xref: /openbmc/u-boot/drivers/mtd/mtdcore.c (revision 6ae3900a)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  *
10  */
11 
12 #ifndef __UBOOT__
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/ptrace.h>
16 #include <linux/seq_file.h>
17 #include <linux/string.h>
18 #include <linux/timer.h>
19 #include <linux/major.h>
20 #include <linux/fs.h>
21 #include <linux/err.h>
22 #include <linux/ioctl.h>
23 #include <linux/init.h>
24 #include <linux/proc_fs.h>
25 #include <linux/idr.h>
26 #include <linux/backing-dev.h>
27 #include <linux/gfp.h>
28 #include <linux/slab.h>
29 #else
30 #include <linux/err.h>
31 #include <ubi_uboot.h>
32 #endif
33 
34 #include <linux/log2.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/partitions.h>
37 
38 #include "mtdcore.h"
39 
40 #ifndef __UBOOT__
41 /*
42  * backing device capabilities for non-mappable devices (such as NAND flash)
43  * - permits private mappings, copies are taken of the data
44  */
45 static struct backing_dev_info mtd_bdi_unmappable = {
46 	.capabilities	= BDI_CAP_MAP_COPY,
47 };
48 
49 /*
50  * backing device capabilities for R/O mappable devices (such as ROM)
51  * - permits private mappings, copies are taken of the data
52  * - permits non-writable shared mappings
53  */
54 static struct backing_dev_info mtd_bdi_ro_mappable = {
55 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
56 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
57 };
58 
59 /*
60  * backing device capabilities for writable mappable devices (such as RAM)
61  * - permits private mappings, copies are taken of the data
62  * - permits non-writable shared mappings
63  */
64 static struct backing_dev_info mtd_bdi_rw_mappable = {
65 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
66 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
67 			   BDI_CAP_WRITE_MAP),
68 };
69 
70 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
71 static int mtd_cls_resume(struct device *dev);
72 
73 static struct class mtd_class = {
74 	.name = "mtd",
75 	.owner = THIS_MODULE,
76 	.suspend = mtd_cls_suspend,
77 	.resume = mtd_cls_resume,
78 };
79 #else
80 struct mtd_info *mtd_table[MAX_MTD_DEVICES];
81 
82 #define MAX_IDR_ID	64
83 
84 struct idr_layer {
85 	int	used;
86 	void	*ptr;
87 };
88 
89 struct idr {
90 	struct idr_layer id[MAX_IDR_ID];
91 };
92 
93 #define DEFINE_IDR(name)	struct idr name;
94 
95 void idr_remove(struct idr *idp, int id)
96 {
97 	if (idp->id[id].used)
98 		idp->id[id].used = 0;
99 
100 	return;
101 }
102 void *idr_find(struct idr *idp, int id)
103 {
104 	if (idp->id[id].used)
105 		return idp->id[id].ptr;
106 
107 	return NULL;
108 }
109 
110 void *idr_get_next(struct idr *idp, int *next)
111 {
112 	void *ret;
113 	int id = *next;
114 
115 	ret = idr_find(idp, id);
116 	if (ret) {
117 		id ++;
118 		if (!idp->id[id].used)
119 			id = 0;
120 		*next = id;
121 	} else {
122 		*next = 0;
123 	}
124 
125 	return ret;
126 }
127 
128 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
129 {
130 	struct idr_layer *idl;
131 	int i = 0;
132 
133 	while (i < MAX_IDR_ID) {
134 		idl = &idp->id[i];
135 		if (idl->used == 0) {
136 			idl->used = 1;
137 			idl->ptr = ptr;
138 			return i;
139 		}
140 		i++;
141 	}
142 	return -ENOSPC;
143 }
144 #endif
145 
146 static DEFINE_IDR(mtd_idr);
147 
148 /* These are exported solely for the purpose of mtd_blkdevs.c. You
149    should not use them for _anything_ else */
150 DEFINE_MUTEX(mtd_table_mutex);
151 EXPORT_SYMBOL_GPL(mtd_table_mutex);
152 
153 struct mtd_info *__mtd_next_device(int i)
154 {
155 	return idr_get_next(&mtd_idr, &i);
156 }
157 EXPORT_SYMBOL_GPL(__mtd_next_device);
158 
159 #ifndef __UBOOT__
160 static LIST_HEAD(mtd_notifiers);
161 
162 
163 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
164 
165 /* REVISIT once MTD uses the driver model better, whoever allocates
166  * the mtd_info will probably want to use the release() hook...
167  */
168 static void mtd_release(struct device *dev)
169 {
170 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
171 	dev_t index = MTD_DEVT(mtd->index);
172 
173 	/* remove /dev/mtdXro node if needed */
174 	if (index)
175 		device_destroy(&mtd_class, index + 1);
176 }
177 
178 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
179 {
180 	struct mtd_info *mtd = dev_get_drvdata(dev);
181 
182 	return mtd ? mtd_suspend(mtd) : 0;
183 }
184 
185 static int mtd_cls_resume(struct device *dev)
186 {
187 	struct mtd_info *mtd = dev_get_drvdata(dev);
188 
189 	if (mtd)
190 		mtd_resume(mtd);
191 	return 0;
192 }
193 
194 static ssize_t mtd_type_show(struct device *dev,
195 		struct device_attribute *attr, char *buf)
196 {
197 	struct mtd_info *mtd = dev_get_drvdata(dev);
198 	char *type;
199 
200 	switch (mtd->type) {
201 	case MTD_ABSENT:
202 		type = "absent";
203 		break;
204 	case MTD_RAM:
205 		type = "ram";
206 		break;
207 	case MTD_ROM:
208 		type = "rom";
209 		break;
210 	case MTD_NORFLASH:
211 		type = "nor";
212 		break;
213 	case MTD_NANDFLASH:
214 		type = "nand";
215 		break;
216 	case MTD_DATAFLASH:
217 		type = "dataflash";
218 		break;
219 	case MTD_UBIVOLUME:
220 		type = "ubi";
221 		break;
222 	case MTD_MLCNANDFLASH:
223 		type = "mlc-nand";
224 		break;
225 	default:
226 		type = "unknown";
227 	}
228 
229 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
230 }
231 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
232 
233 static ssize_t mtd_flags_show(struct device *dev,
234 		struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
239 
240 }
241 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
242 
243 static ssize_t mtd_size_show(struct device *dev,
244 		struct device_attribute *attr, char *buf)
245 {
246 	struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248 	return snprintf(buf, PAGE_SIZE, "%llu\n",
249 		(unsigned long long)mtd->size);
250 
251 }
252 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
253 
254 static ssize_t mtd_erasesize_show(struct device *dev,
255 		struct device_attribute *attr, char *buf)
256 {
257 	struct mtd_info *mtd = dev_get_drvdata(dev);
258 
259 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
260 
261 }
262 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
263 
264 static ssize_t mtd_writesize_show(struct device *dev,
265 		struct device_attribute *attr, char *buf)
266 {
267 	struct mtd_info *mtd = dev_get_drvdata(dev);
268 
269 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
270 
271 }
272 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
273 
274 static ssize_t mtd_subpagesize_show(struct device *dev,
275 		struct device_attribute *attr, char *buf)
276 {
277 	struct mtd_info *mtd = dev_get_drvdata(dev);
278 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
279 
280 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
281 
282 }
283 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
284 
285 static ssize_t mtd_oobsize_show(struct device *dev,
286 		struct device_attribute *attr, char *buf)
287 {
288 	struct mtd_info *mtd = dev_get_drvdata(dev);
289 
290 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
291 
292 }
293 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
294 
295 static ssize_t mtd_numeraseregions_show(struct device *dev,
296 		struct device_attribute *attr, char *buf)
297 {
298 	struct mtd_info *mtd = dev_get_drvdata(dev);
299 
300 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
301 
302 }
303 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
304 	NULL);
305 
306 static ssize_t mtd_name_show(struct device *dev,
307 		struct device_attribute *attr, char *buf)
308 {
309 	struct mtd_info *mtd = dev_get_drvdata(dev);
310 
311 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
312 
313 }
314 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
315 
316 static ssize_t mtd_ecc_strength_show(struct device *dev,
317 				     struct device_attribute *attr, char *buf)
318 {
319 	struct mtd_info *mtd = dev_get_drvdata(dev);
320 
321 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
322 }
323 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
324 
325 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
326 					  struct device_attribute *attr,
327 					  char *buf)
328 {
329 	struct mtd_info *mtd = dev_get_drvdata(dev);
330 
331 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
332 }
333 
334 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
335 					   struct device_attribute *attr,
336 					   const char *buf, size_t count)
337 {
338 	struct mtd_info *mtd = dev_get_drvdata(dev);
339 	unsigned int bitflip_threshold;
340 	int retval;
341 
342 	retval = kstrtouint(buf, 0, &bitflip_threshold);
343 	if (retval)
344 		return retval;
345 
346 	mtd->bitflip_threshold = bitflip_threshold;
347 	return count;
348 }
349 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
350 		   mtd_bitflip_threshold_show,
351 		   mtd_bitflip_threshold_store);
352 
353 static ssize_t mtd_ecc_step_size_show(struct device *dev,
354 		struct device_attribute *attr, char *buf)
355 {
356 	struct mtd_info *mtd = dev_get_drvdata(dev);
357 
358 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
359 
360 }
361 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
362 
363 static struct attribute *mtd_attrs[] = {
364 	&dev_attr_type.attr,
365 	&dev_attr_flags.attr,
366 	&dev_attr_size.attr,
367 	&dev_attr_erasesize.attr,
368 	&dev_attr_writesize.attr,
369 	&dev_attr_subpagesize.attr,
370 	&dev_attr_oobsize.attr,
371 	&dev_attr_numeraseregions.attr,
372 	&dev_attr_name.attr,
373 	&dev_attr_ecc_strength.attr,
374 	&dev_attr_ecc_step_size.attr,
375 	&dev_attr_bitflip_threshold.attr,
376 	NULL,
377 };
378 ATTRIBUTE_GROUPS(mtd);
379 
380 static struct device_type mtd_devtype = {
381 	.name		= "mtd",
382 	.groups		= mtd_groups,
383 	.release	= mtd_release,
384 };
385 #endif
386 
387 /**
388  *	add_mtd_device - register an MTD device
389  *	@mtd: pointer to new MTD device info structure
390  *
391  *	Add a device to the list of MTD devices present in the system, and
392  *	notify each currently active MTD 'user' of its arrival. Returns
393  *	zero on success or 1 on failure, which currently will only happen
394  *	if there is insufficient memory or a sysfs error.
395  */
396 
397 int add_mtd_device(struct mtd_info *mtd)
398 {
399 #ifndef __UBOOT__
400 	struct mtd_notifier *not;
401 #endif
402 	int i, error;
403 
404 #ifndef __UBOOT__
405 	if (!mtd->backing_dev_info) {
406 		switch (mtd->type) {
407 		case MTD_RAM:
408 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
409 			break;
410 		case MTD_ROM:
411 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
412 			break;
413 		default:
414 			mtd->backing_dev_info = &mtd_bdi_unmappable;
415 			break;
416 		}
417 	}
418 #endif
419 
420 	BUG_ON(mtd->writesize == 0);
421 	mutex_lock(&mtd_table_mutex);
422 
423 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
424 	if (i < 0)
425 		goto fail_locked;
426 
427 	mtd->index = i;
428 	mtd->usecount = 0;
429 
430 	/* default value if not set by driver */
431 	if (mtd->bitflip_threshold == 0)
432 		mtd->bitflip_threshold = mtd->ecc_strength;
433 
434 	if (is_power_of_2(mtd->erasesize))
435 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
436 	else
437 		mtd->erasesize_shift = 0;
438 
439 	if (is_power_of_2(mtd->writesize))
440 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
441 	else
442 		mtd->writesize_shift = 0;
443 
444 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
445 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
446 
447 	/* Some chips always power up locked. Unlock them now */
448 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
449 		error = mtd_unlock(mtd, 0, mtd->size);
450 		if (error && error != -EOPNOTSUPP)
451 			printk(KERN_WARNING
452 			       "%s: unlock failed, writes may not work\n",
453 			       mtd->name);
454 	}
455 
456 #ifndef __UBOOT__
457 	/* Caller should have set dev.parent to match the
458 	 * physical device.
459 	 */
460 	mtd->dev.type = &mtd_devtype;
461 	mtd->dev.class = &mtd_class;
462 	mtd->dev.devt = MTD_DEVT(i);
463 	dev_set_name(&mtd->dev, "mtd%d", i);
464 	dev_set_drvdata(&mtd->dev, mtd);
465 	if (device_register(&mtd->dev) != 0)
466 		goto fail_added;
467 
468 	if (MTD_DEVT(i))
469 		device_create(&mtd_class, mtd->dev.parent,
470 			      MTD_DEVT(i) + 1,
471 			      NULL, "mtd%dro", i);
472 
473 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
474 	/* No need to get a refcount on the module containing
475 	   the notifier, since we hold the mtd_table_mutex */
476 	list_for_each_entry(not, &mtd_notifiers, list)
477 		not->add(mtd);
478 #else
479 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
480 #endif
481 
482 	mutex_unlock(&mtd_table_mutex);
483 	/* We _know_ we aren't being removed, because
484 	   our caller is still holding us here. So none
485 	   of this try_ nonsense, and no bitching about it
486 	   either. :) */
487 	__module_get(THIS_MODULE);
488 	return 0;
489 
490 #ifndef __UBOOT__
491 fail_added:
492 	idr_remove(&mtd_idr, i);
493 #endif
494 fail_locked:
495 	mutex_unlock(&mtd_table_mutex);
496 	return 1;
497 }
498 
499 /**
500  *	del_mtd_device - unregister an MTD device
501  *	@mtd: pointer to MTD device info structure
502  *
503  *	Remove a device from the list of MTD devices present in the system,
504  *	and notify each currently active MTD 'user' of its departure.
505  *	Returns zero on success or 1 on failure, which currently will happen
506  *	if the requested device does not appear to be present in the list.
507  */
508 
509 int del_mtd_device(struct mtd_info *mtd)
510 {
511 	int ret;
512 #ifndef __UBOOT__
513 	struct mtd_notifier *not;
514 #endif
515 
516 	mutex_lock(&mtd_table_mutex);
517 
518 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
519 		ret = -ENODEV;
520 		goto out_error;
521 	}
522 
523 #ifndef __UBOOT__
524 	/* No need to get a refcount on the module containing
525 		the notifier, since we hold the mtd_table_mutex */
526 	list_for_each_entry(not, &mtd_notifiers, list)
527 		not->remove(mtd);
528 #endif
529 
530 	if (mtd->usecount) {
531 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
532 		       mtd->index, mtd->name, mtd->usecount);
533 		ret = -EBUSY;
534 	} else {
535 #ifndef __UBOOT__
536 		device_unregister(&mtd->dev);
537 #endif
538 
539 		idr_remove(&mtd_idr, mtd->index);
540 
541 		module_put(THIS_MODULE);
542 		ret = 0;
543 	}
544 
545 out_error:
546 	mutex_unlock(&mtd_table_mutex);
547 	return ret;
548 }
549 
550 #ifndef __UBOOT__
551 /**
552  * mtd_device_parse_register - parse partitions and register an MTD device.
553  *
554  * @mtd: the MTD device to register
555  * @types: the list of MTD partition probes to try, see
556  *         'parse_mtd_partitions()' for more information
557  * @parser_data: MTD partition parser-specific data
558  * @parts: fallback partition information to register, if parsing fails;
559  *         only valid if %nr_parts > %0
560  * @nr_parts: the number of partitions in parts, if zero then the full
561  *            MTD device is registered if no partition info is found
562  *
563  * This function aggregates MTD partitions parsing (done by
564  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
565  * basically follows the most common pattern found in many MTD drivers:
566  *
567  * * It first tries to probe partitions on MTD device @mtd using parsers
568  *   specified in @types (if @types is %NULL, then the default list of parsers
569  *   is used, see 'parse_mtd_partitions()' for more information). If none are
570  *   found this functions tries to fallback to information specified in
571  *   @parts/@nr_parts.
572  * * If any partitioning info was found, this function registers the found
573  *   partitions.
574  * * If no partitions were found this function just registers the MTD device
575  *   @mtd and exits.
576  *
577  * Returns zero in case of success and a negative error code in case of failure.
578  */
579 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
580 			      struct mtd_part_parser_data *parser_data,
581 			      const struct mtd_partition *parts,
582 			      int nr_parts)
583 {
584 	int err;
585 	struct mtd_partition *real_parts;
586 
587 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
588 	if (err <= 0 && nr_parts && parts) {
589 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
590 				     GFP_KERNEL);
591 		if (!real_parts)
592 			err = -ENOMEM;
593 		else
594 			err = nr_parts;
595 	}
596 
597 	if (err > 0) {
598 		err = add_mtd_partitions(mtd, real_parts, err);
599 		kfree(real_parts);
600 	} else if (err == 0) {
601 		err = add_mtd_device(mtd);
602 		if (err == 1)
603 			err = -ENODEV;
604 	}
605 
606 	return err;
607 }
608 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
609 
610 /**
611  * mtd_device_unregister - unregister an existing MTD device.
612  *
613  * @master: the MTD device to unregister.  This will unregister both the master
614  *          and any partitions if registered.
615  */
616 int mtd_device_unregister(struct mtd_info *master)
617 {
618 	int err;
619 
620 	err = del_mtd_partitions(master);
621 	if (err)
622 		return err;
623 
624 	if (!device_is_registered(&master->dev))
625 		return 0;
626 
627 	return del_mtd_device(master);
628 }
629 EXPORT_SYMBOL_GPL(mtd_device_unregister);
630 
631 /**
632  *	register_mtd_user - register a 'user' of MTD devices.
633  *	@new: pointer to notifier info structure
634  *
635  *	Registers a pair of callbacks function to be called upon addition
636  *	or removal of MTD devices. Causes the 'add' callback to be immediately
637  *	invoked for each MTD device currently present in the system.
638  */
639 void register_mtd_user (struct mtd_notifier *new)
640 {
641 	struct mtd_info *mtd;
642 
643 	mutex_lock(&mtd_table_mutex);
644 
645 	list_add(&new->list, &mtd_notifiers);
646 
647 	__module_get(THIS_MODULE);
648 
649 	mtd_for_each_device(mtd)
650 		new->add(mtd);
651 
652 	mutex_unlock(&mtd_table_mutex);
653 }
654 EXPORT_SYMBOL_GPL(register_mtd_user);
655 
656 /**
657  *	unregister_mtd_user - unregister a 'user' of MTD devices.
658  *	@old: pointer to notifier info structure
659  *
660  *	Removes a callback function pair from the list of 'users' to be
661  *	notified upon addition or removal of MTD devices. Causes the
662  *	'remove' callback to be immediately invoked for each MTD device
663  *	currently present in the system.
664  */
665 int unregister_mtd_user (struct mtd_notifier *old)
666 {
667 	struct mtd_info *mtd;
668 
669 	mutex_lock(&mtd_table_mutex);
670 
671 	module_put(THIS_MODULE);
672 
673 	mtd_for_each_device(mtd)
674 		old->remove(mtd);
675 
676 	list_del(&old->list);
677 	mutex_unlock(&mtd_table_mutex);
678 	return 0;
679 }
680 EXPORT_SYMBOL_GPL(unregister_mtd_user);
681 #endif
682 
683 /**
684  *	get_mtd_device - obtain a validated handle for an MTD device
685  *	@mtd: last known address of the required MTD device
686  *	@num: internal device number of the required MTD device
687  *
688  *	Given a number and NULL address, return the num'th entry in the device
689  *	table, if any.	Given an address and num == -1, search the device table
690  *	for a device with that address and return if it's still present. Given
691  *	both, return the num'th driver only if its address matches. Return
692  *	error code if not.
693  */
694 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
695 {
696 	struct mtd_info *ret = NULL, *other;
697 	int err = -ENODEV;
698 
699 	mutex_lock(&mtd_table_mutex);
700 
701 	if (num == -1) {
702 		mtd_for_each_device(other) {
703 			if (other == mtd) {
704 				ret = mtd;
705 				break;
706 			}
707 		}
708 	} else if (num >= 0) {
709 		ret = idr_find(&mtd_idr, num);
710 		if (mtd && mtd != ret)
711 			ret = NULL;
712 	}
713 
714 	if (!ret) {
715 		ret = ERR_PTR(err);
716 		goto out;
717 	}
718 
719 	err = __get_mtd_device(ret);
720 	if (err)
721 		ret = ERR_PTR(err);
722 out:
723 	mutex_unlock(&mtd_table_mutex);
724 	return ret;
725 }
726 EXPORT_SYMBOL_GPL(get_mtd_device);
727 
728 
729 int __get_mtd_device(struct mtd_info *mtd)
730 {
731 	int err;
732 
733 	if (!try_module_get(mtd->owner))
734 		return -ENODEV;
735 
736 	if (mtd->_get_device) {
737 		err = mtd->_get_device(mtd);
738 
739 		if (err) {
740 			module_put(mtd->owner);
741 			return err;
742 		}
743 	}
744 	mtd->usecount++;
745 	return 0;
746 }
747 EXPORT_SYMBOL_GPL(__get_mtd_device);
748 
749 /**
750  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
751  *	device name
752  *	@name: MTD device name to open
753  *
754  * 	This function returns MTD device description structure in case of
755  * 	success and an error code in case of failure.
756  */
757 struct mtd_info *get_mtd_device_nm(const char *name)
758 {
759 	int err = -ENODEV;
760 	struct mtd_info *mtd = NULL, *other;
761 
762 	mutex_lock(&mtd_table_mutex);
763 
764 	mtd_for_each_device(other) {
765 		if (!strcmp(name, other->name)) {
766 			mtd = other;
767 			break;
768 		}
769 	}
770 
771 	if (!mtd)
772 		goto out_unlock;
773 
774 	err = __get_mtd_device(mtd);
775 	if (err)
776 		goto out_unlock;
777 
778 	mutex_unlock(&mtd_table_mutex);
779 	return mtd;
780 
781 out_unlock:
782 	mutex_unlock(&mtd_table_mutex);
783 	return ERR_PTR(err);
784 }
785 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
786 
787 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
788 /**
789  * mtd_get_len_incl_bad
790  *
791  * Check if length including bad blocks fits into device.
792  *
793  * @param mtd an MTD device
794  * @param offset offset in flash
795  * @param length image length
796  * @return image length including bad blocks in *len_incl_bad and whether or not
797  *         the length returned was truncated in *truncated
798  */
799 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
800 			  const uint64_t length, uint64_t *len_incl_bad,
801 			  int *truncated)
802 {
803 	*truncated = 0;
804 	*len_incl_bad = 0;
805 
806 	if (!mtd->_block_isbad) {
807 		*len_incl_bad = length;
808 		return;
809 	}
810 
811 	uint64_t len_excl_bad = 0;
812 	uint64_t block_len;
813 
814 	while (len_excl_bad < length) {
815 		if (offset >= mtd->size) {
816 			*truncated = 1;
817 			return;
818 		}
819 
820 		block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
821 
822 		if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
823 			len_excl_bad += block_len;
824 
825 		*len_incl_bad += block_len;
826 		offset       += block_len;
827 	}
828 }
829 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
830 
831 void put_mtd_device(struct mtd_info *mtd)
832 {
833 	mutex_lock(&mtd_table_mutex);
834 	__put_mtd_device(mtd);
835 	mutex_unlock(&mtd_table_mutex);
836 
837 }
838 EXPORT_SYMBOL_GPL(put_mtd_device);
839 
840 void __put_mtd_device(struct mtd_info *mtd)
841 {
842 	--mtd->usecount;
843 	BUG_ON(mtd->usecount < 0);
844 
845 	if (mtd->_put_device)
846 		mtd->_put_device(mtd);
847 
848 	module_put(mtd->owner);
849 }
850 EXPORT_SYMBOL_GPL(__put_mtd_device);
851 
852 /*
853  * Erase is an asynchronous operation.  Device drivers are supposed
854  * to call instr->callback() whenever the operation completes, even
855  * if it completes with a failure.
856  * Callers are supposed to pass a callback function and wait for it
857  * to be called before writing to the block.
858  */
859 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
860 {
861 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
862 		return -EINVAL;
863 	if (!(mtd->flags & MTD_WRITEABLE))
864 		return -EROFS;
865 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
866 	if (!instr->len) {
867 		instr->state = MTD_ERASE_DONE;
868 		mtd_erase_callback(instr);
869 		return 0;
870 	}
871 	return mtd->_erase(mtd, instr);
872 }
873 EXPORT_SYMBOL_GPL(mtd_erase);
874 
875 #ifndef __UBOOT__
876 /*
877  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
878  */
879 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
880 	      void **virt, resource_size_t *phys)
881 {
882 	*retlen = 0;
883 	*virt = NULL;
884 	if (phys)
885 		*phys = 0;
886 	if (!mtd->_point)
887 		return -EOPNOTSUPP;
888 	if (from < 0 || from > mtd->size || len > mtd->size - from)
889 		return -EINVAL;
890 	if (!len)
891 		return 0;
892 	return mtd->_point(mtd, from, len, retlen, virt, phys);
893 }
894 EXPORT_SYMBOL_GPL(mtd_point);
895 
896 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
897 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
898 {
899 	if (!mtd->_point)
900 		return -EOPNOTSUPP;
901 	if (from < 0 || from > mtd->size || len > mtd->size - from)
902 		return -EINVAL;
903 	if (!len)
904 		return 0;
905 	return mtd->_unpoint(mtd, from, len);
906 }
907 EXPORT_SYMBOL_GPL(mtd_unpoint);
908 #endif
909 
910 /*
911  * Allow NOMMU mmap() to directly map the device (if not NULL)
912  * - return the address to which the offset maps
913  * - return -ENOSYS to indicate refusal to do the mapping
914  */
915 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
916 				    unsigned long offset, unsigned long flags)
917 {
918 	if (!mtd->_get_unmapped_area)
919 		return -EOPNOTSUPP;
920 	if (offset > mtd->size || len > mtd->size - offset)
921 		return -EINVAL;
922 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
923 }
924 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
925 
926 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
927 	     u_char *buf)
928 {
929 	int ret_code;
930 	*retlen = 0;
931 	if (from < 0 || from > mtd->size || len > mtd->size - from)
932 		return -EINVAL;
933 	if (!len)
934 		return 0;
935 
936 	/*
937 	 * In the absence of an error, drivers return a non-negative integer
938 	 * representing the maximum number of bitflips that were corrected on
939 	 * any one ecc region (if applicable; zero otherwise).
940 	 */
941 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
942 	if (unlikely(ret_code < 0))
943 		return ret_code;
944 	if (mtd->ecc_strength == 0)
945 		return 0;	/* device lacks ecc */
946 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
947 }
948 EXPORT_SYMBOL_GPL(mtd_read);
949 
950 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
951 	      const u_char *buf)
952 {
953 	*retlen = 0;
954 	if (to < 0 || to > mtd->size || len > mtd->size - to)
955 		return -EINVAL;
956 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
957 		return -EROFS;
958 	if (!len)
959 		return 0;
960 	return mtd->_write(mtd, to, len, retlen, buf);
961 }
962 EXPORT_SYMBOL_GPL(mtd_write);
963 
964 /*
965  * In blackbox flight recorder like scenarios we want to make successful writes
966  * in interrupt context. panic_write() is only intended to be called when its
967  * known the kernel is about to panic and we need the write to succeed. Since
968  * the kernel is not going to be running for much longer, this function can
969  * break locks and delay to ensure the write succeeds (but not sleep).
970  */
971 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
972 		    const u_char *buf)
973 {
974 	*retlen = 0;
975 	if (!mtd->_panic_write)
976 		return -EOPNOTSUPP;
977 	if (to < 0 || to > mtd->size || len > mtd->size - to)
978 		return -EINVAL;
979 	if (!(mtd->flags & MTD_WRITEABLE))
980 		return -EROFS;
981 	if (!len)
982 		return 0;
983 	return mtd->_panic_write(mtd, to, len, retlen, buf);
984 }
985 EXPORT_SYMBOL_GPL(mtd_panic_write);
986 
987 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
988 {
989 	int ret_code;
990 	ops->retlen = ops->oobretlen = 0;
991 	if (!mtd->_read_oob)
992 		return -EOPNOTSUPP;
993 	/*
994 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
995 	 * similar to mtd->_read(), returning a non-negative integer
996 	 * representing max bitflips. In other cases, mtd->_read_oob() may
997 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
998 	 */
999 	ret_code = mtd->_read_oob(mtd, from, ops);
1000 	if (unlikely(ret_code < 0))
1001 		return ret_code;
1002 	if (mtd->ecc_strength == 0)
1003 		return 0;	/* device lacks ecc */
1004 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1005 }
1006 EXPORT_SYMBOL_GPL(mtd_read_oob);
1007 
1008 /**
1009  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1010  * @mtd: MTD device structure
1011  * @section: ECC section. Depending on the layout you may have all the ECC
1012  *	     bytes stored in a single contiguous section, or one section
1013  *	     per ECC chunk (and sometime several sections for a single ECC
1014  *	     ECC chunk)
1015  * @oobecc: OOB region struct filled with the appropriate ECC position
1016  *	    information
1017  *
1018  * This function returns ECC section information in the OOB area. If you want
1019  * to get all the ECC bytes information, then you should call
1020  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1021  *
1022  * Returns zero on success, a negative error code otherwise.
1023  */
1024 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1025 		      struct mtd_oob_region *oobecc)
1026 {
1027 	memset(oobecc, 0, sizeof(*oobecc));
1028 
1029 	if (!mtd || section < 0)
1030 		return -EINVAL;
1031 
1032 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1033 		return -ENOTSUPP;
1034 
1035 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1036 }
1037 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1038 
1039 /**
1040  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1041  *			section
1042  * @mtd: MTD device structure
1043  * @section: Free section you are interested in. Depending on the layout
1044  *	     you may have all the free bytes stored in a single contiguous
1045  *	     section, or one section per ECC chunk plus an extra section
1046  *	     for the remaining bytes (or other funky layout).
1047  * @oobfree: OOB region struct filled with the appropriate free position
1048  *	     information
1049  *
1050  * This function returns free bytes position in the OOB area. If you want
1051  * to get all the free bytes information, then you should call
1052  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1053  *
1054  * Returns zero on success, a negative error code otherwise.
1055  */
1056 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1057 		       struct mtd_oob_region *oobfree)
1058 {
1059 	memset(oobfree, 0, sizeof(*oobfree));
1060 
1061 	if (!mtd || section < 0)
1062 		return -EINVAL;
1063 
1064 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1065 		return -ENOTSUPP;
1066 
1067 	return mtd->ooblayout->free(mtd, section, oobfree);
1068 }
1069 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1070 
1071 /**
1072  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1073  * @mtd: mtd info structure
1074  * @byte: the byte we are searching for
1075  * @sectionp: pointer where the section id will be stored
1076  * @oobregion: used to retrieve the ECC position
1077  * @iter: iterator function. Should be either mtd_ooblayout_free or
1078  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1079  *
1080  * This function returns the section id and oobregion information of a
1081  * specific byte. For example, say you want to know where the 4th ECC byte is
1082  * stored, you'll use:
1083  *
1084  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1085  *
1086  * Returns zero on success, a negative error code otherwise.
1087  */
1088 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1089 				int *sectionp, struct mtd_oob_region *oobregion,
1090 				int (*iter)(struct mtd_info *,
1091 					    int section,
1092 					    struct mtd_oob_region *oobregion))
1093 {
1094 	int pos = 0, ret, section = 0;
1095 
1096 	memset(oobregion, 0, sizeof(*oobregion));
1097 
1098 	while (1) {
1099 		ret = iter(mtd, section, oobregion);
1100 		if (ret)
1101 			return ret;
1102 
1103 		if (pos + oobregion->length > byte)
1104 			break;
1105 
1106 		pos += oobregion->length;
1107 		section++;
1108 	}
1109 
1110 	/*
1111 	 * Adjust region info to make it start at the beginning at the
1112 	 * 'start' ECC byte.
1113 	 */
1114 	oobregion->offset += byte - pos;
1115 	oobregion->length -= byte - pos;
1116 	*sectionp = section;
1117 
1118 	return 0;
1119 }
1120 
1121 /**
1122  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1123  *				  ECC byte
1124  * @mtd: mtd info structure
1125  * @eccbyte: the byte we are searching for
1126  * @sectionp: pointer where the section id will be stored
1127  * @oobregion: OOB region information
1128  *
1129  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1130  * byte.
1131  *
1132  * Returns zero on success, a negative error code otherwise.
1133  */
1134 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1135 				 int *section,
1136 				 struct mtd_oob_region *oobregion)
1137 {
1138 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1139 					 mtd_ooblayout_ecc);
1140 }
1141 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1142 
1143 /**
1144  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1145  * @mtd: mtd info structure
1146  * @buf: destination buffer to store OOB bytes
1147  * @oobbuf: OOB buffer
1148  * @start: first byte to retrieve
1149  * @nbytes: number of bytes to retrieve
1150  * @iter: section iterator
1151  *
1152  * Extract bytes attached to a specific category (ECC or free)
1153  * from the OOB buffer and copy them into buf.
1154  *
1155  * Returns zero on success, a negative error code otherwise.
1156  */
1157 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1158 				const u8 *oobbuf, int start, int nbytes,
1159 				int (*iter)(struct mtd_info *,
1160 					    int section,
1161 					    struct mtd_oob_region *oobregion))
1162 {
1163 	struct mtd_oob_region oobregion;
1164 	int section, ret;
1165 
1166 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1167 					&oobregion, iter);
1168 
1169 	while (!ret) {
1170 		int cnt;
1171 
1172 		cnt = min_t(int, nbytes, oobregion.length);
1173 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1174 		buf += cnt;
1175 		nbytes -= cnt;
1176 
1177 		if (!nbytes)
1178 			break;
1179 
1180 		ret = iter(mtd, ++section, &oobregion);
1181 	}
1182 
1183 	return ret;
1184 }
1185 
1186 /**
1187  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1188  * @mtd: mtd info structure
1189  * @buf: source buffer to get OOB bytes from
1190  * @oobbuf: OOB buffer
1191  * @start: first OOB byte to set
1192  * @nbytes: number of OOB bytes to set
1193  * @iter: section iterator
1194  *
1195  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1196  * is selected by passing the appropriate iterator.
1197  *
1198  * Returns zero on success, a negative error code otherwise.
1199  */
1200 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1201 				u8 *oobbuf, int start, int nbytes,
1202 				int (*iter)(struct mtd_info *,
1203 					    int section,
1204 					    struct mtd_oob_region *oobregion))
1205 {
1206 	struct mtd_oob_region oobregion;
1207 	int section, ret;
1208 
1209 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1210 					&oobregion, iter);
1211 
1212 	while (!ret) {
1213 		int cnt;
1214 
1215 		cnt = min_t(int, nbytes, oobregion.length);
1216 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1217 		buf += cnt;
1218 		nbytes -= cnt;
1219 
1220 		if (!nbytes)
1221 			break;
1222 
1223 		ret = iter(mtd, ++section, &oobregion);
1224 	}
1225 
1226 	return ret;
1227 }
1228 
1229 /**
1230  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1231  * @mtd: mtd info structure
1232  * @iter: category iterator
1233  *
1234  * Count the number of bytes in a given category.
1235  *
1236  * Returns a positive value on success, a negative error code otherwise.
1237  */
1238 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1239 				int (*iter)(struct mtd_info *,
1240 					    int section,
1241 					    struct mtd_oob_region *oobregion))
1242 {
1243 	struct mtd_oob_region oobregion;
1244 	int section = 0, ret, nbytes = 0;
1245 
1246 	while (1) {
1247 		ret = iter(mtd, section++, &oobregion);
1248 		if (ret) {
1249 			if (ret == -ERANGE)
1250 				ret = nbytes;
1251 			break;
1252 		}
1253 
1254 		nbytes += oobregion.length;
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 /**
1261  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1262  * @mtd: mtd info structure
1263  * @eccbuf: destination buffer to store ECC bytes
1264  * @oobbuf: OOB buffer
1265  * @start: first ECC byte to retrieve
1266  * @nbytes: number of ECC bytes to retrieve
1267  *
1268  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1269  *
1270  * Returns zero on success, a negative error code otherwise.
1271  */
1272 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1273 			       const u8 *oobbuf, int start, int nbytes)
1274 {
1275 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1276 				       mtd_ooblayout_ecc);
1277 }
1278 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1279 
1280 /**
1281  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1282  * @mtd: mtd info structure
1283  * @eccbuf: source buffer to get ECC bytes from
1284  * @oobbuf: OOB buffer
1285  * @start: first ECC byte to set
1286  * @nbytes: number of ECC bytes to set
1287  *
1288  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1289  *
1290  * Returns zero on success, a negative error code otherwise.
1291  */
1292 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1293 			       u8 *oobbuf, int start, int nbytes)
1294 {
1295 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1296 				       mtd_ooblayout_ecc);
1297 }
1298 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1299 
1300 /**
1301  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1302  * @mtd: mtd info structure
1303  * @databuf: destination buffer to store ECC bytes
1304  * @oobbuf: OOB buffer
1305  * @start: first ECC byte to retrieve
1306  * @nbytes: number of ECC bytes to retrieve
1307  *
1308  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1309  *
1310  * Returns zero on success, a negative error code otherwise.
1311  */
1312 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1313 				const u8 *oobbuf, int start, int nbytes)
1314 {
1315 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1316 				       mtd_ooblayout_free);
1317 }
1318 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1319 
1320 /**
1321  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1322  * @mtd: mtd info structure
1323  * @eccbuf: source buffer to get data bytes from
1324  * @oobbuf: OOB buffer
1325  * @start: first ECC byte to set
1326  * @nbytes: number of ECC bytes to set
1327  *
1328  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1329  *
1330  * Returns zero on success, a negative error code otherwise.
1331  */
1332 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1333 				u8 *oobbuf, int start, int nbytes)
1334 {
1335 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1336 				       mtd_ooblayout_free);
1337 }
1338 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1339 
1340 /**
1341  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1342  * @mtd: mtd info structure
1343  *
1344  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1345  *
1346  * Returns zero on success, a negative error code otherwise.
1347  */
1348 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1349 {
1350 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1351 }
1352 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1353 
1354 /**
1355  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1356  * @mtd: mtd info structure
1357  *
1358  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1359  *
1360  * Returns zero on success, a negative error code otherwise.
1361  */
1362 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1363 {
1364 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1365 }
1366 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1367 
1368 /*
1369  * Method to access the protection register area, present in some flash
1370  * devices. The user data is one time programmable but the factory data is read
1371  * only.
1372  */
1373 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1374 			   struct otp_info *buf)
1375 {
1376 	if (!mtd->_get_fact_prot_info)
1377 		return -EOPNOTSUPP;
1378 	if (!len)
1379 		return 0;
1380 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1381 }
1382 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1383 
1384 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1385 			   size_t *retlen, u_char *buf)
1386 {
1387 	*retlen = 0;
1388 	if (!mtd->_read_fact_prot_reg)
1389 		return -EOPNOTSUPP;
1390 	if (!len)
1391 		return 0;
1392 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1393 }
1394 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1395 
1396 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1397 			   struct otp_info *buf)
1398 {
1399 	if (!mtd->_get_user_prot_info)
1400 		return -EOPNOTSUPP;
1401 	if (!len)
1402 		return 0;
1403 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1404 }
1405 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1406 
1407 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1408 			   size_t *retlen, u_char *buf)
1409 {
1410 	*retlen = 0;
1411 	if (!mtd->_read_user_prot_reg)
1412 		return -EOPNOTSUPP;
1413 	if (!len)
1414 		return 0;
1415 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1416 }
1417 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1418 
1419 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1420 			    size_t *retlen, u_char *buf)
1421 {
1422 	int ret;
1423 
1424 	*retlen = 0;
1425 	if (!mtd->_write_user_prot_reg)
1426 		return -EOPNOTSUPP;
1427 	if (!len)
1428 		return 0;
1429 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1430 	if (ret)
1431 		return ret;
1432 
1433 	/*
1434 	 * If no data could be written at all, we are out of memory and
1435 	 * must return -ENOSPC.
1436 	 */
1437 	return (*retlen) ? 0 : -ENOSPC;
1438 }
1439 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1440 
1441 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1442 {
1443 	if (!mtd->_lock_user_prot_reg)
1444 		return -EOPNOTSUPP;
1445 	if (!len)
1446 		return 0;
1447 	return mtd->_lock_user_prot_reg(mtd, from, len);
1448 }
1449 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1450 
1451 /* Chip-supported device locking */
1452 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1453 {
1454 	if (!mtd->_lock)
1455 		return -EOPNOTSUPP;
1456 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1457 		return -EINVAL;
1458 	if (!len)
1459 		return 0;
1460 	return mtd->_lock(mtd, ofs, len);
1461 }
1462 EXPORT_SYMBOL_GPL(mtd_lock);
1463 
1464 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1465 {
1466 	if (!mtd->_unlock)
1467 		return -EOPNOTSUPP;
1468 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1469 		return -EINVAL;
1470 	if (!len)
1471 		return 0;
1472 	return mtd->_unlock(mtd, ofs, len);
1473 }
1474 EXPORT_SYMBOL_GPL(mtd_unlock);
1475 
1476 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1477 {
1478 	if (!mtd->_is_locked)
1479 		return -EOPNOTSUPP;
1480 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1481 		return -EINVAL;
1482 	if (!len)
1483 		return 0;
1484 	return mtd->_is_locked(mtd, ofs, len);
1485 }
1486 EXPORT_SYMBOL_GPL(mtd_is_locked);
1487 
1488 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1489 {
1490 	if (ofs < 0 || ofs > mtd->size)
1491 		return -EINVAL;
1492 	if (!mtd->_block_isreserved)
1493 		return 0;
1494 	return mtd->_block_isreserved(mtd, ofs);
1495 }
1496 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1497 
1498 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1499 {
1500 	if (ofs < 0 || ofs > mtd->size)
1501 		return -EINVAL;
1502 	if (!mtd->_block_isbad)
1503 		return 0;
1504 	return mtd->_block_isbad(mtd, ofs);
1505 }
1506 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1507 
1508 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1509 {
1510 	if (!mtd->_block_markbad)
1511 		return -EOPNOTSUPP;
1512 	if (ofs < 0 || ofs > mtd->size)
1513 		return -EINVAL;
1514 	if (!(mtd->flags & MTD_WRITEABLE))
1515 		return -EROFS;
1516 	return mtd->_block_markbad(mtd, ofs);
1517 }
1518 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1519 
1520 #ifndef __UBOOT__
1521 /*
1522  * default_mtd_writev - the default writev method
1523  * @mtd: mtd device description object pointer
1524  * @vecs: the vectors to write
1525  * @count: count of vectors in @vecs
1526  * @to: the MTD device offset to write to
1527  * @retlen: on exit contains the count of bytes written to the MTD device.
1528  *
1529  * This function returns zero in case of success and a negative error code in
1530  * case of failure.
1531  */
1532 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1533 			      unsigned long count, loff_t to, size_t *retlen)
1534 {
1535 	unsigned long i;
1536 	size_t totlen = 0, thislen;
1537 	int ret = 0;
1538 
1539 	for (i = 0; i < count; i++) {
1540 		if (!vecs[i].iov_len)
1541 			continue;
1542 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1543 				vecs[i].iov_base);
1544 		totlen += thislen;
1545 		if (ret || thislen != vecs[i].iov_len)
1546 			break;
1547 		to += vecs[i].iov_len;
1548 	}
1549 	*retlen = totlen;
1550 	return ret;
1551 }
1552 
1553 /*
1554  * mtd_writev - the vector-based MTD write method
1555  * @mtd: mtd device description object pointer
1556  * @vecs: the vectors to write
1557  * @count: count of vectors in @vecs
1558  * @to: the MTD device offset to write to
1559  * @retlen: on exit contains the count of bytes written to the MTD device.
1560  *
1561  * This function returns zero in case of success and a negative error code in
1562  * case of failure.
1563  */
1564 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1565 	       unsigned long count, loff_t to, size_t *retlen)
1566 {
1567 	*retlen = 0;
1568 	if (!(mtd->flags & MTD_WRITEABLE))
1569 		return -EROFS;
1570 	if (!mtd->_writev)
1571 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1572 	return mtd->_writev(mtd, vecs, count, to, retlen);
1573 }
1574 EXPORT_SYMBOL_GPL(mtd_writev);
1575 
1576 /**
1577  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1578  * @mtd: mtd device description object pointer
1579  * @size: a pointer to the ideal or maximum size of the allocation, points
1580  *        to the actual allocation size on success.
1581  *
1582  * This routine attempts to allocate a contiguous kernel buffer up to
1583  * the specified size, backing off the size of the request exponentially
1584  * until the request succeeds or until the allocation size falls below
1585  * the system page size. This attempts to make sure it does not adversely
1586  * impact system performance, so when allocating more than one page, we
1587  * ask the memory allocator to avoid re-trying, swapping, writing back
1588  * or performing I/O.
1589  *
1590  * Note, this function also makes sure that the allocated buffer is aligned to
1591  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1592  *
1593  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1594  * to handle smaller (i.e. degraded) buffer allocations under low- or
1595  * fragmented-memory situations where such reduced allocations, from a
1596  * requested ideal, are allowed.
1597  *
1598  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1599  */
1600 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1601 {
1602 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1603 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1604 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1605 	void *kbuf;
1606 
1607 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1608 
1609 	while (*size > min_alloc) {
1610 		kbuf = kmalloc(*size, flags);
1611 		if (kbuf)
1612 			return kbuf;
1613 
1614 		*size >>= 1;
1615 		*size = ALIGN(*size, mtd->writesize);
1616 	}
1617 
1618 	/*
1619 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1620 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1621 	 */
1622 	return kmalloc(*size, GFP_KERNEL);
1623 }
1624 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1625 #endif
1626 
1627 #ifdef CONFIG_PROC_FS
1628 
1629 /*====================================================================*/
1630 /* Support for /proc/mtd */
1631 
1632 static int mtd_proc_show(struct seq_file *m, void *v)
1633 {
1634 	struct mtd_info *mtd;
1635 
1636 	seq_puts(m, "dev:    size   erasesize  name\n");
1637 	mutex_lock(&mtd_table_mutex);
1638 	mtd_for_each_device(mtd) {
1639 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1640 			   mtd->index, (unsigned long long)mtd->size,
1641 			   mtd->erasesize, mtd->name);
1642 	}
1643 	mutex_unlock(&mtd_table_mutex);
1644 	return 0;
1645 }
1646 
1647 static int mtd_proc_open(struct inode *inode, struct file *file)
1648 {
1649 	return single_open(file, mtd_proc_show, NULL);
1650 }
1651 
1652 static const struct file_operations mtd_proc_ops = {
1653 	.open		= mtd_proc_open,
1654 	.read		= seq_read,
1655 	.llseek		= seq_lseek,
1656 	.release	= single_release,
1657 };
1658 #endif /* CONFIG_PROC_FS */
1659 
1660 /*====================================================================*/
1661 /* Init code */
1662 
1663 #ifndef __UBOOT__
1664 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1665 {
1666 	int ret;
1667 
1668 	ret = bdi_init(bdi);
1669 	if (!ret)
1670 		ret = bdi_register(bdi, NULL, "%s", name);
1671 
1672 	if (ret)
1673 		bdi_destroy(bdi);
1674 
1675 	return ret;
1676 }
1677 
1678 static struct proc_dir_entry *proc_mtd;
1679 
1680 static int __init init_mtd(void)
1681 {
1682 	int ret;
1683 
1684 	ret = class_register(&mtd_class);
1685 	if (ret)
1686 		goto err_reg;
1687 
1688 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1689 	if (ret)
1690 		goto err_bdi1;
1691 
1692 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1693 	if (ret)
1694 		goto err_bdi2;
1695 
1696 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1697 	if (ret)
1698 		goto err_bdi3;
1699 
1700 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1701 
1702 	ret = init_mtdchar();
1703 	if (ret)
1704 		goto out_procfs;
1705 
1706 	return 0;
1707 
1708 out_procfs:
1709 	if (proc_mtd)
1710 		remove_proc_entry("mtd", NULL);
1711 err_bdi3:
1712 	bdi_destroy(&mtd_bdi_ro_mappable);
1713 err_bdi2:
1714 	bdi_destroy(&mtd_bdi_unmappable);
1715 err_bdi1:
1716 	class_unregister(&mtd_class);
1717 err_reg:
1718 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1719 	return ret;
1720 }
1721 
1722 static void __exit cleanup_mtd(void)
1723 {
1724 	cleanup_mtdchar();
1725 	if (proc_mtd)
1726 		remove_proc_entry("mtd", NULL);
1727 	class_unregister(&mtd_class);
1728 	bdi_destroy(&mtd_bdi_unmappable);
1729 	bdi_destroy(&mtd_bdi_ro_mappable);
1730 	bdi_destroy(&mtd_bdi_rw_mappable);
1731 }
1732 
1733 module_init(init_mtd);
1734 module_exit(cleanup_mtd);
1735 #endif
1736 
1737 MODULE_LICENSE("GPL");
1738 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1739 MODULE_DESCRIPTION("Core MTD registration and access routines");
1740