1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 * 9 */ 10 11 #ifndef __UBOOT__ 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/ptrace.h> 15 #include <linux/seq_file.h> 16 #include <linux/string.h> 17 #include <linux/timer.h> 18 #include <linux/major.h> 19 #include <linux/fs.h> 20 #include <linux/err.h> 21 #include <linux/ioctl.h> 22 #include <linux/init.h> 23 #include <linux/proc_fs.h> 24 #include <linux/idr.h> 25 #include <linux/backing-dev.h> 26 #include <linux/gfp.h> 27 #include <linux/slab.h> 28 #else 29 #include <linux/err.h> 30 #include <ubi_uboot.h> 31 #endif 32 33 #include <linux/log2.h> 34 #include <linux/mtd/mtd.h> 35 #include <linux/mtd/partitions.h> 36 37 #include "mtdcore.h" 38 39 #ifndef __UBOOT__ 40 /* 41 * backing device capabilities for non-mappable devices (such as NAND flash) 42 * - permits private mappings, copies are taken of the data 43 */ 44 static struct backing_dev_info mtd_bdi_unmappable = { 45 .capabilities = BDI_CAP_MAP_COPY, 46 }; 47 48 /* 49 * backing device capabilities for R/O mappable devices (such as ROM) 50 * - permits private mappings, copies are taken of the data 51 * - permits non-writable shared mappings 52 */ 53 static struct backing_dev_info mtd_bdi_ro_mappable = { 54 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 55 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), 56 }; 57 58 /* 59 * backing device capabilities for writable mappable devices (such as RAM) 60 * - permits private mappings, copies are taken of the data 61 * - permits non-writable shared mappings 62 */ 63 static struct backing_dev_info mtd_bdi_rw_mappable = { 64 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 65 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | 66 BDI_CAP_WRITE_MAP), 67 }; 68 69 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 70 static int mtd_cls_resume(struct device *dev); 71 72 static struct class mtd_class = { 73 .name = "mtd", 74 .owner = THIS_MODULE, 75 .suspend = mtd_cls_suspend, 76 .resume = mtd_cls_resume, 77 }; 78 #else 79 struct mtd_info *mtd_table[MAX_MTD_DEVICES]; 80 81 #define MAX_IDR_ID 64 82 83 struct idr_layer { 84 int used; 85 void *ptr; 86 }; 87 88 struct idr { 89 struct idr_layer id[MAX_IDR_ID]; 90 }; 91 92 #define DEFINE_IDR(name) struct idr name; 93 94 void idr_remove(struct idr *idp, int id) 95 { 96 if (idp->id[id].used) 97 idp->id[id].used = 0; 98 99 return; 100 } 101 void *idr_find(struct idr *idp, int id) 102 { 103 if (idp->id[id].used) 104 return idp->id[id].ptr; 105 106 return NULL; 107 } 108 109 void *idr_get_next(struct idr *idp, int *next) 110 { 111 void *ret; 112 int id = *next; 113 114 ret = idr_find(idp, id); 115 if (ret) { 116 id ++; 117 if (!idp->id[id].used) 118 id = 0; 119 *next = id; 120 } else { 121 *next = 0; 122 } 123 124 return ret; 125 } 126 127 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask) 128 { 129 struct idr_layer *idl; 130 int i = 0; 131 132 while (i < MAX_IDR_ID) { 133 idl = &idp->id[i]; 134 if (idl->used == 0) { 135 idl->used = 1; 136 idl->ptr = ptr; 137 return i; 138 } 139 i++; 140 } 141 return -ENOSPC; 142 } 143 #endif 144 145 static DEFINE_IDR(mtd_idr); 146 147 /* These are exported solely for the purpose of mtd_blkdevs.c. You 148 should not use them for _anything_ else */ 149 DEFINE_MUTEX(mtd_table_mutex); 150 EXPORT_SYMBOL_GPL(mtd_table_mutex); 151 152 struct mtd_info *__mtd_next_device(int i) 153 { 154 return idr_get_next(&mtd_idr, &i); 155 } 156 EXPORT_SYMBOL_GPL(__mtd_next_device); 157 158 #ifndef __UBOOT__ 159 static LIST_HEAD(mtd_notifiers); 160 161 162 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 163 164 /* REVISIT once MTD uses the driver model better, whoever allocates 165 * the mtd_info will probably want to use the release() hook... 166 */ 167 static void mtd_release(struct device *dev) 168 { 169 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev); 170 dev_t index = MTD_DEVT(mtd->index); 171 172 /* remove /dev/mtdXro node if needed */ 173 if (index) 174 device_destroy(&mtd_class, index + 1); 175 } 176 177 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 178 { 179 struct mtd_info *mtd = dev_get_drvdata(dev); 180 181 return mtd ? mtd_suspend(mtd) : 0; 182 } 183 184 static int mtd_cls_resume(struct device *dev) 185 { 186 struct mtd_info *mtd = dev_get_drvdata(dev); 187 188 if (mtd) 189 mtd_resume(mtd); 190 return 0; 191 } 192 193 static ssize_t mtd_type_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct mtd_info *mtd = dev_get_drvdata(dev); 197 char *type; 198 199 switch (mtd->type) { 200 case MTD_ABSENT: 201 type = "absent"; 202 break; 203 case MTD_RAM: 204 type = "ram"; 205 break; 206 case MTD_ROM: 207 type = "rom"; 208 break; 209 case MTD_NORFLASH: 210 type = "nor"; 211 break; 212 case MTD_NANDFLASH: 213 type = "nand"; 214 break; 215 case MTD_DATAFLASH: 216 type = "dataflash"; 217 break; 218 case MTD_UBIVOLUME: 219 type = "ubi"; 220 break; 221 case MTD_MLCNANDFLASH: 222 type = "mlc-nand"; 223 break; 224 default: 225 type = "unknown"; 226 } 227 228 return snprintf(buf, PAGE_SIZE, "%s\n", type); 229 } 230 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 231 232 static ssize_t mtd_flags_show(struct device *dev, 233 struct device_attribute *attr, char *buf) 234 { 235 struct mtd_info *mtd = dev_get_drvdata(dev); 236 237 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 238 239 } 240 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 241 242 static ssize_t mtd_size_show(struct device *dev, 243 struct device_attribute *attr, char *buf) 244 { 245 struct mtd_info *mtd = dev_get_drvdata(dev); 246 247 return snprintf(buf, PAGE_SIZE, "%llu\n", 248 (unsigned long long)mtd->size); 249 250 } 251 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 252 253 static ssize_t mtd_erasesize_show(struct device *dev, 254 struct device_attribute *attr, char *buf) 255 { 256 struct mtd_info *mtd = dev_get_drvdata(dev); 257 258 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 259 260 } 261 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 262 263 static ssize_t mtd_writesize_show(struct device *dev, 264 struct device_attribute *attr, char *buf) 265 { 266 struct mtd_info *mtd = dev_get_drvdata(dev); 267 268 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 269 270 } 271 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 272 273 static ssize_t mtd_subpagesize_show(struct device *dev, 274 struct device_attribute *attr, char *buf) 275 { 276 struct mtd_info *mtd = dev_get_drvdata(dev); 277 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 278 279 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 280 281 } 282 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 283 284 static ssize_t mtd_oobsize_show(struct device *dev, 285 struct device_attribute *attr, char *buf) 286 { 287 struct mtd_info *mtd = dev_get_drvdata(dev); 288 289 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 290 291 } 292 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 293 294 static ssize_t mtd_numeraseregions_show(struct device *dev, 295 struct device_attribute *attr, char *buf) 296 { 297 struct mtd_info *mtd = dev_get_drvdata(dev); 298 299 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 300 301 } 302 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 303 NULL); 304 305 static ssize_t mtd_name_show(struct device *dev, 306 struct device_attribute *attr, char *buf) 307 { 308 struct mtd_info *mtd = dev_get_drvdata(dev); 309 310 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 311 312 } 313 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 314 315 static ssize_t mtd_ecc_strength_show(struct device *dev, 316 struct device_attribute *attr, char *buf) 317 { 318 struct mtd_info *mtd = dev_get_drvdata(dev); 319 320 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 321 } 322 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 323 324 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 325 struct device_attribute *attr, 326 char *buf) 327 { 328 struct mtd_info *mtd = dev_get_drvdata(dev); 329 330 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 331 } 332 333 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 334 struct device_attribute *attr, 335 const char *buf, size_t count) 336 { 337 struct mtd_info *mtd = dev_get_drvdata(dev); 338 unsigned int bitflip_threshold; 339 int retval; 340 341 retval = kstrtouint(buf, 0, &bitflip_threshold); 342 if (retval) 343 return retval; 344 345 mtd->bitflip_threshold = bitflip_threshold; 346 return count; 347 } 348 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 349 mtd_bitflip_threshold_show, 350 mtd_bitflip_threshold_store); 351 352 static ssize_t mtd_ecc_step_size_show(struct device *dev, 353 struct device_attribute *attr, char *buf) 354 { 355 struct mtd_info *mtd = dev_get_drvdata(dev); 356 357 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 358 359 } 360 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 361 362 static struct attribute *mtd_attrs[] = { 363 &dev_attr_type.attr, 364 &dev_attr_flags.attr, 365 &dev_attr_size.attr, 366 &dev_attr_erasesize.attr, 367 &dev_attr_writesize.attr, 368 &dev_attr_subpagesize.attr, 369 &dev_attr_oobsize.attr, 370 &dev_attr_numeraseregions.attr, 371 &dev_attr_name.attr, 372 &dev_attr_ecc_strength.attr, 373 &dev_attr_ecc_step_size.attr, 374 &dev_attr_bitflip_threshold.attr, 375 NULL, 376 }; 377 ATTRIBUTE_GROUPS(mtd); 378 379 static struct device_type mtd_devtype = { 380 .name = "mtd", 381 .groups = mtd_groups, 382 .release = mtd_release, 383 }; 384 #endif 385 386 /** 387 * add_mtd_device - register an MTD device 388 * @mtd: pointer to new MTD device info structure 389 * 390 * Add a device to the list of MTD devices present in the system, and 391 * notify each currently active MTD 'user' of its arrival. Returns 392 * zero on success or 1 on failure, which currently will only happen 393 * if there is insufficient memory or a sysfs error. 394 */ 395 396 int add_mtd_device(struct mtd_info *mtd) 397 { 398 #ifndef __UBOOT__ 399 struct mtd_notifier *not; 400 #endif 401 int i, error; 402 403 #ifndef __UBOOT__ 404 if (!mtd->backing_dev_info) { 405 switch (mtd->type) { 406 case MTD_RAM: 407 mtd->backing_dev_info = &mtd_bdi_rw_mappable; 408 break; 409 case MTD_ROM: 410 mtd->backing_dev_info = &mtd_bdi_ro_mappable; 411 break; 412 default: 413 mtd->backing_dev_info = &mtd_bdi_unmappable; 414 break; 415 } 416 } 417 #endif 418 419 BUG_ON(mtd->writesize == 0); 420 mutex_lock(&mtd_table_mutex); 421 422 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 423 if (i < 0) 424 goto fail_locked; 425 426 mtd->index = i; 427 mtd->usecount = 0; 428 429 INIT_LIST_HEAD(&mtd->partitions); 430 431 /* default value if not set by driver */ 432 if (mtd->bitflip_threshold == 0) 433 mtd->bitflip_threshold = mtd->ecc_strength; 434 435 if (is_power_of_2(mtd->erasesize)) 436 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 437 else 438 mtd->erasesize_shift = 0; 439 440 if (is_power_of_2(mtd->writesize)) 441 mtd->writesize_shift = ffs(mtd->writesize) - 1; 442 else 443 mtd->writesize_shift = 0; 444 445 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 446 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 447 448 /* Some chips always power up locked. Unlock them now */ 449 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 450 error = mtd_unlock(mtd, 0, mtd->size); 451 if (error && error != -EOPNOTSUPP) 452 printk(KERN_WARNING 453 "%s: unlock failed, writes may not work\n", 454 mtd->name); 455 } 456 457 #ifndef __UBOOT__ 458 /* Caller should have set dev.parent to match the 459 * physical device. 460 */ 461 mtd->dev.type = &mtd_devtype; 462 mtd->dev.class = &mtd_class; 463 mtd->dev.devt = MTD_DEVT(i); 464 dev_set_name(&mtd->dev, "mtd%d", i); 465 dev_set_drvdata(&mtd->dev, mtd); 466 if (device_register(&mtd->dev) != 0) 467 goto fail_added; 468 469 if (MTD_DEVT(i)) 470 device_create(&mtd_class, mtd->dev.parent, 471 MTD_DEVT(i) + 1, 472 NULL, "mtd%dro", i); 473 474 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 475 /* No need to get a refcount on the module containing 476 the notifier, since we hold the mtd_table_mutex */ 477 list_for_each_entry(not, &mtd_notifiers, list) 478 not->add(mtd); 479 #else 480 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 481 #endif 482 483 mutex_unlock(&mtd_table_mutex); 484 /* We _know_ we aren't being removed, because 485 our caller is still holding us here. So none 486 of this try_ nonsense, and no bitching about it 487 either. :) */ 488 __module_get(THIS_MODULE); 489 return 0; 490 491 #ifndef __UBOOT__ 492 fail_added: 493 idr_remove(&mtd_idr, i); 494 #endif 495 fail_locked: 496 mutex_unlock(&mtd_table_mutex); 497 return 1; 498 } 499 500 /** 501 * del_mtd_device - unregister an MTD device 502 * @mtd: pointer to MTD device info structure 503 * 504 * Remove a device from the list of MTD devices present in the system, 505 * and notify each currently active MTD 'user' of its departure. 506 * Returns zero on success or 1 on failure, which currently will happen 507 * if the requested device does not appear to be present in the list. 508 */ 509 510 int del_mtd_device(struct mtd_info *mtd) 511 { 512 int ret; 513 #ifndef __UBOOT__ 514 struct mtd_notifier *not; 515 #endif 516 517 mutex_lock(&mtd_table_mutex); 518 519 if (idr_find(&mtd_idr, mtd->index) != mtd) { 520 ret = -ENODEV; 521 goto out_error; 522 } 523 524 #ifndef __UBOOT__ 525 /* No need to get a refcount on the module containing 526 the notifier, since we hold the mtd_table_mutex */ 527 list_for_each_entry(not, &mtd_notifiers, list) 528 not->remove(mtd); 529 #endif 530 531 if (mtd->usecount) { 532 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 533 mtd->index, mtd->name, mtd->usecount); 534 ret = -EBUSY; 535 } else { 536 #ifndef __UBOOT__ 537 device_unregister(&mtd->dev); 538 #endif 539 540 idr_remove(&mtd_idr, mtd->index); 541 542 module_put(THIS_MODULE); 543 ret = 0; 544 } 545 546 out_error: 547 mutex_unlock(&mtd_table_mutex); 548 return ret; 549 } 550 551 #ifndef __UBOOT__ 552 /** 553 * mtd_device_parse_register - parse partitions and register an MTD device. 554 * 555 * @mtd: the MTD device to register 556 * @types: the list of MTD partition probes to try, see 557 * 'parse_mtd_partitions()' for more information 558 * @parser_data: MTD partition parser-specific data 559 * @parts: fallback partition information to register, if parsing fails; 560 * only valid if %nr_parts > %0 561 * @nr_parts: the number of partitions in parts, if zero then the full 562 * MTD device is registered if no partition info is found 563 * 564 * This function aggregates MTD partitions parsing (done by 565 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 566 * basically follows the most common pattern found in many MTD drivers: 567 * 568 * * It first tries to probe partitions on MTD device @mtd using parsers 569 * specified in @types (if @types is %NULL, then the default list of parsers 570 * is used, see 'parse_mtd_partitions()' for more information). If none are 571 * found this functions tries to fallback to information specified in 572 * @parts/@nr_parts. 573 * * If any partitioning info was found, this function registers the found 574 * partitions. 575 * * If no partitions were found this function just registers the MTD device 576 * @mtd and exits. 577 * 578 * Returns zero in case of success and a negative error code in case of failure. 579 */ 580 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 581 struct mtd_part_parser_data *parser_data, 582 const struct mtd_partition *parts, 583 int nr_parts) 584 { 585 int err; 586 struct mtd_partition *real_parts; 587 588 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 589 if (err <= 0 && nr_parts && parts) { 590 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 591 GFP_KERNEL); 592 if (!real_parts) 593 err = -ENOMEM; 594 else 595 err = nr_parts; 596 } 597 598 if (err > 0) { 599 err = add_mtd_partitions(mtd, real_parts, err); 600 kfree(real_parts); 601 } else if (err == 0) { 602 err = add_mtd_device(mtd); 603 if (err == 1) 604 err = -ENODEV; 605 } 606 607 return err; 608 } 609 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 610 611 /** 612 * mtd_device_unregister - unregister an existing MTD device. 613 * 614 * @master: the MTD device to unregister. This will unregister both the master 615 * and any partitions if registered. 616 */ 617 int mtd_device_unregister(struct mtd_info *master) 618 { 619 int err; 620 621 err = del_mtd_partitions(master); 622 if (err) 623 return err; 624 625 if (!device_is_registered(&master->dev)) 626 return 0; 627 628 return del_mtd_device(master); 629 } 630 EXPORT_SYMBOL_GPL(mtd_device_unregister); 631 632 /** 633 * register_mtd_user - register a 'user' of MTD devices. 634 * @new: pointer to notifier info structure 635 * 636 * Registers a pair of callbacks function to be called upon addition 637 * or removal of MTD devices. Causes the 'add' callback to be immediately 638 * invoked for each MTD device currently present in the system. 639 */ 640 void register_mtd_user (struct mtd_notifier *new) 641 { 642 struct mtd_info *mtd; 643 644 mutex_lock(&mtd_table_mutex); 645 646 list_add(&new->list, &mtd_notifiers); 647 648 __module_get(THIS_MODULE); 649 650 mtd_for_each_device(mtd) 651 new->add(mtd); 652 653 mutex_unlock(&mtd_table_mutex); 654 } 655 EXPORT_SYMBOL_GPL(register_mtd_user); 656 657 /** 658 * unregister_mtd_user - unregister a 'user' of MTD devices. 659 * @old: pointer to notifier info structure 660 * 661 * Removes a callback function pair from the list of 'users' to be 662 * notified upon addition or removal of MTD devices. Causes the 663 * 'remove' callback to be immediately invoked for each MTD device 664 * currently present in the system. 665 */ 666 int unregister_mtd_user (struct mtd_notifier *old) 667 { 668 struct mtd_info *mtd; 669 670 mutex_lock(&mtd_table_mutex); 671 672 module_put(THIS_MODULE); 673 674 mtd_for_each_device(mtd) 675 old->remove(mtd); 676 677 list_del(&old->list); 678 mutex_unlock(&mtd_table_mutex); 679 return 0; 680 } 681 EXPORT_SYMBOL_GPL(unregister_mtd_user); 682 #endif 683 684 /** 685 * get_mtd_device - obtain a validated handle for an MTD device 686 * @mtd: last known address of the required MTD device 687 * @num: internal device number of the required MTD device 688 * 689 * Given a number and NULL address, return the num'th entry in the device 690 * table, if any. Given an address and num == -1, search the device table 691 * for a device with that address and return if it's still present. Given 692 * both, return the num'th driver only if its address matches. Return 693 * error code if not. 694 */ 695 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 696 { 697 struct mtd_info *ret = NULL, *other; 698 int err = -ENODEV; 699 700 mutex_lock(&mtd_table_mutex); 701 702 if (num == -1) { 703 mtd_for_each_device(other) { 704 if (other == mtd) { 705 ret = mtd; 706 break; 707 } 708 } 709 } else if (num >= 0) { 710 ret = idr_find(&mtd_idr, num); 711 if (mtd && mtd != ret) 712 ret = NULL; 713 } 714 715 if (!ret) { 716 ret = ERR_PTR(err); 717 goto out; 718 } 719 720 err = __get_mtd_device(ret); 721 if (err) 722 ret = ERR_PTR(err); 723 out: 724 mutex_unlock(&mtd_table_mutex); 725 return ret; 726 } 727 EXPORT_SYMBOL_GPL(get_mtd_device); 728 729 730 int __get_mtd_device(struct mtd_info *mtd) 731 { 732 int err; 733 734 if (!try_module_get(mtd->owner)) 735 return -ENODEV; 736 737 if (mtd->_get_device) { 738 err = mtd->_get_device(mtd); 739 740 if (err) { 741 module_put(mtd->owner); 742 return err; 743 } 744 } 745 mtd->usecount++; 746 return 0; 747 } 748 EXPORT_SYMBOL_GPL(__get_mtd_device); 749 750 /** 751 * get_mtd_device_nm - obtain a validated handle for an MTD device by 752 * device name 753 * @name: MTD device name to open 754 * 755 * This function returns MTD device description structure in case of 756 * success and an error code in case of failure. 757 */ 758 struct mtd_info *get_mtd_device_nm(const char *name) 759 { 760 int err = -ENODEV; 761 struct mtd_info *mtd = NULL, *other; 762 763 mutex_lock(&mtd_table_mutex); 764 765 mtd_for_each_device(other) { 766 if (!strcmp(name, other->name)) { 767 mtd = other; 768 break; 769 } 770 } 771 772 if (!mtd) 773 goto out_unlock; 774 775 err = __get_mtd_device(mtd); 776 if (err) 777 goto out_unlock; 778 779 mutex_unlock(&mtd_table_mutex); 780 return mtd; 781 782 out_unlock: 783 mutex_unlock(&mtd_table_mutex); 784 return ERR_PTR(err); 785 } 786 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 787 788 #if defined(CONFIG_CMD_MTDPARTS_SPREAD) 789 /** 790 * mtd_get_len_incl_bad 791 * 792 * Check if length including bad blocks fits into device. 793 * 794 * @param mtd an MTD device 795 * @param offset offset in flash 796 * @param length image length 797 * @return image length including bad blocks in *len_incl_bad and whether or not 798 * the length returned was truncated in *truncated 799 */ 800 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, 801 const uint64_t length, uint64_t *len_incl_bad, 802 int *truncated) 803 { 804 *truncated = 0; 805 *len_incl_bad = 0; 806 807 if (!mtd->_block_isbad) { 808 *len_incl_bad = length; 809 return; 810 } 811 812 uint64_t len_excl_bad = 0; 813 uint64_t block_len; 814 815 while (len_excl_bad < length) { 816 if (offset >= mtd->size) { 817 *truncated = 1; 818 return; 819 } 820 821 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1)); 822 823 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) 824 len_excl_bad += block_len; 825 826 *len_incl_bad += block_len; 827 offset += block_len; 828 } 829 } 830 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */ 831 832 void put_mtd_device(struct mtd_info *mtd) 833 { 834 mutex_lock(&mtd_table_mutex); 835 __put_mtd_device(mtd); 836 mutex_unlock(&mtd_table_mutex); 837 838 } 839 EXPORT_SYMBOL_GPL(put_mtd_device); 840 841 void __put_mtd_device(struct mtd_info *mtd) 842 { 843 --mtd->usecount; 844 BUG_ON(mtd->usecount < 0); 845 846 if (mtd->_put_device) 847 mtd->_put_device(mtd); 848 849 module_put(mtd->owner); 850 } 851 EXPORT_SYMBOL_GPL(__put_mtd_device); 852 853 /* 854 * Erase is an asynchronous operation. Device drivers are supposed 855 * to call instr->callback() whenever the operation completes, even 856 * if it completes with a failure. 857 * Callers are supposed to pass a callback function and wait for it 858 * to be called before writing to the block. 859 */ 860 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 861 { 862 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) 863 return -EINVAL; 864 if (!(mtd->flags & MTD_WRITEABLE)) 865 return -EROFS; 866 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 867 if (!instr->len) { 868 instr->state = MTD_ERASE_DONE; 869 mtd_erase_callback(instr); 870 return 0; 871 } 872 return mtd->_erase(mtd, instr); 873 } 874 EXPORT_SYMBOL_GPL(mtd_erase); 875 876 #ifndef __UBOOT__ 877 /* 878 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 879 */ 880 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 881 void **virt, resource_size_t *phys) 882 { 883 *retlen = 0; 884 *virt = NULL; 885 if (phys) 886 *phys = 0; 887 if (!mtd->_point) 888 return -EOPNOTSUPP; 889 if (from < 0 || from > mtd->size || len > mtd->size - from) 890 return -EINVAL; 891 if (!len) 892 return 0; 893 return mtd->_point(mtd, from, len, retlen, virt, phys); 894 } 895 EXPORT_SYMBOL_GPL(mtd_point); 896 897 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 898 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 899 { 900 if (!mtd->_point) 901 return -EOPNOTSUPP; 902 if (from < 0 || from > mtd->size || len > mtd->size - from) 903 return -EINVAL; 904 if (!len) 905 return 0; 906 return mtd->_unpoint(mtd, from, len); 907 } 908 EXPORT_SYMBOL_GPL(mtd_unpoint); 909 #endif 910 911 /* 912 * Allow NOMMU mmap() to directly map the device (if not NULL) 913 * - return the address to which the offset maps 914 * - return -ENOSYS to indicate refusal to do the mapping 915 */ 916 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 917 unsigned long offset, unsigned long flags) 918 { 919 if (!mtd->_get_unmapped_area) 920 return -EOPNOTSUPP; 921 if (offset > mtd->size || len > mtd->size - offset) 922 return -EINVAL; 923 return mtd->_get_unmapped_area(mtd, len, offset, flags); 924 } 925 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 926 927 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 928 u_char *buf) 929 { 930 int ret_code; 931 *retlen = 0; 932 if (from < 0 || from > mtd->size || len > mtd->size - from) 933 return -EINVAL; 934 if (!len) 935 return 0; 936 937 /* 938 * In the absence of an error, drivers return a non-negative integer 939 * representing the maximum number of bitflips that were corrected on 940 * any one ecc region (if applicable; zero otherwise). 941 */ 942 if (mtd->_read) { 943 ret_code = mtd->_read(mtd, from, len, retlen, buf); 944 } else if (mtd->_read_oob) { 945 struct mtd_oob_ops ops = { 946 .len = len, 947 .datbuf = buf, 948 }; 949 950 ret_code = mtd->_read_oob(mtd, from, &ops); 951 *retlen = ops.retlen; 952 } else { 953 return -ENOTSUPP; 954 } 955 956 if (unlikely(ret_code < 0)) 957 return ret_code; 958 if (mtd->ecc_strength == 0) 959 return 0; /* device lacks ecc */ 960 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 961 } 962 EXPORT_SYMBOL_GPL(mtd_read); 963 964 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 965 const u_char *buf) 966 { 967 *retlen = 0; 968 if (to < 0 || to > mtd->size || len > mtd->size - to) 969 return -EINVAL; 970 if ((!mtd->_write && !mtd->_write_oob) || 971 !(mtd->flags & MTD_WRITEABLE)) 972 return -EROFS; 973 if (!len) 974 return 0; 975 976 if (!mtd->_write) { 977 struct mtd_oob_ops ops = { 978 .len = len, 979 .datbuf = (u8 *)buf, 980 }; 981 int ret; 982 983 ret = mtd->_write_oob(mtd, to, &ops); 984 *retlen = ops.retlen; 985 return ret; 986 } 987 988 return mtd->_write(mtd, to, len, retlen, buf); 989 } 990 EXPORT_SYMBOL_GPL(mtd_write); 991 992 /* 993 * In blackbox flight recorder like scenarios we want to make successful writes 994 * in interrupt context. panic_write() is only intended to be called when its 995 * known the kernel is about to panic and we need the write to succeed. Since 996 * the kernel is not going to be running for much longer, this function can 997 * break locks and delay to ensure the write succeeds (but not sleep). 998 */ 999 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1000 const u_char *buf) 1001 { 1002 *retlen = 0; 1003 if (!mtd->_panic_write) 1004 return -EOPNOTSUPP; 1005 if (to < 0 || to > mtd->size || len > mtd->size - to) 1006 return -EINVAL; 1007 if (!(mtd->flags & MTD_WRITEABLE)) 1008 return -EROFS; 1009 if (!len) 1010 return 0; 1011 return mtd->_panic_write(mtd, to, len, retlen, buf); 1012 } 1013 EXPORT_SYMBOL_GPL(mtd_panic_write); 1014 1015 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1016 struct mtd_oob_ops *ops) 1017 { 1018 /* 1019 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1020 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1021 * this case. 1022 */ 1023 if (!ops->datbuf) 1024 ops->len = 0; 1025 1026 if (!ops->oobbuf) 1027 ops->ooblen = 0; 1028 1029 if (offs < 0 || offs + ops->len > mtd->size) 1030 return -EINVAL; 1031 1032 if (ops->ooblen) { 1033 u64 maxooblen; 1034 1035 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1036 return -EINVAL; 1037 1038 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) - 1039 mtd_div_by_ws(offs, mtd)) * 1040 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1041 if (ops->ooblen > maxooblen) 1042 return -EINVAL; 1043 } 1044 1045 return 0; 1046 } 1047 1048 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1049 { 1050 int ret_code; 1051 ops->retlen = ops->oobretlen = 0; 1052 1053 ret_code = mtd_check_oob_ops(mtd, from, ops); 1054 if (ret_code) 1055 return ret_code; 1056 1057 /* Check the validity of a potential fallback on mtd->_read */ 1058 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf)) 1059 return -EOPNOTSUPP; 1060 1061 if (mtd->_read_oob) 1062 ret_code = mtd->_read_oob(mtd, from, ops); 1063 else 1064 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen, 1065 ops->datbuf); 1066 1067 /* 1068 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1069 * similar to mtd->_read(), returning a non-negative integer 1070 * representing max bitflips. In other cases, mtd->_read_oob() may 1071 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1072 */ 1073 if (unlikely(ret_code < 0)) 1074 return ret_code; 1075 if (mtd->ecc_strength == 0) 1076 return 0; /* device lacks ecc */ 1077 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1078 } 1079 EXPORT_SYMBOL_GPL(mtd_read_oob); 1080 1081 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1082 struct mtd_oob_ops *ops) 1083 { 1084 int ret; 1085 1086 ops->retlen = ops->oobretlen = 0; 1087 1088 if (!(mtd->flags & MTD_WRITEABLE)) 1089 return -EROFS; 1090 1091 ret = mtd_check_oob_ops(mtd, to, ops); 1092 if (ret) 1093 return ret; 1094 1095 /* Check the validity of a potential fallback on mtd->_write */ 1096 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf)) 1097 return -EOPNOTSUPP; 1098 1099 if (mtd->_write_oob) 1100 return mtd->_write_oob(mtd, to, ops); 1101 else 1102 return mtd->_write(mtd, to, ops->len, &ops->retlen, 1103 ops->datbuf); 1104 } 1105 EXPORT_SYMBOL_GPL(mtd_write_oob); 1106 1107 /** 1108 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1109 * @mtd: MTD device structure 1110 * @section: ECC section. Depending on the layout you may have all the ECC 1111 * bytes stored in a single contiguous section, or one section 1112 * per ECC chunk (and sometime several sections for a single ECC 1113 * ECC chunk) 1114 * @oobecc: OOB region struct filled with the appropriate ECC position 1115 * information 1116 * 1117 * This function returns ECC section information in the OOB area. If you want 1118 * to get all the ECC bytes information, then you should call 1119 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1120 * 1121 * Returns zero on success, a negative error code otherwise. 1122 */ 1123 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1124 struct mtd_oob_region *oobecc) 1125 { 1126 memset(oobecc, 0, sizeof(*oobecc)); 1127 1128 if (!mtd || section < 0) 1129 return -EINVAL; 1130 1131 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1132 return -ENOTSUPP; 1133 1134 return mtd->ooblayout->ecc(mtd, section, oobecc); 1135 } 1136 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1137 1138 /** 1139 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1140 * section 1141 * @mtd: MTD device structure 1142 * @section: Free section you are interested in. Depending on the layout 1143 * you may have all the free bytes stored in a single contiguous 1144 * section, or one section per ECC chunk plus an extra section 1145 * for the remaining bytes (or other funky layout). 1146 * @oobfree: OOB region struct filled with the appropriate free position 1147 * information 1148 * 1149 * This function returns free bytes position in the OOB area. If you want 1150 * to get all the free bytes information, then you should call 1151 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1152 * 1153 * Returns zero on success, a negative error code otherwise. 1154 */ 1155 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1156 struct mtd_oob_region *oobfree) 1157 { 1158 memset(oobfree, 0, sizeof(*oobfree)); 1159 1160 if (!mtd || section < 0) 1161 return -EINVAL; 1162 1163 if (!mtd->ooblayout || !mtd->ooblayout->free) 1164 return -ENOTSUPP; 1165 1166 return mtd->ooblayout->free(mtd, section, oobfree); 1167 } 1168 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1169 1170 /** 1171 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1172 * @mtd: mtd info structure 1173 * @byte: the byte we are searching for 1174 * @sectionp: pointer where the section id will be stored 1175 * @oobregion: used to retrieve the ECC position 1176 * @iter: iterator function. Should be either mtd_ooblayout_free or 1177 * mtd_ooblayout_ecc depending on the region type you're searching for 1178 * 1179 * This function returns the section id and oobregion information of a 1180 * specific byte. For example, say you want to know where the 4th ECC byte is 1181 * stored, you'll use: 1182 * 1183 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1184 * 1185 * Returns zero on success, a negative error code otherwise. 1186 */ 1187 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1188 int *sectionp, struct mtd_oob_region *oobregion, 1189 int (*iter)(struct mtd_info *, 1190 int section, 1191 struct mtd_oob_region *oobregion)) 1192 { 1193 int pos = 0, ret, section = 0; 1194 1195 memset(oobregion, 0, sizeof(*oobregion)); 1196 1197 while (1) { 1198 ret = iter(mtd, section, oobregion); 1199 if (ret) 1200 return ret; 1201 1202 if (pos + oobregion->length > byte) 1203 break; 1204 1205 pos += oobregion->length; 1206 section++; 1207 } 1208 1209 /* 1210 * Adjust region info to make it start at the beginning at the 1211 * 'start' ECC byte. 1212 */ 1213 oobregion->offset += byte - pos; 1214 oobregion->length -= byte - pos; 1215 *sectionp = section; 1216 1217 return 0; 1218 } 1219 1220 /** 1221 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1222 * ECC byte 1223 * @mtd: mtd info structure 1224 * @eccbyte: the byte we are searching for 1225 * @sectionp: pointer where the section id will be stored 1226 * @oobregion: OOB region information 1227 * 1228 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1229 * byte. 1230 * 1231 * Returns zero on success, a negative error code otherwise. 1232 */ 1233 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1234 int *section, 1235 struct mtd_oob_region *oobregion) 1236 { 1237 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1238 mtd_ooblayout_ecc); 1239 } 1240 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1241 1242 /** 1243 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1244 * @mtd: mtd info structure 1245 * @buf: destination buffer to store OOB bytes 1246 * @oobbuf: OOB buffer 1247 * @start: first byte to retrieve 1248 * @nbytes: number of bytes to retrieve 1249 * @iter: section iterator 1250 * 1251 * Extract bytes attached to a specific category (ECC or free) 1252 * from the OOB buffer and copy them into buf. 1253 * 1254 * Returns zero on success, a negative error code otherwise. 1255 */ 1256 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1257 const u8 *oobbuf, int start, int nbytes, 1258 int (*iter)(struct mtd_info *, 1259 int section, 1260 struct mtd_oob_region *oobregion)) 1261 { 1262 struct mtd_oob_region oobregion; 1263 int section, ret; 1264 1265 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1266 &oobregion, iter); 1267 1268 while (!ret) { 1269 int cnt; 1270 1271 cnt = min_t(int, nbytes, oobregion.length); 1272 memcpy(buf, oobbuf + oobregion.offset, cnt); 1273 buf += cnt; 1274 nbytes -= cnt; 1275 1276 if (!nbytes) 1277 break; 1278 1279 ret = iter(mtd, ++section, &oobregion); 1280 } 1281 1282 return ret; 1283 } 1284 1285 /** 1286 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1287 * @mtd: mtd info structure 1288 * @buf: source buffer to get OOB bytes from 1289 * @oobbuf: OOB buffer 1290 * @start: first OOB byte to set 1291 * @nbytes: number of OOB bytes to set 1292 * @iter: section iterator 1293 * 1294 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1295 * is selected by passing the appropriate iterator. 1296 * 1297 * Returns zero on success, a negative error code otherwise. 1298 */ 1299 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1300 u8 *oobbuf, int start, int nbytes, 1301 int (*iter)(struct mtd_info *, 1302 int section, 1303 struct mtd_oob_region *oobregion)) 1304 { 1305 struct mtd_oob_region oobregion; 1306 int section, ret; 1307 1308 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1309 &oobregion, iter); 1310 1311 while (!ret) { 1312 int cnt; 1313 1314 cnt = min_t(int, nbytes, oobregion.length); 1315 memcpy(oobbuf + oobregion.offset, buf, cnt); 1316 buf += cnt; 1317 nbytes -= cnt; 1318 1319 if (!nbytes) 1320 break; 1321 1322 ret = iter(mtd, ++section, &oobregion); 1323 } 1324 1325 return ret; 1326 } 1327 1328 /** 1329 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1330 * @mtd: mtd info structure 1331 * @iter: category iterator 1332 * 1333 * Count the number of bytes in a given category. 1334 * 1335 * Returns a positive value on success, a negative error code otherwise. 1336 */ 1337 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1338 int (*iter)(struct mtd_info *, 1339 int section, 1340 struct mtd_oob_region *oobregion)) 1341 { 1342 struct mtd_oob_region oobregion; 1343 int section = 0, ret, nbytes = 0; 1344 1345 while (1) { 1346 ret = iter(mtd, section++, &oobregion); 1347 if (ret) { 1348 if (ret == -ERANGE) 1349 ret = nbytes; 1350 break; 1351 } 1352 1353 nbytes += oobregion.length; 1354 } 1355 1356 return ret; 1357 } 1358 1359 /** 1360 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1361 * @mtd: mtd info structure 1362 * @eccbuf: destination buffer to store ECC bytes 1363 * @oobbuf: OOB buffer 1364 * @start: first ECC byte to retrieve 1365 * @nbytes: number of ECC bytes to retrieve 1366 * 1367 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1368 * 1369 * Returns zero on success, a negative error code otherwise. 1370 */ 1371 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1372 const u8 *oobbuf, int start, int nbytes) 1373 { 1374 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1375 mtd_ooblayout_ecc); 1376 } 1377 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1378 1379 /** 1380 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1381 * @mtd: mtd info structure 1382 * @eccbuf: source buffer to get ECC bytes from 1383 * @oobbuf: OOB buffer 1384 * @start: first ECC byte to set 1385 * @nbytes: number of ECC bytes to set 1386 * 1387 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1388 * 1389 * Returns zero on success, a negative error code otherwise. 1390 */ 1391 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1392 u8 *oobbuf, int start, int nbytes) 1393 { 1394 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1395 mtd_ooblayout_ecc); 1396 } 1397 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1398 1399 /** 1400 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1401 * @mtd: mtd info structure 1402 * @databuf: destination buffer to store ECC bytes 1403 * @oobbuf: OOB buffer 1404 * @start: first ECC byte to retrieve 1405 * @nbytes: number of ECC bytes to retrieve 1406 * 1407 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1408 * 1409 * Returns zero on success, a negative error code otherwise. 1410 */ 1411 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1412 const u8 *oobbuf, int start, int nbytes) 1413 { 1414 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1415 mtd_ooblayout_free); 1416 } 1417 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1418 1419 /** 1420 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1421 * @mtd: mtd info structure 1422 * @eccbuf: source buffer to get data bytes from 1423 * @oobbuf: OOB buffer 1424 * @start: first ECC byte to set 1425 * @nbytes: number of ECC bytes to set 1426 * 1427 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1428 * 1429 * Returns zero on success, a negative error code otherwise. 1430 */ 1431 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1432 u8 *oobbuf, int start, int nbytes) 1433 { 1434 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1435 mtd_ooblayout_free); 1436 } 1437 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1438 1439 /** 1440 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1441 * @mtd: mtd info structure 1442 * 1443 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1444 * 1445 * Returns zero on success, a negative error code otherwise. 1446 */ 1447 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1448 { 1449 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1450 } 1451 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1452 1453 /** 1454 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1455 * @mtd: mtd info structure 1456 * 1457 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1458 * 1459 * Returns zero on success, a negative error code otherwise. 1460 */ 1461 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1462 { 1463 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1464 } 1465 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1466 1467 /* 1468 * Method to access the protection register area, present in some flash 1469 * devices. The user data is one time programmable but the factory data is read 1470 * only. 1471 */ 1472 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1473 struct otp_info *buf) 1474 { 1475 if (!mtd->_get_fact_prot_info) 1476 return -EOPNOTSUPP; 1477 if (!len) 1478 return 0; 1479 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1480 } 1481 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1482 1483 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1484 size_t *retlen, u_char *buf) 1485 { 1486 *retlen = 0; 1487 if (!mtd->_read_fact_prot_reg) 1488 return -EOPNOTSUPP; 1489 if (!len) 1490 return 0; 1491 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1492 } 1493 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1494 1495 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1496 struct otp_info *buf) 1497 { 1498 if (!mtd->_get_user_prot_info) 1499 return -EOPNOTSUPP; 1500 if (!len) 1501 return 0; 1502 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1503 } 1504 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1505 1506 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1507 size_t *retlen, u_char *buf) 1508 { 1509 *retlen = 0; 1510 if (!mtd->_read_user_prot_reg) 1511 return -EOPNOTSUPP; 1512 if (!len) 1513 return 0; 1514 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1515 } 1516 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1517 1518 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1519 size_t *retlen, u_char *buf) 1520 { 1521 int ret; 1522 1523 *retlen = 0; 1524 if (!mtd->_write_user_prot_reg) 1525 return -EOPNOTSUPP; 1526 if (!len) 1527 return 0; 1528 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1529 if (ret) 1530 return ret; 1531 1532 /* 1533 * If no data could be written at all, we are out of memory and 1534 * must return -ENOSPC. 1535 */ 1536 return (*retlen) ? 0 : -ENOSPC; 1537 } 1538 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1539 1540 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1541 { 1542 if (!mtd->_lock_user_prot_reg) 1543 return -EOPNOTSUPP; 1544 if (!len) 1545 return 0; 1546 return mtd->_lock_user_prot_reg(mtd, from, len); 1547 } 1548 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1549 1550 /* Chip-supported device locking */ 1551 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1552 { 1553 if (!mtd->_lock) 1554 return -EOPNOTSUPP; 1555 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1556 return -EINVAL; 1557 if (!len) 1558 return 0; 1559 return mtd->_lock(mtd, ofs, len); 1560 } 1561 EXPORT_SYMBOL_GPL(mtd_lock); 1562 1563 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1564 { 1565 if (!mtd->_unlock) 1566 return -EOPNOTSUPP; 1567 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1568 return -EINVAL; 1569 if (!len) 1570 return 0; 1571 return mtd->_unlock(mtd, ofs, len); 1572 } 1573 EXPORT_SYMBOL_GPL(mtd_unlock); 1574 1575 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1576 { 1577 if (!mtd->_is_locked) 1578 return -EOPNOTSUPP; 1579 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1580 return -EINVAL; 1581 if (!len) 1582 return 0; 1583 return mtd->_is_locked(mtd, ofs, len); 1584 } 1585 EXPORT_SYMBOL_GPL(mtd_is_locked); 1586 1587 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1588 { 1589 if (ofs < 0 || ofs > mtd->size) 1590 return -EINVAL; 1591 if (!mtd->_block_isreserved) 1592 return 0; 1593 return mtd->_block_isreserved(mtd, ofs); 1594 } 1595 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1596 1597 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1598 { 1599 if (ofs < 0 || ofs > mtd->size) 1600 return -EINVAL; 1601 if (!mtd->_block_isbad) 1602 return 0; 1603 return mtd->_block_isbad(mtd, ofs); 1604 } 1605 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1606 1607 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1608 { 1609 if (!mtd->_block_markbad) 1610 return -EOPNOTSUPP; 1611 if (ofs < 0 || ofs > mtd->size) 1612 return -EINVAL; 1613 if (!(mtd->flags & MTD_WRITEABLE)) 1614 return -EROFS; 1615 return mtd->_block_markbad(mtd, ofs); 1616 } 1617 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1618 1619 #ifndef __UBOOT__ 1620 /* 1621 * default_mtd_writev - the default writev method 1622 * @mtd: mtd device description object pointer 1623 * @vecs: the vectors to write 1624 * @count: count of vectors in @vecs 1625 * @to: the MTD device offset to write to 1626 * @retlen: on exit contains the count of bytes written to the MTD device. 1627 * 1628 * This function returns zero in case of success and a negative error code in 1629 * case of failure. 1630 */ 1631 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1632 unsigned long count, loff_t to, size_t *retlen) 1633 { 1634 unsigned long i; 1635 size_t totlen = 0, thislen; 1636 int ret = 0; 1637 1638 for (i = 0; i < count; i++) { 1639 if (!vecs[i].iov_len) 1640 continue; 1641 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1642 vecs[i].iov_base); 1643 totlen += thislen; 1644 if (ret || thislen != vecs[i].iov_len) 1645 break; 1646 to += vecs[i].iov_len; 1647 } 1648 *retlen = totlen; 1649 return ret; 1650 } 1651 1652 /* 1653 * mtd_writev - the vector-based MTD write method 1654 * @mtd: mtd device description object pointer 1655 * @vecs: the vectors to write 1656 * @count: count of vectors in @vecs 1657 * @to: the MTD device offset to write to 1658 * @retlen: on exit contains the count of bytes written to the MTD device. 1659 * 1660 * This function returns zero in case of success and a negative error code in 1661 * case of failure. 1662 */ 1663 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1664 unsigned long count, loff_t to, size_t *retlen) 1665 { 1666 *retlen = 0; 1667 if (!(mtd->flags & MTD_WRITEABLE)) 1668 return -EROFS; 1669 if (!mtd->_writev) 1670 return default_mtd_writev(mtd, vecs, count, to, retlen); 1671 return mtd->_writev(mtd, vecs, count, to, retlen); 1672 } 1673 EXPORT_SYMBOL_GPL(mtd_writev); 1674 1675 /** 1676 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1677 * @mtd: mtd device description object pointer 1678 * @size: a pointer to the ideal or maximum size of the allocation, points 1679 * to the actual allocation size on success. 1680 * 1681 * This routine attempts to allocate a contiguous kernel buffer up to 1682 * the specified size, backing off the size of the request exponentially 1683 * until the request succeeds or until the allocation size falls below 1684 * the system page size. This attempts to make sure it does not adversely 1685 * impact system performance, so when allocating more than one page, we 1686 * ask the memory allocator to avoid re-trying, swapping, writing back 1687 * or performing I/O. 1688 * 1689 * Note, this function also makes sure that the allocated buffer is aligned to 1690 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1691 * 1692 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1693 * to handle smaller (i.e. degraded) buffer allocations under low- or 1694 * fragmented-memory situations where such reduced allocations, from a 1695 * requested ideal, are allowed. 1696 * 1697 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1698 */ 1699 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1700 { 1701 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1702 __GFP_NORETRY | __GFP_NO_KSWAPD; 1703 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1704 void *kbuf; 1705 1706 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1707 1708 while (*size > min_alloc) { 1709 kbuf = kmalloc(*size, flags); 1710 if (kbuf) 1711 return kbuf; 1712 1713 *size >>= 1; 1714 *size = ALIGN(*size, mtd->writesize); 1715 } 1716 1717 /* 1718 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1719 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1720 */ 1721 return kmalloc(*size, GFP_KERNEL); 1722 } 1723 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1724 #endif 1725 1726 #ifdef CONFIG_PROC_FS 1727 1728 /*====================================================================*/ 1729 /* Support for /proc/mtd */ 1730 1731 static int mtd_proc_show(struct seq_file *m, void *v) 1732 { 1733 struct mtd_info *mtd; 1734 1735 seq_puts(m, "dev: size erasesize name\n"); 1736 mutex_lock(&mtd_table_mutex); 1737 mtd_for_each_device(mtd) { 1738 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1739 mtd->index, (unsigned long long)mtd->size, 1740 mtd->erasesize, mtd->name); 1741 } 1742 mutex_unlock(&mtd_table_mutex); 1743 return 0; 1744 } 1745 1746 static int mtd_proc_open(struct inode *inode, struct file *file) 1747 { 1748 return single_open(file, mtd_proc_show, NULL); 1749 } 1750 1751 static const struct file_operations mtd_proc_ops = { 1752 .open = mtd_proc_open, 1753 .read = seq_read, 1754 .llseek = seq_lseek, 1755 .release = single_release, 1756 }; 1757 #endif /* CONFIG_PROC_FS */ 1758 1759 /*====================================================================*/ 1760 /* Init code */ 1761 1762 #ifndef __UBOOT__ 1763 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1764 { 1765 int ret; 1766 1767 ret = bdi_init(bdi); 1768 if (!ret) 1769 ret = bdi_register(bdi, NULL, "%s", name); 1770 1771 if (ret) 1772 bdi_destroy(bdi); 1773 1774 return ret; 1775 } 1776 1777 static struct proc_dir_entry *proc_mtd; 1778 1779 static int __init init_mtd(void) 1780 { 1781 int ret; 1782 1783 ret = class_register(&mtd_class); 1784 if (ret) 1785 goto err_reg; 1786 1787 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap"); 1788 if (ret) 1789 goto err_bdi1; 1790 1791 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap"); 1792 if (ret) 1793 goto err_bdi2; 1794 1795 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap"); 1796 if (ret) 1797 goto err_bdi3; 1798 1799 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1800 1801 ret = init_mtdchar(); 1802 if (ret) 1803 goto out_procfs; 1804 1805 return 0; 1806 1807 out_procfs: 1808 if (proc_mtd) 1809 remove_proc_entry("mtd", NULL); 1810 err_bdi3: 1811 bdi_destroy(&mtd_bdi_ro_mappable); 1812 err_bdi2: 1813 bdi_destroy(&mtd_bdi_unmappable); 1814 err_bdi1: 1815 class_unregister(&mtd_class); 1816 err_reg: 1817 pr_err("Error registering mtd class or bdi: %d\n", ret); 1818 return ret; 1819 } 1820 1821 static void __exit cleanup_mtd(void) 1822 { 1823 cleanup_mtdchar(); 1824 if (proc_mtd) 1825 remove_proc_entry("mtd", NULL); 1826 class_unregister(&mtd_class); 1827 bdi_destroy(&mtd_bdi_unmappable); 1828 bdi_destroy(&mtd_bdi_ro_mappable); 1829 bdi_destroy(&mtd_bdi_rw_mappable); 1830 } 1831 1832 module_init(init_mtd); 1833 module_exit(cleanup_mtd); 1834 #endif 1835 1836 MODULE_LICENSE("GPL"); 1837 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1838 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1839