < 0 || to > mtd->size || len > mtd->size - to) 955 return -EINVAL; 956 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 957 return -EROFS; 958 if (!len) 959 return 0; 960 return mtd->_write(mtd, to, len, retlen, buf); 961 } 962 EXPORT_SYMBOL_GPL(mtd_write); 963 964 /* 965 * In blackbox flight recorder like scenarios we want to make successful writes 966 * in interrupt context. panic_write() is only intended to be called when its 967 * known the kernel is about to panic and we need the write to succeed. Since 968 * the kernel is not going to be running for much longer, this function can 969 * break locks and delay to ensure the write succeeds (but not sleep). 970 */ 971 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 972 const u_char *buf) 973 { 974 *retlen = 0; 975 if (!mtd->_panic_write) 976 return -EOPNOTSUPP; 977 if (to < 0 || to > mtd->size || len > mtd->size - to) 978 return -EINVAL; 979 if (!(mtd->flags & MTD_WRITEABLE)) 980 return -EROFS; 981 if (!len) 982 return 0; 983 return mtd->_panic_write(mtd, to, len, retlen, buf); 984 } 985 EXPORT_SYMBOL_GPL(mtd_panic_write); 986 987 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 988 { 989 int ret_code; 990 ops->retlen = ops->oobretlen = 0; 991 if (!mtd->_read_oob) 992 return -EOPNOTSUPP; 993 /* 994 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 995 * similar to mtd->_read(), returning a non-negative integer 996 * representing max bitflips. In other cases, mtd->_read_oob() may 997 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 998 */ 999 ret_code = mtd->_read_oob(mtd, from, ops); 1000 if (unlikely(ret_code < 0)) 1001 return ret_code; 1002 if (mtd->ecc_strength == 0) 1003 return 0; /* device lacks ecc */ 1004 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1005 } 1006 EXPORT_SYMBOL_GPL(mtd_read_oob); 1007 1008 /** 1009 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1010 * @mtd: MTD device structure 1011 * @section: ECC section. Depending on the layout you may have all the ECC 1012 * bytes stored in a single contiguous section, or one section 1013 * per ECC chunk (and sometime several sections for a single ECC 1014 * ECC chunk) 1015 * @oobecc: OOB region struct filled with the appropriate ECC position 1016 * information 1017 * 1018 * This function returns ECC section information in the OOB area. If you want 1019 * to get all the ECC bytes information, then you should call 1020 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1021 * 1022 * Returns zero on success, a negative error code otherwise. 1023 */ 1024 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1025 struct mtd_oob_region *oobecc) 1026 { 1027 memset(oobecc, 0, sizeof(*oobecc)); 1028 1029 if (!mtd || section < 0) 1030 return -EINVAL; 1031 1032 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1033 return -ENOTSUPP; 1034 1035 return mtd->ooblayout->ecc(mtd, section, oobecc); 1036 } 1037 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1038 1039 /** 1040 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1041 * section 1042 * @mtd: MTD device structure 1043 * @section: Free section you are interested in. Depending on the layout 1044 * you may have all the free bytes stored in a single contiguous 1045 * section, or one section per ECC chunk plus an extra section 1046 * for the remaining bytes (or other funky layout). 1047 * @oobfree: OOB region struct filled with the appropriate free position 1048 * information 1049 * 1050 * This function returns free bytes position in the OOB area. If you want 1051 * to get all the free bytes information, then you should call 1052 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1053 * 1054 * Returns zero on success, a negative error code otherwise. 1055 */ 1056 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1057 struct mtd_oob_region *oobfree) 1058 { 1059 memset(oobfree, 0, sizeof(*oobfree)); 1060 1061 if (!mtd || section < 0) 1062 return -EINVAL; 1063 1064 if (!mtd->ooblayout || !mtd->ooblayout->free) 1065 return -ENOTSUPP; 1066 1067 return mtd->ooblayout->free(mtd, section, oobfree); 1068 } 1069 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1070 1071 /** 1072 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1073 * @mtd: mtd info structure 1074 * @byte: the byte we are searching for 1075 * @sectionp: pointer where the section id will be stored 1076 * @oobregion: used to retrieve the ECC position 1077 * @iter: iterator function. Should be either mtd_ooblayout_free or 1078 * mtd_ooblayout_ecc depending on the region type you're searching for 1079 * 1080 * This function returns the section id and oobregion information of a 1081 * specific byte. For example, say you want to know where the 4th ECC byte is 1082 * stored, you'll use: 1083 * 1084 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1085 * 1086 * Returns zero on success, a negative error code otherwise. 1087 */ 1088 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1089 int *sectionp, struct mtd_oob_region *oobregion, 1090 int (*iter)(struct mtd_info *, 1091 int section, 1092 struct mtd_oob_region *oobregion)) 1093 { 1094 int pos = 0, ret, section = 0; 1095 1096 memset(oobregion, 0, sizeof(*oobregion)); 1097 1098 while (1) { 1099 ret = iter(mtd, section, oobregion); 1100 if (ret) 1101 return ret; 1102 1103 if (pos + oobregion->length > byte) 1104 break; 1105 1106 pos += oobregion->length; 1107 section++; 1108 } 1109 1110 /* 1111 * Adjust region info to make it start at the beginning at the 1112 * 'start' ECC byte. 1113 */ 1114 oobregion->offset += byte - pos; 1115 oobregion->length -= byte - pos; 1116 *sectionp = section; 1117 1118 return 0; 1119 } 1120 1121 /** 1122 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1123 * ECC byte 1124 * @mtd: mtd info structure 1125 * @eccbyte: the byte we are searching for 1126 * @sectionp: pointer where the section id will be stored 1127 * @oobregion: OOB region information 1128 * 1129 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1130 * byte. 1131 * 1132 * Returns zero on success, a negative error code otherwise. 1133 */ 1134 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1135 int *section, 1136 struct mtd_oob_region *oobregion) 1137 { 1138 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1139 mtd_ooblayout_ecc); 1140 } 1141 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1142 1143 /** 1144 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1145 * @mtd: mtd info structure 1146 * @buf: destination buffer to store OOB bytes 1147 * @oobbuf: OOB buffer 1148 * @start: first byte to retrieve 1149 * @nbytes: number of bytes to retrieve 1150 * @iter: section iterator 1151 * 1152 * Extract bytes attached to a specific category (ECC or free) 1153 * from the OOB buffer and copy them into buf. 1154 * 1155 * Returns zero on success, a negative error code otherwise. 1156 */ 1157 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1158 const u8 *oobbuf, int start, int nbytes, 1159 int (*iter)(struct mtd_info *, 1160 int section, 1161 struct mtd_oob_region *oobregion)) 1162 { 1163 struct mtd_oob_region oobregion; 1164 int section, ret; 1165 1166 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1167 &oobregion, iter); 1168 1169 while (!ret) { 1170 int cnt; 1171 1172 cnt = min_t(int, nbytes, oobregion.length); 1173 memcpy(buf, oobbuf + oobregion.offset, cnt); 1174 buf += cnt; 1175 nbytes -= cnt; 1176 1177 if (!nbytes) 1178 break; 1179 1180 ret = iter(mtd, ++section, &oobregion); 1181 } 1182 1183 return ret; 1184 } 1185 1186 /** 1187 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1188 * @mtd: mtd info structure 1189 * @buf: source buffer to get OOB bytes from 1190 * @oobbuf: OOB buffer 1191 * @start: first OOB byte to set 1192 * @nbytes: number of OOB bytes to set 1193 * @iter: section iterator 1194 * 1195 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1196 * is selected by passing the appropriate iterator. 1197 * 1198 * Returns zero on success, a negative error code otherwise. 1199 */ 1200 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1201 u8 *oobbuf, int start, int nbytes, 1202 int (*iter)(struct mtd_info *, 1203 int section, 1204 struct mtd_oob_region *oobregion)) 1205 { 1206 struct mtd_oob_region oobregion; 1207 int section, ret; 1208 1209 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1210 &oobregion, iter); 1211 1212 while (!ret) { 1213 int cnt; 1214 1215 cnt = min_t(int, nbytes, oobregion.length); 1216 memcpy(oobbuf + oobregion.offset, buf, cnt); 1217 buf += cnt; 1218 nbytes -= cnt; 1219 1220 if (!nbytes) 1221 break; 1222 1223 ret = iter(mtd, ++section, &oobregion); 1224 } 1225 1226 return ret; 1227 } 1228 1229 /** 1230 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1231 * @mtd: mtd info structure 1232 * @iter: category iterator 1233 * 1234 * Count the number of bytes in a given category. 1235 * 1236 * Returns a positive value on success, a negative error code otherwise. 1237 */ 1238 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1239 int (*iter)(struct mtd_info *, 1240 int section, 1241 struct mtd_oob_region *oobregion)) 1242 { 1243 struct mtd_oob_region oobregion; 1244 int section = 0, ret, nbytes = 0; 1245 1246 while (1) { 1247 ret = iter(mtd, section++, &oobregion); 1248 if (ret) { 1249 if (ret == -ERANGE) 1250 ret = nbytes; 1251 break; 1252 } 1253 1254 nbytes += oobregion.length; 1255 } 1256 1257 return ret; 1258 } 1259 1260 /** 1261 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1262 * @mtd: mtd info structure 1263 * @eccbuf: destination buffer to store ECC bytes 1264 * @oobbuf: OOB buffer 1265 * @start: first ECC byte to retrieve 1266 * @nbytes: number of ECC bytes to retrieve 1267 * 1268 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1269 * 1270 * Returns zero on success, a negative error code otherwise. 1271 */ 1272 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1273 const u8 *oobbuf, int start, int nbytes) 1274 { 1275 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1276 mtd_ooblayout_ecc); 1277 } 1278 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1279 1280 /** 1281 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1282 * @mtd: mtd info structure 1283 * @eccbuf: source buffer to get ECC bytes from 1284 * @oobbuf: OOB buffer 1285 * @start: first ECC byte to set 1286 * @nbytes: number of ECC bytes to set 1287 * 1288 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1289 * 1290 * Returns zero on success, a negative error code otherwise. 1291 */ 1292 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1293 u8 *oobbuf, int start, int nbytes) 1294 { 1295 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1296 mtd_ooblayout_ecc); 1297 } 1298 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1299 1300 /** 1301 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1302 * @mtd: mtd info structure 1303 * @databuf: destination buffer to store ECC bytes 1304 * @oobbuf: OOB buffer 1305 * @start: first ECC byte to retrieve 1306 * @nbytes: number of ECC bytes to retrieve 1307 * 1308 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1309 * 1310 * Returns zero on success, a negative error code otherwise. 1311 */ 1312 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1313 const u8 *oobbuf, int start, int nbytes) 1314 { 1315 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1316 mtd_ooblayout_free); 1317 } 1318 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1319 1320 /** 1321 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1322 * @mtd: mtd info structure 1323 * @eccbuf: source buffer to get data bytes from 1324 * @oobbuf: OOB buffer 1325 * @start: first ECC byte to set 1326 * @nbytes: number of ECC bytes to set 1327 * 1328 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1329 * 1330 * Returns zero on success, a negative error code otherwise. 1331 */ 1332 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1333 u8 *oobbuf, int start, int nbytes) 1334 { 1335 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1336 mtd_ooblayout_free); 1337 } 1338 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1339 1340 /** 1341 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1342 * @mtd: mtd info structure 1343 * 1344 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1345 * 1346 * Returns zero on success, a negative error code otherwise. 1347 */ 1348 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1349 { 1350 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1351 } 1352 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1353 1354 /** 1355 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1356 * @mtd: mtd info structure 1357 * 1358 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1359 * 1360 * Returns zero on success, a negative error code otherwise. 1361 */ 1362 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1363 { 1364 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1365 } 1366 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1367 1368 /* 1369 * Method to access the protection register area, present in some flash 1370 * devices. The user data is one time programmable but the factory data is read 1371 * only. 1372 */ 1373 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1374 struct otp_info *buf) 1375 { 1376 if (!mtd->_get_fact_prot_info) 1377 return -EOPNOTSUPP; 1378 if (!len) 1379 return 0; 1380 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1381 } 1382 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1383 1384 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1385 size_t *retlen, u_char *buf) 1386 { 1387 *retlen = 0; 1388 if (!mtd->_read_fact_prot_reg) 1389 return -EOPNOTSUPP; 1390 if (!len) 1391 return 0; 1392 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1393 } 1394 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1395 1396 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1397 struct otp_info *buf) 1398 { 1399 if (!mtd->_get_user_prot_info) 1400 return -EOPNOTSUPP; 1401 if (!len) 1402 return 0; 1403 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1404 } 1405 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1406 1407 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1408 size_t *retlen, u_char *buf) 1409 { 1410 *retlen = 0; 1411 if (!mtd->_read_user_prot_reg) 1412 return -EOPNOTSUPP; 1413 if (!len) 1414 return 0; 1415 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1416 } 1417 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1418 1419 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1420 size_t *retlen, u_char *buf) 1421 { 1422 int ret; 1423 1424 *retlen = 0; 1425 if (!mtd->_write_user_prot_reg) 1426 return -EOPNOTSUPP; 1427 if (!len) 1428 return 0; 1429 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1430 if (ret) 1431 return ret; 1432 1433 /* 1434 * If no data could be written at all, we are out of memory and 1435 * must return -ENOSPC. 1436 */ 1437 return (*retlen) ? 0 : -ENOSPC; 1438 } 1439 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1440 1441 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1442 { 1443 if (!mtd->_lock_user_prot_reg) 1444 return -EOPNOTSUPP; 1445 if (!len) 1446 return 0; 1447 return mtd->_lock_user_prot_reg(mtd, from, len); 1448 } 1449 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1450 1451 /* Chip-supported device locking */ 1452 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1453 { 1454 if (!mtd->_lock) 1455 return -EOPNOTSUPP; 1456 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1457 return -EINVAL; 1458 if (!len) 1459 return 0; 1460 return mtd->_lock(mtd, ofs, len); 1461 } 1462 EXPORT_SYMBOL_GPL(mtd_lock); 1463 1464 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1465 { 1466 if (!mtd->_unlock) 1467 return -EOPNOTSUPP; 1468 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1469 return -EINVAL; 1470 if (!len) 1471 return 0; 1472 return mtd->_unlock(mtd, ofs, len); 1473 } 1474 EXPORT_SYMBOL_GPL(mtd_unlock); 1475 1476 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1477 { 1478 if (!mtd->_is_locked) 1479 return -EOPNOTSUPP; 1480 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1481 return -EINVAL; 1482 if (!len) 1483 return 0; 1484 return mtd->_is_locked(mtd, ofs, len); 1485 } 1486 EXPORT_SYMBOL_GPL(mtd_is_locked); 1487 1488 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1489 { 1490 if (ofs < 0 || ofs > mtd->size) 1491 return -EINVAL; 1492 if (!mtd->_block_isreserved) 1493 return 0; 1494 return mtd->_block_isreserved(mtd, ofs); 1495 } 1496 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1497 1498 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1499 { 1500 if (ofs < 0 || ofs > mtd->size) 1501 return -EINVAL; 1502 if (!mtd->_block_isbad) 1503 return 0; 1504 return mtd->_block_isbad(mtd, ofs); 1505 } 1506 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1507 1508 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1509 { 1510 if (!mtd->_block_markbad) 1511 return -EOPNOTSUPP; 1512 if (ofs < 0 || ofs > mtd->size) 1513 return -EINVAL; 1514 if (!(mtd->flags & MTD_WRITEABLE)) 1515 return -EROFS; 1516 return mtd->_block_markbad(mtd, ofs); 1517 } 1518 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1519 1520 #ifndef __UBOOT__ 1521 /* 1522 * default_mtd_writev - the default writev method 1523 * @mtd: mtd device description object pointer 1524 * @vecs: the vectors to write 1525 * @count: count of vectors in @vecs 1526 * @to: the MTD device offset to write to 1527 * @retlen: on exit contains the count of bytes written to the MTD device. 1528 * 1529 * This function returns zero in case of success and a negative error code in 1530 * case of failure. 1531 */ 1532 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1533 unsigned long count, loff_t to, size_t *retlen) 1534 { 1535 unsigned long i; 1536 size_t totlen = 0, thislen; 1537 int ret = 0; 1538 1539 for (i = 0; i < count; i++) { 1540 if (!vecs[i].iov_len) 1541 continue; 1542 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1543 vecs[i].iov_base); 1544 totlen += thislen; 1545 if (ret || thislen != vecs[i].iov_len) 1546 break; 1547 to += vecs[i].iov_len; 1548 } 1549 *retlen = totlen; 1550 return ret; 1551 } 1552 1553 /* 1554 * mtd_writev - the vector-based MTD write method 1555 * @mtd: mtd device description object pointer 1556 * @vecs: the vectors to write 1557 * @count: count of vectors in @vecs 1558 * @to: the MTD device offset to write to 1559 * @retlen: on exit contains the count of bytes written to the MTD device. 1560 * 1561 * This function returns zero in case of success and a negative error code in 1562 * case of failure. 1563 */ 1564 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1565 unsigned long count, loff_t to, size_t *retlen) 1566 { 1567 *retlen = 0; 1568 if (!(mtd->flags & MTD_WRITEABLE)) 1569 return -EROFS; 1570 if (!mtd->_writev) 1571 return default_mtd_writev(mtd, vecs, count, to, retlen); 1572 return mtd->_writev(mtd, vecs, count, to, retlen); 1573 } 1574 EXPORT_SYMBOL_GPL(mtd_writev); 1575 1576 /** 1577 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1578 * @mtd: mtd device description object pointer 1579 * @size: a pointer to the ideal or maximum size of the allocation, points 1580 * to the actual allocation size on success. 1581 * 1582 * This routine attempts to allocate a contiguous kernel buffer up to 1583 * the specified size, backing off the size of the request exponentially 1584 * until the request succeeds or until the allocation size falls below 1585 * the system page size. This attempts to make sure it does not adversely 1586 * impact system performance, so when allocating more than one page, we 1587 * ask the memory allocator to avoid re-trying, swapping, writing back 1588 * or performing I/O. 1589 * 1590 * Note, this function also makes sure that the allocated buffer is aligned to 1591 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1592 * 1593 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1594 * to handle smaller (i.e. degraded) buffer allocations under low- or 1595 * fragmented-memory situations where such reduced allocations, from a 1596 * requested ideal, are allowed. 1597 * 1598 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1599 */ 1600 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1601 { 1602 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1603 __GFP_NORETRY | __GFP_NO_KSWAPD; 1604 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1605 void *kbuf; 1606 1607 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1608 1609 while (*size > min_alloc) { 1610 kbuf = kmalloc(*size, flags); 1611 if (kbuf) 1612 return kbuf; 1613 1614 *size >>= 1; 1615 *size = ALIGN(*size, mtd->writesize); 1616 } 1617 1618 /* 1619 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1620 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1621 */ 1622 return kmalloc(*size, GFP_KERNEL); 1623 } 1624 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1625 #endif 1626 1627 #ifdef CONFIG_PROC_FS 1628 1629 /*====================================================================*/ 1630 /* Support for /proc/mtd */ 1631 1632 static int mtd_proc_show(struct seq_file *m, void *v) 1633 { 1634 struct mtd_info *mtd; 1635 1636 seq_puts(m, "dev: size erasesize name\n"); 1637 mutex_lock(&mtd_table_mutex); 1638 mtd_for_each_device(mtd) { 1639 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1640 mtd->index, (unsigned long long)mtd->size, 1641 mtd->erasesize, mtd->name); 1642 } 1643 mutex_unlock(&mtd_table_mutex); 1644 return 0; 1645 } 1646 1647 static int mtd_proc_open(struct inode *inode, struct file *file) 1648 { 1649 return single_open(file, mtd_proc_show, NULL); 1650 } 1651 1652 static const struct file_operations mtd_proc_ops = { 1653 .open = mtd_proc_open, 1654 .read = seq_read, 1655 .llseek = seq_lseek, 1656 .release = single_release, 1657 }; 1658 #endif /* CONFIG_PROC_FS */ 1659 1660 /*====================================================================*/ 1661 /* Init code */ 1662 1663 #ifndef __UBOOT__ 1664 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1665 { 1666 int ret; 1667 1668 ret = bdi_init(bdi); 1669 if (!ret) 1670 ret = bdi_register(bdi, NULL, "%s", name); 1671 1672 if (ret) 1673 bdi_destroy(bdi); 1674 1675 return ret; 1676 } 1677 1678 static struct proc_dir_entry *proc_mtd; 1679 1680 static int __init init_mtd(void) 1681 { 1682 int ret; 1683 1684 ret = class_register(&mtd_class); 1685 if (ret) 1686 goto err_reg; 1687 1688 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap"); 1689 if (ret) 1690 goto err_bdi1; 1691 1692 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap"); 1693 if (ret) 1694 goto err_bdi2; 1695 1696 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap"); 1697 if (ret) 1698 goto err_bdi3; 1699 1700 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1701 1702 ret = init_mtdchar(); 1703 if (ret) 1704 goto out_procfs; 1705 1706 return 0; 1707 1708 out_procfs: 1709 if (proc_mtd) 1710 remove_proc_entry("mtd", NULL); 1711 err_bdi3: 1712 bdi_destroy(&mtd_bdi_ro_mappable); 1713 err_bdi2: 1714 bdi_destroy(&mtd_bdi_unmappable); 1715 err_bdi1: 1716 class_unregister(&mtd_class); 1717 err_reg: 1718 pr_err("Error registering mtd class or bdi: %d\n", ret); 1719 return ret; 1720 } 1721 1722 static void __exit cleanup_mtd(void) 1723 { 1724 cleanup_mtdchar(); 1725 if (proc_mtd) 1726 remove_proc_entry("mtd", NULL); 1727 class_unregister(&mtd_class); 1728 bdi_destroy(&mtd_bdi_unmappable); 1729 bdi_destroy(&mtd_bdi_ro_mappable); 1730 bdi_destroy(&mtd_bdi_rw_mappable); 1731 } 1732 1733 module_init(init_mtd); 1734 module_exit(cleanup_mtd); 1735 #endif 1736 1737 MODULE_LICENSE("GPL"); 1738 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1739 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1740