1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 * 9 */ 10 11 #ifndef __UBOOT__ 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/ptrace.h> 15 #include <linux/seq_file.h> 16 #include <linux/string.h> 17 #include <linux/timer.h> 18 #include <linux/major.h> 19 #include <linux/fs.h> 20 #include <linux/err.h> 21 #include <linux/ioctl.h> 22 #include <linux/init.h> 23 #include <linux/proc_fs.h> 24 #include <linux/idr.h> 25 #include <linux/backing-dev.h> 26 #include <linux/gfp.h> 27 #include <linux/slab.h> 28 #else 29 #include <linux/err.h> 30 #include <ubi_uboot.h> 31 #endif 32 33 #include <linux/log2.h> 34 #include <linux/mtd/mtd.h> 35 #include <linux/mtd/partitions.h> 36 37 #include "mtdcore.h" 38 39 #ifndef __UBOOT__ 40 /* 41 * backing device capabilities for non-mappable devices (such as NAND flash) 42 * - permits private mappings, copies are taken of the data 43 */ 44 static struct backing_dev_info mtd_bdi_unmappable = { 45 .capabilities = BDI_CAP_MAP_COPY, 46 }; 47 48 /* 49 * backing device capabilities for R/O mappable devices (such as ROM) 50 * - permits private mappings, copies are taken of the data 51 * - permits non-writable shared mappings 52 */ 53 static struct backing_dev_info mtd_bdi_ro_mappable = { 54 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 55 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), 56 }; 57 58 /* 59 * backing device capabilities for writable mappable devices (such as RAM) 60 * - permits private mappings, copies are taken of the data 61 * - permits non-writable shared mappings 62 */ 63 static struct backing_dev_info mtd_bdi_rw_mappable = { 64 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 65 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | 66 BDI_CAP_WRITE_MAP), 67 }; 68 69 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 70 static int mtd_cls_resume(struct device *dev); 71 72 static struct class mtd_class = { 73 .name = "mtd", 74 .owner = THIS_MODULE, 75 .suspend = mtd_cls_suspend, 76 .resume = mtd_cls_resume, 77 }; 78 #else 79 struct mtd_info *mtd_table[MAX_MTD_DEVICES]; 80 81 #define MAX_IDR_ID 64 82 83 struct idr_layer { 84 int used; 85 void *ptr; 86 }; 87 88 struct idr { 89 struct idr_layer id[MAX_IDR_ID]; 90 }; 91 92 #define DEFINE_IDR(name) struct idr name; 93 94 void idr_remove(struct idr *idp, int id) 95 { 96 if (idp->id[id].used) 97 idp->id[id].used = 0; 98 99 return; 100 } 101 void *idr_find(struct idr *idp, int id) 102 { 103 if (idp->id[id].used) 104 return idp->id[id].ptr; 105 106 return NULL; 107 } 108 109 void *idr_get_next(struct idr *idp, int *next) 110 { 111 void *ret; 112 int id = *next; 113 114 ret = idr_find(idp, id); 115 if (ret) { 116 id ++; 117 if (!idp->id[id].used) 118 id = 0; 119 *next = id; 120 } else { 121 *next = 0; 122 } 123 124 return ret; 125 } 126 127 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask) 128 { 129 struct idr_layer *idl; 130 int i = 0; 131 132 while (i < MAX_IDR_ID) { 133 idl = &idp->id[i]; 134 if (idl->used == 0) { 135 idl->used = 1; 136 idl->ptr = ptr; 137 return i; 138 } 139 i++; 140 } 141 return -ENOSPC; 142 } 143 #endif 144 145 static DEFINE_IDR(mtd_idr); 146 147 /* These are exported solely for the purpose of mtd_blkdevs.c. You 148 should not use them for _anything_ else */ 149 DEFINE_MUTEX(mtd_table_mutex); 150 EXPORT_SYMBOL_GPL(mtd_table_mutex); 151 152 struct mtd_info *__mtd_next_device(int i) 153 { 154 return idr_get_next(&mtd_idr, &i); 155 } 156 EXPORT_SYMBOL_GPL(__mtd_next_device); 157 158 #ifndef __UBOOT__ 159 static LIST_HEAD(mtd_notifiers); 160 161 162 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 163 164 /* REVISIT once MTD uses the driver model better, whoever allocates 165 * the mtd_info will probably want to use the release() hook... 166 */ 167 static void mtd_release(struct device *dev) 168 { 169 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev); 170 dev_t index = MTD_DEVT(mtd->index); 171 172 /* remove /dev/mtdXro node if needed */ 173 if (index) 174 device_destroy(&mtd_class, index + 1); 175 } 176 177 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 178 { 179 struct mtd_info *mtd = dev_get_drvdata(dev); 180 181 return mtd ? mtd_suspend(mtd) : 0; 182 } 183 184 static int mtd_cls_resume(struct device *dev) 185 { 186 struct mtd_info *mtd = dev_get_drvdata(dev); 187 188 if (mtd) 189 mtd_resume(mtd); 190 return 0; 191 } 192 193 static ssize_t mtd_type_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct mtd_info *mtd = dev_get_drvdata(dev); 197 char *type; 198 199 switch (mtd->type) { 200 case MTD_ABSENT: 201 type = "absent"; 202 break; 203 case MTD_RAM: 204 type = "ram"; 205 break; 206 case MTD_ROM: 207 type = "rom"; 208 break; 209 case MTD_NORFLASH: 210 type = "nor"; 211 break; 212 case MTD_NANDFLASH: 213 type = "nand"; 214 break; 215 case MTD_DATAFLASH: 216 type = "dataflash"; 217 break; 218 case MTD_UBIVOLUME: 219 type = "ubi"; 220 break; 221 case MTD_MLCNANDFLASH: 222 type = "mlc-nand"; 223 break; 224 default: 225 type = "unknown"; 226 } 227 228 return snprintf(buf, PAGE_SIZE, "%s\n", type); 229 } 230 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 231 232 static ssize_t mtd_flags_show(struct device *dev, 233 struct device_attribute *attr, char *buf) 234 { 235 struct mtd_info *mtd = dev_get_drvdata(dev); 236 237 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 238 239 } 240 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 241 242 static ssize_t mtd_size_show(struct device *dev, 243 struct device_attribute *attr, char *buf) 244 { 245 struct mtd_info *mtd = dev_get_drvdata(dev); 246 247 return snprintf(buf, PAGE_SIZE, "%llu\n", 248 (unsigned long long)mtd->size); 249 250 } 251 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 252 253 static ssize_t mtd_erasesize_show(struct device *dev, 254 struct device_attribute *attr, char *buf) 255 { 256 struct mtd_info *mtd = dev_get_drvdata(dev); 257 258 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 259 260 } 261 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 262 263 static ssize_t mtd_writesize_show(struct device *dev, 264 struct device_attribute *attr, char *buf) 265 { 266 struct mtd_info *mtd = dev_get_drvdata(dev); 267 268 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 269 270 } 271 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 272 273 static ssize_t mtd_subpagesize_show(struct device *dev, 274 struct device_attribute *attr, char *buf) 275 { 276 struct mtd_info *mtd = dev_get_drvdata(dev); 277 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 278 279 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 280 281 } 282 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 283 284 static ssize_t mtd_oobsize_show(struct device *dev, 285 struct device_attribute *attr, char *buf) 286 { 287 struct mtd_info *mtd = dev_get_drvdata(dev); 288 289 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 290 291 } 292 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 293 294 static ssize_t mtd_numeraseregions_show(struct device *dev, 295 struct device_attribute *attr, char *buf) 296 { 297 struct mtd_info *mtd = dev_get_drvdata(dev); 298 299 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 300 301 } 302 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 303 NULL); 304 305 static ssize_t mtd_name_show(struct device *dev, 306 struct device_attribute *attr, char *buf) 307 { 308 struct mtd_info *mtd = dev_get_drvdata(dev); 309 310 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 311 312 } 313 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 314 315 static ssize_t mtd_ecc_strength_show(struct device *dev, 316 struct device_attribute *attr, char *buf) 317 { 318 struct mtd_info *mtd = dev_get_drvdata(dev); 319 320 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 321 } 322 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 323 324 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 325 struct device_attribute *attr, 326 char *buf) 327 { 328 struct mtd_info *mtd = dev_get_drvdata(dev); 329 330 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 331 } 332 333 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 334 struct device_attribute *attr, 335 const char *buf, size_t count) 336 { 337 struct mtd_info *mtd = dev_get_drvdata(dev); 338 unsigned int bitflip_threshold; 339 int retval; 340 341 retval = kstrtouint(buf, 0, &bitflip_threshold); 342 if (retval) 343 return retval; 344 345 mtd->bitflip_threshold = bitflip_threshold; 346 return count; 347 } 348 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 349 mtd_bitflip_threshold_show, 350 mtd_bitflip_threshold_store); 351 352 static ssize_t mtd_ecc_step_size_show(struct device *dev, 353 struct device_attribute *attr, char *buf) 354 { 355 struct mtd_info *mtd = dev_get_drvdata(dev); 356 357 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 358 359 } 360 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 361 362 static struct attribute *mtd_attrs[] = { 363 &dev_attr_type.attr, 364 &dev_attr_flags.attr, 365 &dev_attr_size.attr, 366 &dev_attr_erasesize.attr, 367 &dev_attr_writesize.attr, 368 &dev_attr_subpagesize.attr, 369 &dev_attr_oobsize.attr, 370 &dev_attr_numeraseregions.attr, 371 &dev_attr_name.attr, 372 &dev_attr_ecc_strength.attr, 373 &dev_attr_ecc_step_size.attr, 374 &dev_attr_bitflip_threshold.attr, 375 NULL, 376 }; 377 ATTRIBUTE_GROUPS(mtd); 378 379 static struct device_type mtd_devtype = { 380 .name = "mtd", 381 .groups = mtd_groups, 382 .release = mtd_release, 383 }; 384 #endif 385 386 /** 387 * add_mtd_device - register an MTD device 388 * @mtd: pointer to new MTD device info structure 389 * 390 * Add a device to the list of MTD devices present in the system, and 391 * notify each currently active MTD 'user' of its arrival. Returns 392 * zero on success or 1 on failure, which currently will only happen 393 * if there is insufficient memory or a sysfs error. 394 */ 395 396 int add_mtd_device(struct mtd_info *mtd) 397 { 398 #ifndef __UBOOT__ 399 struct mtd_notifier *not; 400 #endif 401 int i, error; 402 403 #ifndef __UBOOT__ 404 if (!mtd->backing_dev_info) { 405 switch (mtd->type) { 406 case MTD_RAM: 407 mtd->backing_dev_info = &mtd_bdi_rw_mappable; 408 break; 409 case MTD_ROM: 410 mtd->backing_dev_info = &mtd_bdi_ro_mappable; 411 break; 412 default: 413 mtd->backing_dev_info = &mtd_bdi_unmappable; 414 break; 415 } 416 } 417 #endif 418 419 BUG_ON(mtd->writesize == 0); 420 mutex_lock(&mtd_table_mutex); 421 422 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 423 if (i < 0) 424 goto fail_locked; 425 426 mtd->index = i; 427 mtd->usecount = 0; 428 429 /* default value if not set by driver */ 430 if (mtd->bitflip_threshold == 0) 431 mtd->bitflip_threshold = mtd->ecc_strength; 432 433 if (is_power_of_2(mtd->erasesize)) 434 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 435 else 436 mtd->erasesize_shift = 0; 437 438 if (is_power_of_2(mtd->writesize)) 439 mtd->writesize_shift = ffs(mtd->writesize) - 1; 440 else 441 mtd->writesize_shift = 0; 442 443 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 444 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 445 446 /* Some chips always power up locked. Unlock them now */ 447 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 448 error = mtd_unlock(mtd, 0, mtd->size); 449 if (error && error != -EOPNOTSUPP) 450 printk(KERN_WARNING 451 "%s: unlock failed, writes may not work\n", 452 mtd->name); 453 } 454 455 #ifndef __UBOOT__ 456 /* Caller should have set dev.parent to match the 457 * physical device. 458 */ 459 mtd->dev.type = &mtd_devtype; 460 mtd->dev.class = &mtd_class; 461 mtd->dev.devt = MTD_DEVT(i); 462 dev_set_name(&mtd->dev, "mtd%d", i); 463 dev_set_drvdata(&mtd->dev, mtd); 464 if (device_register(&mtd->dev) != 0) 465 goto fail_added; 466 467 if (MTD_DEVT(i)) 468 device_create(&mtd_class, mtd->dev.parent, 469 MTD_DEVT(i) + 1, 470 NULL, "mtd%dro", i); 471 472 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 473 /* No need to get a refcount on the module containing 474 the notifier, since we hold the mtd_table_mutex */ 475 list_for_each_entry(not, &mtd_notifiers, list) 476 not->add(mtd); 477 #else 478 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 479 #endif 480 481 mutex_unlock(&mtd_table_mutex); 482 /* We _know_ we aren't being removed, because 483 our caller is still holding us here. So none 484 of this try_ nonsense, and no bitching about it 485 either. :) */ 486 __module_get(THIS_MODULE); 487 return 0; 488 489 #ifndef __UBOOT__ 490 fail_added: 491 idr_remove(&mtd_idr, i); 492 #endif 493 fail_locked: 494 mutex_unlock(&mtd_table_mutex); 495 return 1; 496 } 497 498 /** 499 * del_mtd_device - unregister an MTD device 500 * @mtd: pointer to MTD device info structure 501 * 502 * Remove a device from the list of MTD devices present in the system, 503 * and notify each currently active MTD 'user' of its departure. 504 * Returns zero on success or 1 on failure, which currently will happen 505 * if the requested device does not appear to be present in the list. 506 */ 507 508 int del_mtd_device(struct mtd_info *mtd) 509 { 510 int ret; 511 #ifndef __UBOOT__ 512 struct mtd_notifier *not; 513 #endif 514 515 mutex_lock(&mtd_table_mutex); 516 517 if (idr_find(&mtd_idr, mtd->index) != mtd) { 518 ret = -ENODEV; 519 goto out_error; 520 } 521 522 #ifndef __UBOOT__ 523 /* No need to get a refcount on the module containing 524 the notifier, since we hold the mtd_table_mutex */ 525 list_for_each_entry(not, &mtd_notifiers, list) 526 not->remove(mtd); 527 #endif 528 529 if (mtd->usecount) { 530 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 531 mtd->index, mtd->name, mtd->usecount); 532 ret = -EBUSY; 533 } else { 534 #ifndef __UBOOT__ 535 device_unregister(&mtd->dev); 536 #endif 537 538 idr_remove(&mtd_idr, mtd->index); 539 540 module_put(THIS_MODULE); 541 ret = 0; 542 } 543 544 out_error: 545 mutex_unlock(&mtd_table_mutex); 546 return ret; 547 } 548 549 #ifndef __UBOOT__ 550 /** 551 * mtd_device_parse_register - parse partitions and register an MTD device. 552 * 553 * @mtd: the MTD device to register 554 * @types: the list of MTD partition probes to try, see 555 * 'parse_mtd_partitions()' for more information 556 * @parser_data: MTD partition parser-specific data 557 * @parts: fallback partition information to register, if parsing fails; 558 * only valid if %nr_parts > %0 559 * @nr_parts: the number of partitions in parts, if zero then the full 560 * MTD device is registered if no partition info is found 561 * 562 * This function aggregates MTD partitions parsing (done by 563 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 564 * basically follows the most common pattern found in many MTD drivers: 565 * 566 * * It first tries to probe partitions on MTD device @mtd using parsers 567 * specified in @types (if @types is %NULL, then the default list of parsers 568 * is used, see 'parse_mtd_partitions()' for more information). If none are 569 * found this functions tries to fallback to information specified in 570 * @parts/@nr_parts. 571 * * If any partitioning info was found, this function registers the found 572 * partitions. 573 * * If no partitions were found this function just registers the MTD device 574 * @mtd and exits. 575 * 576 * Returns zero in case of success and a negative error code in case of failure. 577 */ 578 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 579 struct mtd_part_parser_data *parser_data, 580 const struct mtd_partition *parts, 581 int nr_parts) 582 { 583 int err; 584 struct mtd_partition *real_parts; 585 586 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 587 if (err <= 0 && nr_parts && parts) { 588 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 589 GFP_KERNEL); 590 if (!real_parts) 591 err = -ENOMEM; 592 else 593 err = nr_parts; 594 } 595 596 if (err > 0) { 597 err = add_mtd_partitions(mtd, real_parts, err); 598 kfree(real_parts); 599 } else if (err == 0) { 600 err = add_mtd_device(mtd); 601 if (err == 1) 602 err = -ENODEV; 603 } 604 605 return err; 606 } 607 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 608 609 /** 610 * mtd_device_unregister - unregister an existing MTD device. 611 * 612 * @master: the MTD device to unregister. This will unregister both the master 613 * and any partitions if registered. 614 */ 615 int mtd_device_unregister(struct mtd_info *master) 616 { 617 int err; 618 619 err = del_mtd_partitions(master); 620 if (err) 621 return err; 622 623 if (!device_is_registered(&master->dev)) 624 return 0; 625 626 return del_mtd_device(master); 627 } 628 EXPORT_SYMBOL_GPL(mtd_device_unregister); 629 630 /** 631 * register_mtd_user - register a 'user' of MTD devices. 632 * @new: pointer to notifier info structure 633 * 634 * Registers a pair of callbacks function to be called upon addition 635 * or removal of MTD devices. Causes the 'add' callback to be immediately 636 * invoked for each MTD device currently present in the system. 637 */ 638 void register_mtd_user (struct mtd_notifier *new) 639 { 640 struct mtd_info *mtd; 641 642 mutex_lock(&mtd_table_mutex); 643 644 list_add(&new->list, &mtd_notifiers); 645 646 __module_get(THIS_MODULE); 647 648 mtd_for_each_device(mtd) 649 new->add(mtd); 650 651 mutex_unlock(&mtd_table_mutex); 652 } 653 EXPORT_SYMBOL_GPL(register_mtd_user); 654 655 /** 656 * unregister_mtd_user - unregister a 'user' of MTD devices. 657 * @old: pointer to notifier info structure 658 * 659 * Removes a callback function pair from the list of 'users' to be 660 * notified upon addition or removal of MTD devices. Causes the 661 * 'remove' callback to be immediately invoked for each MTD device 662 * currently present in the system. 663 */ 664 int unregister_mtd_user (struct mtd_notifier *old) 665 { 666 struct mtd_info *mtd; 667 668 mutex_lock(&mtd_table_mutex); 669 670 module_put(THIS_MODULE); 671 672 mtd_for_each_device(mtd) 673 old->remove(mtd); 674 675 list_del(&old->list); 676 mutex_unlock(&mtd_table_mutex); 677 return 0; 678 } 679 EXPORT_SYMBOL_GPL(unregister_mtd_user); 680 #endif 681 682 /** 683 * get_mtd_device - obtain a validated handle for an MTD device 684 * @mtd: last known address of the required MTD device 685 * @num: internal device number of the required MTD device 686 * 687 * Given a number and NULL address, return the num'th entry in the device 688 * table, if any. Given an address and num == -1, search the device table 689 * for a device with that address and return if it's still present. Given 690 * both, return the num'th driver only if its address matches. Return 691 * error code if not. 692 */ 693 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 694 { 695 struct mtd_info *ret = NULL, *other; 696 int err = -ENODEV; 697 698 mutex_lock(&mtd_table_mutex); 699 700 if (num == -1) { 701 mtd_for_each_device(other) { 702 if (other == mtd) { 703 ret = mtd; 704 break; 705 } 706 } 707 } else if (num >= 0) { 708 ret = idr_find(&mtd_idr, num); 709 if (mtd && mtd != ret) 710 ret = NULL; 711 } 712 713 if (!ret) { 714 ret = ERR_PTR(err); 715 goto out; 716 } 717 718 err = __get_mtd_device(ret); 719 if (err) 720 ret = ERR_PTR(err); 721 out: 722 mutex_unlock(&mtd_table_mutex); 723 return ret; 724 } 725 EXPORT_SYMBOL_GPL(get_mtd_device); 726 727 728 int __get_mtd_device(struct mtd_info *mtd) 729 { 730 int err; 731 732 if (!try_module_get(mtd->owner)) 733 return -ENODEV; 734 735 if (mtd->_get_device) { 736 err = mtd->_get_device(mtd); 737 738 if (err) { 739 module_put(mtd->owner); 740 return err; 741 } 742 } 743 mtd->usecount++; 744 return 0; 745 } 746 EXPORT_SYMBOL_GPL(__get_mtd_device); 747 748 /** 749 * get_mtd_device_nm - obtain a validated handle for an MTD device by 750 * device name 751 * @name: MTD device name to open 752 * 753 * This function returns MTD device description structure in case of 754 * success and an error code in case of failure. 755 */ 756 struct mtd_info *get_mtd_device_nm(const char *name) 757 { 758 int err = -ENODEV; 759 struct mtd_info *mtd = NULL, *other; 760 761 mutex_lock(&mtd_table_mutex); 762 763 mtd_for_each_device(other) { 764 if (!strcmp(name, other->name)) { 765 mtd = other; 766 break; 767 } 768 } 769 770 if (!mtd) 771 goto out_unlock; 772 773 err = __get_mtd_device(mtd); 774 if (err) 775 goto out_unlock; 776 777 mutex_unlock(&mtd_table_mutex); 778 return mtd; 779 780 out_unlock: 781 mutex_unlock(&mtd_table_mutex); 782 return ERR_PTR(err); 783 } 784 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 785 786 #if defined(CONFIG_CMD_MTDPARTS_SPREAD) 787 /** 788 * mtd_get_len_incl_bad 789 * 790 * Check if length including bad blocks fits into device. 791 * 792 * @param mtd an MTD device 793 * @param offset offset in flash 794 * @param length image length 795 * @return image length including bad blocks in *len_incl_bad and whether or not 796 * the length returned was truncated in *truncated 797 */ 798 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, 799 const uint64_t length, uint64_t *len_incl_bad, 800 int *truncated) 801 { 802 *truncated = 0; 803 *len_incl_bad = 0; 804 805 if (!mtd->_block_isbad) { 806 *len_incl_bad = length; 807 return; 808 } 809 810 uint64_t len_excl_bad = 0; 811 uint64_t block_len; 812 813 while (len_excl_bad < length) { 814 if (offset >= mtd->size) { 815 *truncated = 1; 816 return; 817 } 818 819 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1)); 820 821 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) 822 len_excl_bad += block_len; 823 824 *len_incl_bad += block_len; 825 offset += block_len; 826 } 827 } 828 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */ 829 830 void put_mtd_device(struct mtd_info *mtd) 831 { 832 mutex_lock(&mtd_table_mutex); 833 __put_mtd_device(mtd); 834 mutex_unlock(&mtd_table_mutex); 835 836 } 837 EXPORT_SYMBOL_GPL(put_mtd_device); 838 839 void __put_mtd_device(struct mtd_info *mtd) 840 { 841 --mtd->usecount; 842 BUG_ON(mtd->usecount < 0); 843 844 if (mtd->_put_device) 845 mtd->_put_device(mtd); 846 847 module_put(mtd->owner); 848 } 849 EXPORT_SYMBOL_GPL(__put_mtd_device); 850 851 /* 852 * Erase is an asynchronous operation. Device drivers are supposed 853 * to call instr->callback() whenever the operation completes, even 854 * if it completes with a failure. 855 * Callers are supposed to pass a callback function and wait for it 856 * to be called before writing to the block. 857 */ 858 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 859 { 860 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) 861 return -EINVAL; 862 if (!(mtd->flags & MTD_WRITEABLE)) 863 return -EROFS; 864 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 865 if (!instr->len) { 866 instr->state = MTD_ERASE_DONE; 867 mtd_erase_callback(instr); 868 return 0; 869 } 870 return mtd->_erase(mtd, instr); 871 } 872 EXPORT_SYMBOL_GPL(mtd_erase); 873 874 #ifndef __UBOOT__ 875 /* 876 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 877 */ 878 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 879 void **virt, resource_size_t *phys) 880 { 881 *retlen = 0; 882 *virt = NULL; 883 if (phys) 884 *phys = 0; 885 if (!mtd->_point) 886 return -EOPNOTSUPP; 887 if (from < 0 || from > mtd->size || len > mtd->size - from) 888 return -EINVAL; 889 if (!len) 890 return 0; 891 return mtd->_point(mtd, from, len, retlen, virt, phys); 892 } 893 EXPORT_SYMBOL_GPL(mtd_point); 894 895 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 896 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 897 { 898 if (!mtd->_point) 899 return -EOPNOTSUPP; 900 if (from < 0 || from > mtd->size || len > mtd->size - from) 901 return -EINVAL; 902 if (!len) 903 return 0; 904 return mtd->_unpoint(mtd, from, len); 905 } 906 EXPORT_SYMBOL_GPL(mtd_unpoint); 907 #endif 908 909 /* 910 * Allow NOMMU mmap() to directly map the device (if not NULL) 911 * - return the address to which the offset maps 912 * - return -ENOSYS to indicate refusal to do the mapping 913 */ 914 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 915 unsigned long offset, unsigned long flags) 916 { 917 if (!mtd->_get_unmapped_area) 918 return -EOPNOTSUPP; 919 if (offset > mtd->size || len > mtd->size - offset) 920 return -EINVAL; 921 return mtd->_get_unmapped_area(mtd, len, offset, flags); 922 } 923 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 924 925 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 926 u_char *buf) 927 { 928 int ret_code; 929 *retlen = 0; 930 if (from < 0 || from > mtd->size || len > mtd->size - from) 931 return -EINVAL; 932 if (!len) 933 return 0; 934 935 /* 936 * In the absence of an error, drivers return a non-negative integer 937 * representing the maximum number of bitflips that were corrected on 938 * any one ecc region (if applicable; zero otherwise). 939 */ 940 ret_code = mtd->_read(mtd, from, len, retlen, buf); 941 if (unlikely(ret_code < 0)) 942 return ret_code; 943 if (mtd->ecc_strength == 0) 944 return 0; /* device lacks ecc */ 945 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 946 } 947 EXPORT_SYMBOL_GPL(mtd_read); 948 949 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 950 const u_char *buf) 951 { 952 *retlen = 0; 953 if (to < 0 || to > mtd->size || len > mtd->size - to) 954 return -EINVAL; 955 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 956 return -EROFS; 957 if (!len) 958 return 0; 959 return mtd->_write(mtd, to, len, retlen, buf); 960 } 961 EXPORT_SYMBOL_GPL(mtd_write); 962 963 /* 964 * In blackbox flight recorder like scenarios we want to make successful writes 965 * in interrupt context. panic_write() is only intended to be called when its 966 * known the kernel is about to panic and we need the write to succeed. Since 967 * the kernel is not going to be running for much longer, this function can 968 * break locks and delay to ensure the write succeeds (but not sleep). 969 */ 970 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 971 const u_char *buf) 972 { 973 *retlen = 0; 974 if (!mtd->_panic_write) 975 return -EOPNOTSUPP; 976 if (to < 0 || to > mtd->size || len > mtd->size - to) 977 return -EINVAL; 978 if (!(mtd->flags & MTD_WRITEABLE)) 979 return -EROFS; 980 if (!len) 981 return 0; 982 return mtd->_panic_write(mtd, to, len, retlen, buf); 983 } 984 EXPORT_SYMBOL_GPL(mtd_panic_write); 985 986 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 987 { 988 int ret_code; 989 ops->retlen = ops->oobretlen = 0; 990 if (!mtd->_read_oob) 991 return -EOPNOTSUPP; 992 /* 993 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 994 * similar to mtd->_read(), returning a non-negative integer 995 * representing max bitflips. In other cases, mtd->_read_oob() may 996 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 997 */ 998 ret_code = mtd->_read_oob(mtd, from, ops); 999 if (unlikely(ret_code < 0)) 1000 return ret_code; 1001 if (mtd->ecc_strength == 0) 1002 return 0; /* device lacks ecc */ 1003 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1004 } 1005 EXPORT_SYMBOL_GPL(mtd_read_oob); 1006 1007 /** 1008 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1009 * @mtd: MTD device structure 1010 * @section: ECC section. Depending on the layout you may have all the ECC 1011 * bytes stored in a single contiguous section, or one section 1012 * per ECC chunk (and sometime several sections for a single ECC 1013 * ECC chunk) 1014 * @oobecc: OOB region struct filled with the appropriate ECC position 1015 * information 1016 * 1017 * This function returns ECC section information in the OOB area. If you want 1018 * to get all the ECC bytes information, then you should call 1019 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1020 * 1021 * Returns zero on success, a negative error code otherwise. 1022 */ 1023 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1024 struct mtd_oob_region *oobecc) 1025 { 1026 memset(oobecc, 0, sizeof(*oobecc)); 1027 1028 if (!mtd || section < 0) 1029 return -EINVAL; 1030 1031 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1032 return -ENOTSUPP; 1033 1034 return mtd->ooblayout->ecc(mtd, section, oobecc); 1035 } 1036 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1037 1038 /** 1039 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1040 * section 1041 * @mtd: MTD device structure 1042 * @section: Free section you are interested in. Depending on the layout 1043 * you may have all the free bytes stored in a single contiguous 1044 * section, or one section per ECC chunk plus an extra section 1045 * for the remaining bytes (or other funky layout). 1046 * @oobfree: OOB region struct filled with the appropriate free position 1047 * information 1048 * 1049 * This function returns free bytes position in the OOB area. If you want 1050 * to get all the free bytes information, then you should call 1051 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1052 * 1053 * Returns zero on success, a negative error code otherwise. 1054 */ 1055 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1056 struct mtd_oob_region *oobfree) 1057 { 1058 memset(oobfree, 0, sizeof(*oobfree)); 1059 1060 if (!mtd || section < 0) 1061 return -EINVAL; 1062 1063 if (!mtd->ooblayout || !mtd->ooblayout->free) 1064 return -ENOTSUPP; 1065 1066 return mtd->ooblayout->free(mtd, section, oobfree); 1067 } 1068 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1069 1070 /** 1071 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1072 * @mtd: mtd info structure 1073 * @byte: the byte we are searching for 1074 * @sectionp: pointer where the section id will be stored 1075 * @oobregion: used to retrieve the ECC position 1076 * @iter: iterator function. Should be either mtd_ooblayout_free or 1077 * mtd_ooblayout_ecc depending on the region type you're searching for 1078 * 1079 * This function returns the section id and oobregion information of a 1080 * specific byte. For example, say you want to know where the 4th ECC byte is 1081 * stored, you'll use: 1082 * 1083 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1084 * 1085 * Returns zero on success, a negative error code otherwise. 1086 */ 1087 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1088 int *sectionp, struct mtd_oob_region *oobregion, 1089 int (*iter)(struct mtd_info *, 1090 int section, 1091 struct mtd_oob_region *oobregion)) 1092 { 1093 int pos = 0, ret, section = 0; 1094 1095 memset(oobregion, 0, sizeof(*oobregion)); 1096 1097 while (1) { 1098 ret = iter(mtd, section, oobregion); 1099 if (ret) 1100 return ret; 1101 1102 if (pos + oobregion->length > byte) 1103 break; 1104 1105 pos += oobregion->length; 1106 section++; 1107 } 1108 1109 /* 1110 * Adjust region info to make it start at the beginning at the 1111 * 'start' ECC byte. 1112 */ 1113 oobregion->offset += byte - pos; 1114 oobregion->length -= byte - pos; 1115 *sectionp = section; 1116 1117 return 0; 1118 } 1119 1120 /** 1121 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1122 * ECC byte 1123 * @mtd: mtd info structure 1124 * @eccbyte: the byte we are searching for 1125 * @sectionp: pointer where the section id will be stored 1126 * @oobregion: OOB region information 1127 * 1128 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1129 * byte. 1130 * 1131 * Returns zero on success, a negative error code otherwise. 1132 */ 1133 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1134 int *section, 1135 struct mtd_oob_region *oobregion) 1136 { 1137 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1138 mtd_ooblayout_ecc); 1139 } 1140 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1141 1142 /** 1143 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1144 * @mtd: mtd info structure 1145 * @buf: destination buffer to store OOB bytes 1146 * @oobbuf: OOB buffer 1147 * @start: first byte to retrieve 1148 * @nbytes: number of bytes to retrieve 1149 * @iter: section iterator 1150 * 1151 * Extract bytes attached to a specific category (ECC or free) 1152 * from the OOB buffer and copy them into buf. 1153 * 1154 * Returns zero on success, a negative error code otherwise. 1155 */ 1156 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1157 const u8 *oobbuf, int start, int nbytes, 1158 int (*iter)(struct mtd_info *, 1159 int section, 1160 struct mtd_oob_region *oobregion)) 1161 { 1162 struct mtd_oob_region oobregion; 1163 int section, ret; 1164 1165 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1166 &oobregion, iter); 1167 1168 while (!ret) { 1169 int cnt; 1170 1171 cnt = min_t(int, nbytes, oobregion.length); 1172 memcpy(buf, oobbuf + oobregion.offset, cnt); 1173 buf += cnt; 1174 nbytes -= cnt; 1175 1176 if (!nbytes) 1177 break; 1178 1179 ret = iter(mtd, ++section, &oobregion); 1180 } 1181 1182 return ret; 1183 } 1184 1185 /** 1186 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1187 * @mtd: mtd info structure 1188 * @buf: source buffer to get OOB bytes from 1189 * @oobbuf: OOB buffer 1190 * @start: first OOB byte to set 1191 * @nbytes: number of OOB bytes to set 1192 * @iter: section iterator 1193 * 1194 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1195 * is selected by passing the appropriate iterator. 1196 * 1197 * Returns zero on success, a negative error code otherwise. 1198 */ 1199 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1200 u8 *oobbuf, int start, int nbytes, 1201 int (*iter)(struct mtd_info *, 1202 int section, 1203 struct mtd_oob_region *oobregion)) 1204 { 1205 struct mtd_oob_region oobregion; 1206 int section, ret; 1207 1208 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1209 &oobregion, iter); 1210 1211 while (!ret) { 1212 int cnt; 1213 1214 cnt = min_t(int, nbytes, oobregion.length); 1215 memcpy(oobbuf + oobregion.offset, buf, cnt); 1216 buf += cnt; 1217 nbytes -= cnt; 1218 1219 if (!nbytes) 1220 break; 1221 1222 ret = iter(mtd, ++section, &oobregion); 1223 } 1224 1225 return ret; 1226 } 1227 1228 /** 1229 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1230 * @mtd: mtd info structure 1231 * @iter: category iterator 1232 * 1233 * Count the number of bytes in a given category. 1234 * 1235 * Returns a positive value on success, a negative error code otherwise. 1236 */ 1237 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1238 int (*iter)(struct mtd_info *, 1239 int section, 1240 struct mtd_oob_region *oobregion)) 1241 { 1242 struct mtd_oob_region oobregion; 1243 int section = 0, ret, nbytes = 0; 1244 1245 while (1) { 1246 ret = iter(mtd, section++, &oobregion); 1247 if (ret) { 1248 if (ret == -ERANGE) 1249 ret = nbytes; 1250 break; 1251 } 1252 1253 nbytes += oobregion.length; 1254 } 1255 1256 return ret; 1257 } 1258 1259 /** 1260 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1261 * @mtd: mtd info structure 1262 * @eccbuf: destination buffer to store ECC bytes 1263 * @oobbuf: OOB buffer 1264 * @start: first ECC byte to retrieve 1265 * @nbytes: number of ECC bytes to retrieve 1266 * 1267 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1268 * 1269 * Returns zero on success, a negative error code otherwise. 1270 */ 1271 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1272 const u8 *oobbuf, int start, int nbytes) 1273 { 1274 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1275 mtd_ooblayout_ecc); 1276 } 1277 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1278 1279 /** 1280 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1281 * @mtd: mtd info structure 1282 * @eccbuf: source buffer to get ECC bytes from 1283 * @oobbuf: OOB buffer 1284 * @start: first ECC byte to set 1285 * @nbytes: number of ECC bytes to set 1286 * 1287 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1288 * 1289 * Returns zero on success, a negative error code otherwise. 1290 */ 1291 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1292 u8 *oobbuf, int start, int nbytes) 1293 { 1294 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1295 mtd_ooblayout_ecc); 1296 } 1297 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1298 1299 /** 1300 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1301 * @mtd: mtd info structure 1302 * @databuf: destination buffer to store ECC bytes 1303 * @oobbuf: OOB buffer 1304 * @start: first ECC byte to retrieve 1305 * @nbytes: number of ECC bytes to retrieve 1306 * 1307 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1308 * 1309 * Returns zero on success, a negative error code otherwise. 1310 */ 1311 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1312 const u8 *oobbuf, int start, int nbytes) 1313 { 1314 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1315 mtd_ooblayout_free); 1316 } 1317 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1318 1319 /** 1320 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1321 * @mtd: mtd info structure 1322 * @eccbuf: source buffer to get data bytes from 1323 * @oobbuf: OOB buffer 1324 * @start: first ECC byte to set 1325 * @nbytes: number of ECC bytes to set 1326 * 1327 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1328 * 1329 * Returns zero on success, a negative error code otherwise. 1330 */ 1331 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1332 u8 *oobbuf, int start, int nbytes) 1333 { 1334 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1335 mtd_ooblayout_free); 1336 } 1337 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1338 1339 /** 1340 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1341 * @mtd: mtd info structure 1342 * 1343 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1344 * 1345 * Returns zero on success, a negative error code otherwise. 1346 */ 1347 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1348 { 1349 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1350 } 1351 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1352 1353 /** 1354 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1355 * @mtd: mtd info structure 1356 * 1357 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1358 * 1359 * Returns zero on success, a negative error code otherwise. 1360 */ 1361 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1362 { 1363 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1364 } 1365 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1366 1367 /* 1368 * Method to access the protection register area, present in some flash 1369 * devices. The user data is one time programmable but the factory data is read 1370 * only. 1371 */ 1372 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1373 struct otp_info *buf) 1374 { 1375 if (!mtd->_get_fact_prot_info) 1376 return -EOPNOTSUPP; 1377 if (!len) 1378 return 0; 1379 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1380 } 1381 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1382 1383 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1384 size_t *retlen, u_char *buf) 1385 { 1386 *retlen = 0; 1387 if (!mtd->_read_fact_prot_reg) 1388 return -EOPNOTSUPP; 1389 if (!len) 1390 return 0; 1391 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1392 } 1393 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1394 1395 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1396 struct otp_info *buf) 1397 { 1398 if (!mtd->_get_user_prot_info) 1399 return -EOPNOTSUPP; 1400 if (!len) 1401 return 0; 1402 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1403 } 1404 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1405 1406 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1407 size_t *retlen, u_char *buf) 1408 { 1409 *retlen = 0; 1410 if (!mtd->_read_user_prot_reg) 1411 return -EOPNOTSUPP; 1412 if (!len) 1413 return 0; 1414 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1415 } 1416 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1417 1418 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1419 size_t *retlen, u_char *buf) 1420 { 1421 int ret; 1422 1423 *retlen = 0; 1424 if (!mtd->_write_user_prot_reg) 1425 return -EOPNOTSUPP; 1426 if (!len) 1427 return 0; 1428 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1429 if (ret) 1430 return ret; 1431 1432 /* 1433 * If no data could be written at all, we are out of memory and 1434 * must return -ENOSPC. 1435 */ 1436 return (*retlen) ? 0 : -ENOSPC; 1437 } 1438 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1439 1440 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1441 { 1442 if (!mtd->_lock_user_prot_reg) 1443 return -EOPNOTSUPP; 1444 if (!len) 1445 return 0; 1446 return mtd->_lock_user_prot_reg(mtd, from, len); 1447 } 1448 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1449 1450 /* Chip-supported device locking */ 1451 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1452 { 1453 if (!mtd->_lock) 1454 return -EOPNOTSUPP; 1455 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1456 return -EINVAL; 1457 if (!len) 1458 return 0; 1459 return mtd->_lock(mtd, ofs, len); 1460 } 1461 EXPORT_SYMBOL_GPL(mtd_lock); 1462 1463 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1464 { 1465 if (!mtd->_unlock) 1466 return -EOPNOTSUPP; 1467 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1468 return -EINVAL; 1469 if (!len) 1470 return 0; 1471 return mtd->_unlock(mtd, ofs, len); 1472 } 1473 EXPORT_SYMBOL_GPL(mtd_unlock); 1474 1475 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1476 { 1477 if (!mtd->_is_locked) 1478 return -EOPNOTSUPP; 1479 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1480 return -EINVAL; 1481 if (!len) 1482 return 0; 1483 return mtd->_is_locked(mtd, ofs, len); 1484 } 1485 EXPORT_SYMBOL_GPL(mtd_is_locked); 1486 1487 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1488 { 1489 if (ofs < 0 || ofs > mtd->size) 1490 return -EINVAL; 1491 if (!mtd->_block_isreserved) 1492 return 0; 1493 return mtd->_block_isreserved(mtd, ofs); 1494 } 1495 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1496 1497 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1498 { 1499 if (ofs < 0 || ofs > mtd->size) 1500 return -EINVAL; 1501 if (!mtd->_block_isbad) 1502 return 0; 1503 return mtd->_block_isbad(mtd, ofs); 1504 } 1505 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1506 1507 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1508 { 1509 if (!mtd->_block_markbad) 1510 return -EOPNOTSUPP; 1511 if (ofs < 0 || ofs > mtd->size) 1512 return -EINVAL; 1513 if (!(mtd->flags & MTD_WRITEABLE)) 1514 return -EROFS; 1515 return mtd->_block_markbad(mtd, ofs); 1516 } 1517 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1518 1519 #ifndef __UBOOT__ 1520 /* 1521 * default_mtd_writev - the default writev method 1522 * @mtd: mtd device description object pointer 1523 * @vecs: the vectors to write 1524 * @count: count of vectors in @vecs 1525 * @to: the MTD device offset to write to 1526 * @retlen: on exit contains the count of bytes written to the MTD device. 1527 * 1528 * This function returns zero in case of success and a negative error code in 1529 * case of failure. 1530 */ 1531 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1532 unsigned long count, loff_t to, size_t *retlen) 1533 { 1534 unsigned long i; 1535 size_t totlen = 0, thislen; 1536 int ret = 0; 1537 1538 for (i = 0; i < count; i++) { 1539 if (!vecs[i].iov_len) 1540 continue; 1541 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1542 vecs[i].iov_base); 1543 totlen += thislen; 1544 if (ret || thislen != vecs[i].iov_len) 1545 break; 1546 to += vecs[i].iov_len; 1547 } 1548 *retlen = totlen; 1549 return ret; 1550 } 1551 1552 /* 1553 * mtd_writev - the vector-based MTD write method 1554 * @mtd: mtd device description object pointer 1555 * @vecs: the vectors to write 1556 * @count: count of vectors in @vecs 1557 * @to: the MTD device offset to write to 1558 * @retlen: on exit contains the count of bytes written to the MTD device. 1559 * 1560 * This function returns zero in case of success and a negative error code in 1561 * case of failure. 1562 */ 1563 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1564 unsigned long count, loff_t to, size_t *retlen) 1565 { 1566 *retlen = 0; 1567 if (!(mtd->flags & MTD_WRITEABLE)) 1568 return -EROFS; 1569 if (!mtd->_writev) 1570 return default_mtd_writev(mtd, vecs, count, to, retlen); 1571 return mtd->_writev(mtd, vecs, count, to, retlen); 1572 } 1573 EXPORT_SYMBOL_GPL(mtd_writev); 1574 1575 /** 1576 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1577 * @mtd: mtd device description object pointer 1578 * @size: a pointer to the ideal or maximum size of the allocation, points 1579 * to the actual allocation size on success. 1580 * 1581 * This routine attempts to allocate a contiguous kernel buffer up to 1582 * the specified size, backing off the size of the request exponentially 1583 * until the request succeeds or until the allocation size falls below 1584 * the system page size. This attempts to make sure it does not adversely 1585 * impact system performance, so when allocating more than one page, we 1586 * ask the memory allocator to avoid re-trying, swapping, writing back 1587 * or performing I/O. 1588 * 1589 * Note, this function also makes sure that the allocated buffer is aligned to 1590 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1591 * 1592 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1593 * to handle smaller (i.e. degraded) buffer allocations under low- or 1594 * fragmented-memory situations where such reduced allocations, from a 1595 * requested ideal, are allowed. 1596 * 1597 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1598 */ 1599 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1600 { 1601 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1602 __GFP_NORETRY | __GFP_NO_KSWAPD; 1603 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1604 void *kbuf; 1605 1606 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1607 1608 while (*size > min_alloc) { 1609 kbuf = kmalloc(*size, flags); 1610 if (kbuf) 1611 return kbuf; 1612 1613 *size >>= 1; 1614 *size = ALIGN(*size, mtd->writesize); 1615 } 1616 1617 /* 1618 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1619 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1620 */ 1621 return kmalloc(*size, GFP_KERNEL); 1622 } 1623 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1624 #endif 1625 1626 #ifdef CONFIG_PROC_FS 1627 1628 /*====================================================================*/ 1629 /* Support for /proc/mtd */ 1630 1631 static int mtd_proc_show(struct seq_file *m, void *v) 1632 { 1633 struct mtd_info *mtd; 1634 1635 seq_puts(m, "dev: size erasesize name\n"); 1636 mutex_lock(&mtd_table_mutex); 1637 mtd_for_each_device(mtd) { 1638 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1639 mtd->index, (unsigned long long)mtd->size, 1640 mtd->erasesize, mtd->name); 1641 } 1642 mutex_unlock(&mtd_table_mutex); 1643 return 0; 1644 } 1645 1646 static int mtd_proc_open(struct inode *inode, struct file *file) 1647 { 1648 return single_open(file, mtd_proc_show, NULL); 1649 } 1650 1651 static const struct file_operations mtd_proc_ops = { 1652 .open = mtd_proc_open, 1653 .read = seq_read, 1654 .llseek = seq_lseek, 1655 .release = single_release, 1656 }; 1657 #endif /* CONFIG_PROC_FS */ 1658 1659 /*====================================================================*/ 1660 /* Init code */ 1661 1662 #ifndef __UBOOT__ 1663 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1664 { 1665 int ret; 1666 1667 ret = bdi_init(bdi); 1668 if (!ret) 1669 ret = bdi_register(bdi, NULL, "%s", name); 1670 1671 if (ret) 1672 bdi_destroy(bdi); 1673 1674 return ret; 1675 } 1676 1677 static struct proc_dir_entry *proc_mtd; 1678 1679 static int __init init_mtd(void) 1680 { 1681 int ret; 1682 1683 ret = class_register(&mtd_class); 1684 if (ret) 1685 goto err_reg; 1686 1687 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap"); 1688 if (ret) 1689 goto err_bdi1; 1690 1691 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap"); 1692 if (ret) 1693 goto err_bdi2; 1694 1695 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap"); 1696 if (ret) 1697 goto err_bdi3; 1698 1699 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1700 1701 ret = init_mtdchar(); 1702 if (ret) 1703 goto out_procfs; 1704 1705 return 0; 1706 1707 out_procfs: 1708 if (proc_mtd) 1709 remove_proc_entry("mtd", NULL); 1710 err_bdi3: 1711 bdi_destroy(&mtd_bdi_ro_mappable); 1712 err_bdi2: 1713 bdi_destroy(&mtd_bdi_unmappable); 1714 err_bdi1: 1715 class_unregister(&mtd_class); 1716 err_reg: 1717 pr_err("Error registering mtd class or bdi: %d\n", ret); 1718 return ret; 1719 } 1720 1721 static void __exit cleanup_mtd(void) 1722 { 1723 cleanup_mtdchar(); 1724 if (proc_mtd) 1725 remove_proc_entry("mtd", NULL); 1726 class_unregister(&mtd_class); 1727 bdi_destroy(&mtd_bdi_unmappable); 1728 bdi_destroy(&mtd_bdi_ro_mappable); 1729 bdi_destroy(&mtd_bdi_rw_mappable); 1730 } 1731 1732 module_init(init_mtd); 1733 module_exit(cleanup_mtd); 1734 #endif 1735 1736 MODULE_LICENSE("GPL"); 1737 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1738 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1739