xref: /openbmc/u-boot/drivers/mtd/mtdcore.c (revision 461be2f96e4b87e5065208c6659a47dd0ad9e9f8)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  *
10  */
11 
12 #define __UBOOT__
13 #ifndef __UBOOT__
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/ptrace.h>
17 #include <linux/seq_file.h>
18 #include <linux/string.h>
19 #include <linux/timer.h>
20 #include <linux/major.h>
21 #include <linux/fs.h>
22 #include <linux/err.h>
23 #include <linux/ioctl.h>
24 #include <linux/init.h>
25 #include <linux/proc_fs.h>
26 #include <linux/idr.h>
27 #include <linux/backing-dev.h>
28 #include <linux/gfp.h>
29 #include <linux/slab.h>
30 #else
31 #include <linux/compat.h>
32 #include <linux/err.h>
33 #include <ubi_uboot.h>
34 #endif
35 
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/partitions.h>
38 
39 #include "mtdcore.h"
40 
41 #ifndef __UBOOT__
42 /*
43  * backing device capabilities for non-mappable devices (such as NAND flash)
44  * - permits private mappings, copies are taken of the data
45  */
46 static struct backing_dev_info mtd_bdi_unmappable = {
47 	.capabilities	= BDI_CAP_MAP_COPY,
48 };
49 
50 /*
51  * backing device capabilities for R/O mappable devices (such as ROM)
52  * - permits private mappings, copies are taken of the data
53  * - permits non-writable shared mappings
54  */
55 static struct backing_dev_info mtd_bdi_ro_mappable = {
56 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
57 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
58 };
59 
60 /*
61  * backing device capabilities for writable mappable devices (such as RAM)
62  * - permits private mappings, copies are taken of the data
63  * - permits non-writable shared mappings
64  */
65 static struct backing_dev_info mtd_bdi_rw_mappable = {
66 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
67 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
68 			   BDI_CAP_WRITE_MAP),
69 };
70 
71 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
72 static int mtd_cls_resume(struct device *dev);
73 
74 static struct class mtd_class = {
75 	.name = "mtd",
76 	.owner = THIS_MODULE,
77 	.suspend = mtd_cls_suspend,
78 	.resume = mtd_cls_resume,
79 };
80 #else
81 struct mtd_info *mtd_table[MAX_MTD_DEVICES];
82 
83 #define MAX_IDR_ID	64
84 
85 struct idr_layer {
86 	int	used;
87 	void	*ptr;
88 };
89 
90 struct idr {
91 	struct idr_layer id[MAX_IDR_ID];
92 };
93 
94 #define DEFINE_IDR(name)	struct idr name;
95 
96 void idr_remove(struct idr *idp, int id)
97 {
98 	if (idp->id[id].used)
99 		idp->id[id].used = 0;
100 
101 	return;
102 }
103 void *idr_find(struct idr *idp, int id)
104 {
105 	if (idp->id[id].used)
106 		return idp->id[id].ptr;
107 
108 	return NULL;
109 }
110 
111 void *idr_get_next(struct idr *idp, int *next)
112 {
113 	void *ret;
114 	int id = *next;
115 
116 	ret = idr_find(idp, id);
117 	if (ret) {
118 		id ++;
119 		if (!idp->id[id].used)
120 			id = 0;
121 		*next = id;
122 	} else {
123 		*next = 0;
124 	}
125 
126 	return ret;
127 }
128 
129 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
130 {
131 	struct idr_layer *idl;
132 	int i = 0;
133 
134 	while (i < MAX_IDR_ID) {
135 		idl = &idp->id[i];
136 		if (idl->used == 0) {
137 			idl->used = 1;
138 			idl->ptr = ptr;
139 			return i;
140 		}
141 		i++;
142 	}
143 	return -ENOSPC;
144 }
145 #endif
146 
147 static DEFINE_IDR(mtd_idr);
148 
149 /* These are exported solely for the purpose of mtd_blkdevs.c. You
150    should not use them for _anything_ else */
151 DEFINE_MUTEX(mtd_table_mutex);
152 EXPORT_SYMBOL_GPL(mtd_table_mutex);
153 
154 struct mtd_info *__mtd_next_device(int i)
155 {
156 	return idr_get_next(&mtd_idr, &i);
157 }
158 EXPORT_SYMBOL_GPL(__mtd_next_device);
159 
160 #ifndef __UBOOT__
161 static LIST_HEAD(mtd_notifiers);
162 
163 
164 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
165 
166 /* REVISIT once MTD uses the driver model better, whoever allocates
167  * the mtd_info will probably want to use the release() hook...
168  */
169 static void mtd_release(struct device *dev)
170 {
171 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
172 	dev_t index = MTD_DEVT(mtd->index);
173 
174 	/* remove /dev/mtdXro node if needed */
175 	if (index)
176 		device_destroy(&mtd_class, index + 1);
177 }
178 
179 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
180 {
181 	struct mtd_info *mtd = dev_get_drvdata(dev);
182 
183 	return mtd ? mtd_suspend(mtd) : 0;
184 }
185 
186 static int mtd_cls_resume(struct device *dev)
187 {
188 	struct mtd_info *mtd = dev_get_drvdata(dev);
189 
190 	if (mtd)
191 		mtd_resume(mtd);
192 	return 0;
193 }
194 
195 static ssize_t mtd_type_show(struct device *dev,
196 		struct device_attribute *attr, char *buf)
197 {
198 	struct mtd_info *mtd = dev_get_drvdata(dev);
199 	char *type;
200 
201 	switch (mtd->type) {
202 	case MTD_ABSENT:
203 		type = "absent";
204 		break;
205 	case MTD_RAM:
206 		type = "ram";
207 		break;
208 	case MTD_ROM:
209 		type = "rom";
210 		break;
211 	case MTD_NORFLASH:
212 		type = "nor";
213 		break;
214 	case MTD_NANDFLASH:
215 		type = "nand";
216 		break;
217 	case MTD_DATAFLASH:
218 		type = "dataflash";
219 		break;
220 	case MTD_UBIVOLUME:
221 		type = "ubi";
222 		break;
223 	case MTD_MLCNANDFLASH:
224 		type = "mlc-nand";
225 		break;
226 	default:
227 		type = "unknown";
228 	}
229 
230 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
231 }
232 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
233 
234 static ssize_t mtd_flags_show(struct device *dev,
235 		struct device_attribute *attr, char *buf)
236 {
237 	struct mtd_info *mtd = dev_get_drvdata(dev);
238 
239 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
240 
241 }
242 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
243 
244 static ssize_t mtd_size_show(struct device *dev,
245 		struct device_attribute *attr, char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "%llu\n",
250 		(unsigned long long)mtd->size);
251 
252 }
253 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
254 
255 static ssize_t mtd_erasesize_show(struct device *dev,
256 		struct device_attribute *attr, char *buf)
257 {
258 	struct mtd_info *mtd = dev_get_drvdata(dev);
259 
260 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
261 
262 }
263 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
264 
265 static ssize_t mtd_writesize_show(struct device *dev,
266 		struct device_attribute *attr, char *buf)
267 {
268 	struct mtd_info *mtd = dev_get_drvdata(dev);
269 
270 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
271 
272 }
273 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
274 
275 static ssize_t mtd_subpagesize_show(struct device *dev,
276 		struct device_attribute *attr, char *buf)
277 {
278 	struct mtd_info *mtd = dev_get_drvdata(dev);
279 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
280 
281 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
282 
283 }
284 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
285 
286 static ssize_t mtd_oobsize_show(struct device *dev,
287 		struct device_attribute *attr, char *buf)
288 {
289 	struct mtd_info *mtd = dev_get_drvdata(dev);
290 
291 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
292 
293 }
294 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
295 
296 static ssize_t mtd_numeraseregions_show(struct device *dev,
297 		struct device_attribute *attr, char *buf)
298 {
299 	struct mtd_info *mtd = dev_get_drvdata(dev);
300 
301 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
302 
303 }
304 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
305 	NULL);
306 
307 static ssize_t mtd_name_show(struct device *dev,
308 		struct device_attribute *attr, char *buf)
309 {
310 	struct mtd_info *mtd = dev_get_drvdata(dev);
311 
312 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
313 
314 }
315 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
316 
317 static ssize_t mtd_ecc_strength_show(struct device *dev,
318 				     struct device_attribute *attr, char *buf)
319 {
320 	struct mtd_info *mtd = dev_get_drvdata(dev);
321 
322 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
323 }
324 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
325 
326 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
327 					  struct device_attribute *attr,
328 					  char *buf)
329 {
330 	struct mtd_info *mtd = dev_get_drvdata(dev);
331 
332 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
333 }
334 
335 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
336 					   struct device_attribute *attr,
337 					   const char *buf, size_t count)
338 {
339 	struct mtd_info *mtd = dev_get_drvdata(dev);
340 	unsigned int bitflip_threshold;
341 	int retval;
342 
343 	retval = kstrtouint(buf, 0, &bitflip_threshold);
344 	if (retval)
345 		return retval;
346 
347 	mtd->bitflip_threshold = bitflip_threshold;
348 	return count;
349 }
350 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
351 		   mtd_bitflip_threshold_show,
352 		   mtd_bitflip_threshold_store);
353 
354 static ssize_t mtd_ecc_step_size_show(struct device *dev,
355 		struct device_attribute *attr, char *buf)
356 {
357 	struct mtd_info *mtd = dev_get_drvdata(dev);
358 
359 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
360 
361 }
362 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
363 
364 static struct attribute *mtd_attrs[] = {
365 	&dev_attr_type.attr,
366 	&dev_attr_flags.attr,
367 	&dev_attr_size.attr,
368 	&dev_attr_erasesize.attr,
369 	&dev_attr_writesize.attr,
370 	&dev_attr_subpagesize.attr,
371 	&dev_attr_oobsize.attr,
372 	&dev_attr_numeraseregions.attr,
373 	&dev_attr_name.attr,
374 	&dev_attr_ecc_strength.attr,
375 	&dev_attr_ecc_step_size.attr,
376 	&dev_attr_bitflip_threshold.attr,
377 	NULL,
378 };
379 ATTRIBUTE_GROUPS(mtd);
380 
381 static struct device_type mtd_devtype = {
382 	.name		= "mtd",
383 	.groups		= mtd_groups,
384 	.release	= mtd_release,
385 };
386 #endif
387 
388 /**
389  *	add_mtd_device - register an MTD device
390  *	@mtd: pointer to new MTD device info structure
391  *
392  *	Add a device to the list of MTD devices present in the system, and
393  *	notify each currently active MTD 'user' of its arrival. Returns
394  *	zero on success or 1 on failure, which currently will only happen
395  *	if there is insufficient memory or a sysfs error.
396  */
397 
398 int add_mtd_device(struct mtd_info *mtd)
399 {
400 #ifndef __UBOOT__
401 	struct mtd_notifier *not;
402 #endif
403 	int i, error;
404 
405 #ifndef __UBOOT__
406 	if (!mtd->backing_dev_info) {
407 		switch (mtd->type) {
408 		case MTD_RAM:
409 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
410 			break;
411 		case MTD_ROM:
412 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
413 			break;
414 		default:
415 			mtd->backing_dev_info = &mtd_bdi_unmappable;
416 			break;
417 		}
418 	}
419 #endif
420 
421 	BUG_ON(mtd->writesize == 0);
422 	mutex_lock(&mtd_table_mutex);
423 
424 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
425 	if (i < 0)
426 		goto fail_locked;
427 
428 	mtd->index = i;
429 	mtd->usecount = 0;
430 
431 	/* default value if not set by driver */
432 	if (mtd->bitflip_threshold == 0)
433 		mtd->bitflip_threshold = mtd->ecc_strength;
434 
435 	if (is_power_of_2(mtd->erasesize))
436 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
437 	else
438 		mtd->erasesize_shift = 0;
439 
440 	if (is_power_of_2(mtd->writesize))
441 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
442 	else
443 		mtd->writesize_shift = 0;
444 
445 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
446 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
447 
448 	/* Some chips always power up locked. Unlock them now */
449 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
450 		error = mtd_unlock(mtd, 0, mtd->size);
451 		if (error && error != -EOPNOTSUPP)
452 			printk(KERN_WARNING
453 			       "%s: unlock failed, writes may not work\n",
454 			       mtd->name);
455 	}
456 
457 #ifndef __UBOOT__
458 	/* Caller should have set dev.parent to match the
459 	 * physical device.
460 	 */
461 	mtd->dev.type = &mtd_devtype;
462 	mtd->dev.class = &mtd_class;
463 	mtd->dev.devt = MTD_DEVT(i);
464 	dev_set_name(&mtd->dev, "mtd%d", i);
465 	dev_set_drvdata(&mtd->dev, mtd);
466 	if (device_register(&mtd->dev) != 0)
467 		goto fail_added;
468 
469 	if (MTD_DEVT(i))
470 		device_create(&mtd_class, mtd->dev.parent,
471 			      MTD_DEVT(i) + 1,
472 			      NULL, "mtd%dro", i);
473 
474 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
475 	/* No need to get a refcount on the module containing
476 	   the notifier, since we hold the mtd_table_mutex */
477 	list_for_each_entry(not, &mtd_notifiers, list)
478 		not->add(mtd);
479 #else
480 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
481 #endif
482 
483 	mutex_unlock(&mtd_table_mutex);
484 	/* We _know_ we aren't being removed, because
485 	   our caller is still holding us here. So none
486 	   of this try_ nonsense, and no bitching about it
487 	   either. :) */
488 	__module_get(THIS_MODULE);
489 	return 0;
490 
491 #ifndef __UBOOT__
492 fail_added:
493 	idr_remove(&mtd_idr, i);
494 #endif
495 fail_locked:
496 	mutex_unlock(&mtd_table_mutex);
497 	return 1;
498 }
499 
500 /**
501  *	del_mtd_device - unregister an MTD device
502  *	@mtd: pointer to MTD device info structure
503  *
504  *	Remove a device from the list of MTD devices present in the system,
505  *	and notify each currently active MTD 'user' of its departure.
506  *	Returns zero on success or 1 on failure, which currently will happen
507  *	if the requested device does not appear to be present in the list.
508  */
509 
510 int del_mtd_device(struct mtd_info *mtd)
511 {
512 	int ret;
513 #ifndef __UBOOT__
514 	struct mtd_notifier *not;
515 #endif
516 
517 	mutex_lock(&mtd_table_mutex);
518 
519 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
520 		ret = -ENODEV;
521 		goto out_error;
522 	}
523 
524 #ifndef __UBOOT__
525 	/* No need to get a refcount on the module containing
526 		the notifier, since we hold the mtd_table_mutex */
527 	list_for_each_entry(not, &mtd_notifiers, list)
528 		not->remove(mtd);
529 #endif
530 
531 	if (mtd->usecount) {
532 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
533 		       mtd->index, mtd->name, mtd->usecount);
534 		ret = -EBUSY;
535 	} else {
536 #ifndef __UBOOT__
537 		device_unregister(&mtd->dev);
538 #endif
539 
540 		idr_remove(&mtd_idr, mtd->index);
541 
542 		module_put(THIS_MODULE);
543 		ret = 0;
544 	}
545 
546 out_error:
547 	mutex_unlock(&mtd_table_mutex);
548 	return ret;
549 }
550 
551 #ifndef __UBOOT__
552 /**
553  * mtd_device_parse_register - parse partitions and register an MTD device.
554  *
555  * @mtd: the MTD device to register
556  * @types: the list of MTD partition probes to try, see
557  *         'parse_mtd_partitions()' for more information
558  * @parser_data: MTD partition parser-specific data
559  * @parts: fallback partition information to register, if parsing fails;
560  *         only valid if %nr_parts > %0
561  * @nr_parts: the number of partitions in parts, if zero then the full
562  *            MTD device is registered if no partition info is found
563  *
564  * This function aggregates MTD partitions parsing (done by
565  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
566  * basically follows the most common pattern found in many MTD drivers:
567  *
568  * * It first tries to probe partitions on MTD device @mtd using parsers
569  *   specified in @types (if @types is %NULL, then the default list of parsers
570  *   is used, see 'parse_mtd_partitions()' for more information). If none are
571  *   found this functions tries to fallback to information specified in
572  *   @parts/@nr_parts.
573  * * If any partitioning info was found, this function registers the found
574  *   partitions.
575  * * If no partitions were found this function just registers the MTD device
576  *   @mtd and exits.
577  *
578  * Returns zero in case of success and a negative error code in case of failure.
579  */
580 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
581 			      struct mtd_part_parser_data *parser_data,
582 			      const struct mtd_partition *parts,
583 			      int nr_parts)
584 {
585 	int err;
586 	struct mtd_partition *real_parts;
587 
588 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
589 	if (err <= 0 && nr_parts && parts) {
590 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
591 				     GFP_KERNEL);
592 		if (!real_parts)
593 			err = -ENOMEM;
594 		else
595 			err = nr_parts;
596 	}
597 
598 	if (err > 0) {
599 		err = add_mtd_partitions(mtd, real_parts, err);
600 		kfree(real_parts);
601 	} else if (err == 0) {
602 		err = add_mtd_device(mtd);
603 		if (err == 1)
604 			err = -ENODEV;
605 	}
606 
607 	return err;
608 }
609 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
610 
611 /**
612  * mtd_device_unregister - unregister an existing MTD device.
613  *
614  * @master: the MTD device to unregister.  This will unregister both the master
615  *          and any partitions if registered.
616  */
617 int mtd_device_unregister(struct mtd_info *master)
618 {
619 	int err;
620 
621 	err = del_mtd_partitions(master);
622 	if (err)
623 		return err;
624 
625 	if (!device_is_registered(&master->dev))
626 		return 0;
627 
628 	return del_mtd_device(master);
629 }
630 EXPORT_SYMBOL_GPL(mtd_device_unregister);
631 
632 /**
633  *	register_mtd_user - register a 'user' of MTD devices.
634  *	@new: pointer to notifier info structure
635  *
636  *	Registers a pair of callbacks function to be called upon addition
637  *	or removal of MTD devices. Causes the 'add' callback to be immediately
638  *	invoked for each MTD device currently present in the system.
639  */
640 void register_mtd_user (struct mtd_notifier *new)
641 {
642 	struct mtd_info *mtd;
643 
644 	mutex_lock(&mtd_table_mutex);
645 
646 	list_add(&new->list, &mtd_notifiers);
647 
648 	__module_get(THIS_MODULE);
649 
650 	mtd_for_each_device(mtd)
651 		new->add(mtd);
652 
653 	mutex_unlock(&mtd_table_mutex);
654 }
655 EXPORT_SYMBOL_GPL(register_mtd_user);
656 
657 /**
658  *	unregister_mtd_user - unregister a 'user' of MTD devices.
659  *	@old: pointer to notifier info structure
660  *
661  *	Removes a callback function pair from the list of 'users' to be
662  *	notified upon addition or removal of MTD devices. Causes the
663  *	'remove' callback to be immediately invoked for each MTD device
664  *	currently present in the system.
665  */
666 int unregister_mtd_user (struct mtd_notifier *old)
667 {
668 	struct mtd_info *mtd;
669 
670 	mutex_lock(&mtd_table_mutex);
671 
672 	module_put(THIS_MODULE);
673 
674 	mtd_for_each_device(mtd)
675 		old->remove(mtd);
676 
677 	list_del(&old->list);
678 	mutex_unlock(&mtd_table_mutex);
679 	return 0;
680 }
681 EXPORT_SYMBOL_GPL(unregister_mtd_user);
682 #endif
683 
684 /**
685  *	get_mtd_device - obtain a validated handle for an MTD device
686  *	@mtd: last known address of the required MTD device
687  *	@num: internal device number of the required MTD device
688  *
689  *	Given a number and NULL address, return the num'th entry in the device
690  *	table, if any.	Given an address and num == -1, search the device table
691  *	for a device with that address and return if it's still present. Given
692  *	both, return the num'th driver only if its address matches. Return
693  *	error code if not.
694  */
695 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
696 {
697 	struct mtd_info *ret = NULL, *other;
698 	int err = -ENODEV;
699 
700 	mutex_lock(&mtd_table_mutex);
701 
702 	if (num == -1) {
703 		mtd_for_each_device(other) {
704 			if (other == mtd) {
705 				ret = mtd;
706 				break;
707 			}
708 		}
709 	} else if (num >= 0) {
710 		ret = idr_find(&mtd_idr, num);
711 		if (mtd && mtd != ret)
712 			ret = NULL;
713 	}
714 
715 	if (!ret) {
716 		ret = ERR_PTR(err);
717 		goto out;
718 	}
719 
720 	err = __get_mtd_device(ret);
721 	if (err)
722 		ret = ERR_PTR(err);
723 out:
724 	mutex_unlock(&mtd_table_mutex);
725 	return ret;
726 }
727 EXPORT_SYMBOL_GPL(get_mtd_device);
728 
729 
730 int __get_mtd_device(struct mtd_info *mtd)
731 {
732 	int err;
733 
734 	if (!try_module_get(mtd->owner))
735 		return -ENODEV;
736 
737 	if (mtd->_get_device) {
738 		err = mtd->_get_device(mtd);
739 
740 		if (err) {
741 			module_put(mtd->owner);
742 			return err;
743 		}
744 	}
745 	mtd->usecount++;
746 	return 0;
747 }
748 EXPORT_SYMBOL_GPL(__get_mtd_device);
749 
750 /**
751  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
752  *	device name
753  *	@name: MTD device name to open
754  *
755  * 	This function returns MTD device description structure in case of
756  * 	success and an error code in case of failure.
757  */
758 struct mtd_info *get_mtd_device_nm(const char *name)
759 {
760 	int err = -ENODEV;
761 	struct mtd_info *mtd = NULL, *other;
762 
763 	mutex_lock(&mtd_table_mutex);
764 
765 	mtd_for_each_device(other) {
766 		if (!strcmp(name, other->name)) {
767 			mtd = other;
768 			break;
769 		}
770 	}
771 
772 	if (!mtd)
773 		goto out_unlock;
774 
775 	err = __get_mtd_device(mtd);
776 	if (err)
777 		goto out_unlock;
778 
779 	mutex_unlock(&mtd_table_mutex);
780 	return mtd;
781 
782 out_unlock:
783 	mutex_unlock(&mtd_table_mutex);
784 	return ERR_PTR(err);
785 }
786 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
787 
788 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
789 /**
790  * mtd_get_len_incl_bad
791  *
792  * Check if length including bad blocks fits into device.
793  *
794  * @param mtd an MTD device
795  * @param offset offset in flash
796  * @param length image length
797  * @return image length including bad blocks in *len_incl_bad and whether or not
798  *         the length returned was truncated in *truncated
799  */
800 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
801 			  const uint64_t length, uint64_t *len_incl_bad,
802 			  int *truncated)
803 {
804 	*truncated = 0;
805 	*len_incl_bad = 0;
806 
807 	if (!mtd->block_isbad) {
808 		*len_incl_bad = length;
809 		return;
810 	}
811 
812 	uint64_t len_excl_bad = 0;
813 	uint64_t block_len;
814 
815 	while (len_excl_bad < length) {
816 		if (offset >= mtd->size) {
817 			*truncated = 1;
818 			return;
819 		}
820 
821 		block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
822 
823 		if (!mtd->block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
824 			len_excl_bad += block_len;
825 
826 		*len_incl_bad += block_len;
827 		offset       += block_len;
828 	}
829 }
830 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
831 
832 void put_mtd_device(struct mtd_info *mtd)
833 {
834 	mutex_lock(&mtd_table_mutex);
835 	__put_mtd_device(mtd);
836 	mutex_unlock(&mtd_table_mutex);
837 
838 }
839 EXPORT_SYMBOL_GPL(put_mtd_device);
840 
841 void __put_mtd_device(struct mtd_info *mtd)
842 {
843 	--mtd->usecount;
844 	BUG_ON(mtd->usecount < 0);
845 
846 	if (mtd->_put_device)
847 		mtd->_put_device(mtd);
848 
849 	module_put(mtd->owner);
850 }
851 EXPORT_SYMBOL_GPL(__put_mtd_device);
852 
853 /*
854  * Erase is an asynchronous operation.  Device drivers are supposed
855  * to call instr->callback() whenever the operation completes, even
856  * if it completes with a failure.
857  * Callers are supposed to pass a callback function and wait for it
858  * to be called before writing to the block.
859  */
860 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
861 {
862 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
863 		return -EINVAL;
864 	if (!(mtd->flags & MTD_WRITEABLE))
865 		return -EROFS;
866 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
867 	if (!instr->len) {
868 		instr->state = MTD_ERASE_DONE;
869 		mtd_erase_callback(instr);
870 		return 0;
871 	}
872 	return mtd->_erase(mtd, instr);
873 }
874 EXPORT_SYMBOL_GPL(mtd_erase);
875 
876 #ifndef __UBOOT__
877 /*
878  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
879  */
880 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
881 	      void **virt, resource_size_t *phys)
882 {
883 	*retlen = 0;
884 	*virt = NULL;
885 	if (phys)
886 		*phys = 0;
887 	if (!mtd->_point)
888 		return -EOPNOTSUPP;
889 	if (from < 0 || from > mtd->size || len > mtd->size - from)
890 		return -EINVAL;
891 	if (!len)
892 		return 0;
893 	return mtd->_point(mtd, from, len, retlen, virt, phys);
894 }
895 EXPORT_SYMBOL_GPL(mtd_point);
896 
897 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
898 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
899 {
900 	if (!mtd->_point)
901 		return -EOPNOTSUPP;
902 	if (from < 0 || from > mtd->size || len > mtd->size - from)
903 		return -EINVAL;
904 	if (!len)
905 		return 0;
906 	return mtd->_unpoint(mtd, from, len);
907 }
908 EXPORT_SYMBOL_GPL(mtd_unpoint);
909 #endif
910 
911 /*
912  * Allow NOMMU mmap() to directly map the device (if not NULL)
913  * - return the address to which the offset maps
914  * - return -ENOSYS to indicate refusal to do the mapping
915  */
916 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
917 				    unsigned long offset, unsigned long flags)
918 {
919 	if (!mtd->_get_unmapped_area)
920 		return -EOPNOTSUPP;
921 	if (offset > mtd->size || len > mtd->size - offset)
922 		return -EINVAL;
923 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
924 }
925 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
926 
927 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
928 	     u_char *buf)
929 {
930 	int ret_code;
931 	*retlen = 0;
932 	if (from < 0 || from > mtd->size || len > mtd->size - from)
933 		return -EINVAL;
934 	if (!len)
935 		return 0;
936 
937 	/*
938 	 * In the absence of an error, drivers return a non-negative integer
939 	 * representing the maximum number of bitflips that were corrected on
940 	 * any one ecc region (if applicable; zero otherwise).
941 	 */
942 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
943 	if (unlikely(ret_code < 0))
944 		return ret_code;
945 	if (mtd->ecc_strength == 0)
946 		return 0;	/* device lacks ecc */
947 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
948 }
949 EXPORT_SYMBOL_GPL(mtd_read);
950 
951 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
952 	      const u_char *buf)
953 {
954 	*retlen = 0;
955 	if (to < 0 || to > mtd->size || len > mtd->size - to)
956 		return -EINVAL;
957 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
958 		return -EROFS;
959 	if (!len)
960 		return 0;
961 	return mtd->_write(mtd, to, len, retlen, buf);
962 }
963 EXPORT_SYMBOL_GPL(mtd_write);
964 
965 /*
966  * In blackbox flight recorder like scenarios we want to make successful writes
967  * in interrupt context. panic_write() is only intended to be called when its
968  * known the kernel is about to panic and we need the write to succeed. Since
969  * the kernel is not going to be running for much longer, this function can
970  * break locks and delay to ensure the write succeeds (but not sleep).
971  */
972 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
973 		    const u_char *buf)
974 {
975 	*retlen = 0;
976 	if (!mtd->_panic_write)
977 		return -EOPNOTSUPP;
978 	if (to < 0 || to > mtd->size || len > mtd->size - to)
979 		return -EINVAL;
980 	if (!(mtd->flags & MTD_WRITEABLE))
981 		return -EROFS;
982 	if (!len)
983 		return 0;
984 	return mtd->_panic_write(mtd, to, len, retlen, buf);
985 }
986 EXPORT_SYMBOL_GPL(mtd_panic_write);
987 
988 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
989 {
990 	int ret_code;
991 	ops->retlen = ops->oobretlen = 0;
992 	if (!mtd->_read_oob)
993 		return -EOPNOTSUPP;
994 	/*
995 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
996 	 * similar to mtd->_read(), returning a non-negative integer
997 	 * representing max bitflips. In other cases, mtd->_read_oob() may
998 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
999 	 */
1000 	ret_code = mtd->_read_oob(mtd, from, ops);
1001 	if (unlikely(ret_code < 0))
1002 		return ret_code;
1003 	if (mtd->ecc_strength == 0)
1004 		return 0;	/* device lacks ecc */
1005 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1006 }
1007 EXPORT_SYMBOL_GPL(mtd_read_oob);
1008 
1009 /*
1010  * Method to access the protection register area, present in some flash
1011  * devices. The user data is one time programmable but the factory data is read
1012  * only.
1013  */
1014 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1015 			   struct otp_info *buf)
1016 {
1017 	if (!mtd->_get_fact_prot_info)
1018 		return -EOPNOTSUPP;
1019 	if (!len)
1020 		return 0;
1021 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1022 }
1023 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1024 
1025 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1026 			   size_t *retlen, u_char *buf)
1027 {
1028 	*retlen = 0;
1029 	if (!mtd->_read_fact_prot_reg)
1030 		return -EOPNOTSUPP;
1031 	if (!len)
1032 		return 0;
1033 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1034 }
1035 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1036 
1037 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1038 			   struct otp_info *buf)
1039 {
1040 	if (!mtd->_get_user_prot_info)
1041 		return -EOPNOTSUPP;
1042 	if (!len)
1043 		return 0;
1044 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1045 }
1046 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1047 
1048 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1049 			   size_t *retlen, u_char *buf)
1050 {
1051 	*retlen = 0;
1052 	if (!mtd->_read_user_prot_reg)
1053 		return -EOPNOTSUPP;
1054 	if (!len)
1055 		return 0;
1056 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1057 }
1058 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1059 
1060 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1061 			    size_t *retlen, u_char *buf)
1062 {
1063 	int ret;
1064 
1065 	*retlen = 0;
1066 	if (!mtd->_write_user_prot_reg)
1067 		return -EOPNOTSUPP;
1068 	if (!len)
1069 		return 0;
1070 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1071 	if (ret)
1072 		return ret;
1073 
1074 	/*
1075 	 * If no data could be written at all, we are out of memory and
1076 	 * must return -ENOSPC.
1077 	 */
1078 	return (*retlen) ? 0 : -ENOSPC;
1079 }
1080 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1081 
1082 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1083 {
1084 	if (!mtd->_lock_user_prot_reg)
1085 		return -EOPNOTSUPP;
1086 	if (!len)
1087 		return 0;
1088 	return mtd->_lock_user_prot_reg(mtd, from, len);
1089 }
1090 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1091 
1092 /* Chip-supported device locking */
1093 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1094 {
1095 	if (!mtd->_lock)
1096 		return -EOPNOTSUPP;
1097 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1098 		return -EINVAL;
1099 	if (!len)
1100 		return 0;
1101 	return mtd->_lock(mtd, ofs, len);
1102 }
1103 EXPORT_SYMBOL_GPL(mtd_lock);
1104 
1105 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1106 {
1107 	if (!mtd->_unlock)
1108 		return -EOPNOTSUPP;
1109 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1110 		return -EINVAL;
1111 	if (!len)
1112 		return 0;
1113 	return mtd->_unlock(mtd, ofs, len);
1114 }
1115 EXPORT_SYMBOL_GPL(mtd_unlock);
1116 
1117 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1118 {
1119 	if (!mtd->_is_locked)
1120 		return -EOPNOTSUPP;
1121 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1122 		return -EINVAL;
1123 	if (!len)
1124 		return 0;
1125 	return mtd->_is_locked(mtd, ofs, len);
1126 }
1127 EXPORT_SYMBOL_GPL(mtd_is_locked);
1128 
1129 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1130 {
1131 	if (!mtd->_block_isbad)
1132 		return 0;
1133 	if (ofs < 0 || ofs > mtd->size)
1134 		return -EINVAL;
1135 	return mtd->_block_isbad(mtd, ofs);
1136 }
1137 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1138 
1139 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1140 {
1141 	if (!mtd->_block_markbad)
1142 		return -EOPNOTSUPP;
1143 	if (ofs < 0 || ofs > mtd->size)
1144 		return -EINVAL;
1145 	if (!(mtd->flags & MTD_WRITEABLE))
1146 		return -EROFS;
1147 	return mtd->_block_markbad(mtd, ofs);
1148 }
1149 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1150 
1151 #ifndef __UBOOT__
1152 /*
1153  * default_mtd_writev - the default writev method
1154  * @mtd: mtd device description object pointer
1155  * @vecs: the vectors to write
1156  * @count: count of vectors in @vecs
1157  * @to: the MTD device offset to write to
1158  * @retlen: on exit contains the count of bytes written to the MTD device.
1159  *
1160  * This function returns zero in case of success and a negative error code in
1161  * case of failure.
1162  */
1163 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1164 			      unsigned long count, loff_t to, size_t *retlen)
1165 {
1166 	unsigned long i;
1167 	size_t totlen = 0, thislen;
1168 	int ret = 0;
1169 
1170 	for (i = 0; i < count; i++) {
1171 		if (!vecs[i].iov_len)
1172 			continue;
1173 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1174 				vecs[i].iov_base);
1175 		totlen += thislen;
1176 		if (ret || thislen != vecs[i].iov_len)
1177 			break;
1178 		to += vecs[i].iov_len;
1179 	}
1180 	*retlen = totlen;
1181 	return ret;
1182 }
1183 
1184 /*
1185  * mtd_writev - the vector-based MTD write method
1186  * @mtd: mtd device description object pointer
1187  * @vecs: the vectors to write
1188  * @count: count of vectors in @vecs
1189  * @to: the MTD device offset to write to
1190  * @retlen: on exit contains the count of bytes written to the MTD device.
1191  *
1192  * This function returns zero in case of success and a negative error code in
1193  * case of failure.
1194  */
1195 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1196 	       unsigned long count, loff_t to, size_t *retlen)
1197 {
1198 	*retlen = 0;
1199 	if (!(mtd->flags & MTD_WRITEABLE))
1200 		return -EROFS;
1201 	if (!mtd->_writev)
1202 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1203 	return mtd->_writev(mtd, vecs, count, to, retlen);
1204 }
1205 EXPORT_SYMBOL_GPL(mtd_writev);
1206 
1207 /**
1208  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1209  * @mtd: mtd device description object pointer
1210  * @size: a pointer to the ideal or maximum size of the allocation, points
1211  *        to the actual allocation size on success.
1212  *
1213  * This routine attempts to allocate a contiguous kernel buffer up to
1214  * the specified size, backing off the size of the request exponentially
1215  * until the request succeeds or until the allocation size falls below
1216  * the system page size. This attempts to make sure it does not adversely
1217  * impact system performance, so when allocating more than one page, we
1218  * ask the memory allocator to avoid re-trying, swapping, writing back
1219  * or performing I/O.
1220  *
1221  * Note, this function also makes sure that the allocated buffer is aligned to
1222  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1223  *
1224  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1225  * to handle smaller (i.e. degraded) buffer allocations under low- or
1226  * fragmented-memory situations where such reduced allocations, from a
1227  * requested ideal, are allowed.
1228  *
1229  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1230  */
1231 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1232 {
1233 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1234 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1235 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1236 	void *kbuf;
1237 
1238 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1239 
1240 	while (*size > min_alloc) {
1241 		kbuf = kmalloc(*size, flags);
1242 		if (kbuf)
1243 			return kbuf;
1244 
1245 		*size >>= 1;
1246 		*size = ALIGN(*size, mtd->writesize);
1247 	}
1248 
1249 	/*
1250 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1251 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1252 	 */
1253 	return kmalloc(*size, GFP_KERNEL);
1254 }
1255 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1256 #endif
1257 
1258 #ifdef CONFIG_PROC_FS
1259 
1260 /*====================================================================*/
1261 /* Support for /proc/mtd */
1262 
1263 static int mtd_proc_show(struct seq_file *m, void *v)
1264 {
1265 	struct mtd_info *mtd;
1266 
1267 	seq_puts(m, "dev:    size   erasesize  name\n");
1268 	mutex_lock(&mtd_table_mutex);
1269 	mtd_for_each_device(mtd) {
1270 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1271 			   mtd->index, (unsigned long long)mtd->size,
1272 			   mtd->erasesize, mtd->name);
1273 	}
1274 	mutex_unlock(&mtd_table_mutex);
1275 	return 0;
1276 }
1277 
1278 static int mtd_proc_open(struct inode *inode, struct file *file)
1279 {
1280 	return single_open(file, mtd_proc_show, NULL);
1281 }
1282 
1283 static const struct file_operations mtd_proc_ops = {
1284 	.open		= mtd_proc_open,
1285 	.read		= seq_read,
1286 	.llseek		= seq_lseek,
1287 	.release	= single_release,
1288 };
1289 #endif /* CONFIG_PROC_FS */
1290 
1291 /*====================================================================*/
1292 /* Init code */
1293 
1294 #ifndef __UBOOT__
1295 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1296 {
1297 	int ret;
1298 
1299 	ret = bdi_init(bdi);
1300 	if (!ret)
1301 		ret = bdi_register(bdi, NULL, "%s", name);
1302 
1303 	if (ret)
1304 		bdi_destroy(bdi);
1305 
1306 	return ret;
1307 }
1308 
1309 static struct proc_dir_entry *proc_mtd;
1310 
1311 static int __init init_mtd(void)
1312 {
1313 	int ret;
1314 
1315 	ret = class_register(&mtd_class);
1316 	if (ret)
1317 		goto err_reg;
1318 
1319 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1320 	if (ret)
1321 		goto err_bdi1;
1322 
1323 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1324 	if (ret)
1325 		goto err_bdi2;
1326 
1327 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1328 	if (ret)
1329 		goto err_bdi3;
1330 
1331 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1332 
1333 	ret = init_mtdchar();
1334 	if (ret)
1335 		goto out_procfs;
1336 
1337 	return 0;
1338 
1339 out_procfs:
1340 	if (proc_mtd)
1341 		remove_proc_entry("mtd", NULL);
1342 err_bdi3:
1343 	bdi_destroy(&mtd_bdi_ro_mappable);
1344 err_bdi2:
1345 	bdi_destroy(&mtd_bdi_unmappable);
1346 err_bdi1:
1347 	class_unregister(&mtd_class);
1348 err_reg:
1349 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1350 	return ret;
1351 }
1352 
1353 static void __exit cleanup_mtd(void)
1354 {
1355 	cleanup_mtdchar();
1356 	if (proc_mtd)
1357 		remove_proc_entry("mtd", NULL);
1358 	class_unregister(&mtd_class);
1359 	bdi_destroy(&mtd_bdi_unmappable);
1360 	bdi_destroy(&mtd_bdi_ro_mappable);
1361 	bdi_destroy(&mtd_bdi_rw_mappable);
1362 }
1363 
1364 module_init(init_mtd);
1365 module_exit(cleanup_mtd);
1366 #endif
1367 
1368 MODULE_LICENSE("GPL");
1369 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1370 MODULE_DESCRIPTION("Core MTD registration and access routines");
1371