1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 * 10 */ 11 12 #define __UBOOT__ 13 #ifndef __UBOOT__ 14 #include <linux/module.h> 15 #include <linux/kernel.h> 16 #include <linux/ptrace.h> 17 #include <linux/seq_file.h> 18 #include <linux/string.h> 19 #include <linux/timer.h> 20 #include <linux/major.h> 21 #include <linux/fs.h> 22 #include <linux/err.h> 23 #include <linux/ioctl.h> 24 #include <linux/init.h> 25 #include <linux/proc_fs.h> 26 #include <linux/idr.h> 27 #include <linux/backing-dev.h> 28 #include <linux/gfp.h> 29 #include <linux/slab.h> 30 #else 31 #include <linux/compat.h> 32 #include <linux/err.h> 33 #include <ubi_uboot.h> 34 #endif 35 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/partitions.h> 38 39 #include "mtdcore.h" 40 41 #ifndef __UBOOT__ 42 /* 43 * backing device capabilities for non-mappable devices (such as NAND flash) 44 * - permits private mappings, copies are taken of the data 45 */ 46 static struct backing_dev_info mtd_bdi_unmappable = { 47 .capabilities = BDI_CAP_MAP_COPY, 48 }; 49 50 /* 51 * backing device capabilities for R/O mappable devices (such as ROM) 52 * - permits private mappings, copies are taken of the data 53 * - permits non-writable shared mappings 54 */ 55 static struct backing_dev_info mtd_bdi_ro_mappable = { 56 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 57 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), 58 }; 59 60 /* 61 * backing device capabilities for writable mappable devices (such as RAM) 62 * - permits private mappings, copies are taken of the data 63 * - permits non-writable shared mappings 64 */ 65 static struct backing_dev_info mtd_bdi_rw_mappable = { 66 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 67 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | 68 BDI_CAP_WRITE_MAP), 69 }; 70 71 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 72 static int mtd_cls_resume(struct device *dev); 73 74 static struct class mtd_class = { 75 .name = "mtd", 76 .owner = THIS_MODULE, 77 .suspend = mtd_cls_suspend, 78 .resume = mtd_cls_resume, 79 }; 80 #else 81 struct mtd_info *mtd_table[MAX_MTD_DEVICES]; 82 83 #define MAX_IDR_ID 64 84 85 struct idr_layer { 86 int used; 87 void *ptr; 88 }; 89 90 struct idr { 91 struct idr_layer id[MAX_IDR_ID]; 92 }; 93 94 #define DEFINE_IDR(name) struct idr name; 95 96 void idr_remove(struct idr *idp, int id) 97 { 98 if (idp->id[id].used) 99 idp->id[id].used = 0; 100 101 return; 102 } 103 void *idr_find(struct idr *idp, int id) 104 { 105 if (idp->id[id].used) 106 return idp->id[id].ptr; 107 108 return NULL; 109 } 110 111 void *idr_get_next(struct idr *idp, int *next) 112 { 113 void *ret; 114 int id = *next; 115 116 ret = idr_find(idp, id); 117 if (ret) { 118 id ++; 119 if (!idp->id[id].used) 120 id = 0; 121 *next = id; 122 } else { 123 *next = 0; 124 } 125 126 return ret; 127 } 128 129 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask) 130 { 131 struct idr_layer *idl; 132 int i = 0; 133 134 while (i < MAX_IDR_ID) { 135 idl = &idp->id[i]; 136 if (idl->used == 0) { 137 idl->used = 1; 138 idl->ptr = ptr; 139 return i; 140 } 141 i++; 142 } 143 return -ENOSPC; 144 } 145 #endif 146 147 static DEFINE_IDR(mtd_idr); 148 149 /* These are exported solely for the purpose of mtd_blkdevs.c. You 150 should not use them for _anything_ else */ 151 DEFINE_MUTEX(mtd_table_mutex); 152 EXPORT_SYMBOL_GPL(mtd_table_mutex); 153 154 struct mtd_info *__mtd_next_device(int i) 155 { 156 return idr_get_next(&mtd_idr, &i); 157 } 158 EXPORT_SYMBOL_GPL(__mtd_next_device); 159 160 #ifndef __UBOOT__ 161 static LIST_HEAD(mtd_notifiers); 162 163 164 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 165 166 /* REVISIT once MTD uses the driver model better, whoever allocates 167 * the mtd_info will probably want to use the release() hook... 168 */ 169 static void mtd_release(struct device *dev) 170 { 171 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev); 172 dev_t index = MTD_DEVT(mtd->index); 173 174 /* remove /dev/mtdXro node if needed */ 175 if (index) 176 device_destroy(&mtd_class, index + 1); 177 } 178 179 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 180 { 181 struct mtd_info *mtd = dev_get_drvdata(dev); 182 183 return mtd ? mtd_suspend(mtd) : 0; 184 } 185 186 static int mtd_cls_resume(struct device *dev) 187 { 188 struct mtd_info *mtd = dev_get_drvdata(dev); 189 190 if (mtd) 191 mtd_resume(mtd); 192 return 0; 193 } 194 195 static ssize_t mtd_type_show(struct device *dev, 196 struct device_attribute *attr, char *buf) 197 { 198 struct mtd_info *mtd = dev_get_drvdata(dev); 199 char *type; 200 201 switch (mtd->type) { 202 case MTD_ABSENT: 203 type = "absent"; 204 break; 205 case MTD_RAM: 206 type = "ram"; 207 break; 208 case MTD_ROM: 209 type = "rom"; 210 break; 211 case MTD_NORFLASH: 212 type = "nor"; 213 break; 214 case MTD_NANDFLASH: 215 type = "nand"; 216 break; 217 case MTD_DATAFLASH: 218 type = "dataflash"; 219 break; 220 case MTD_UBIVOLUME: 221 type = "ubi"; 222 break; 223 case MTD_MLCNANDFLASH: 224 type = "mlc-nand"; 225 break; 226 default: 227 type = "unknown"; 228 } 229 230 return snprintf(buf, PAGE_SIZE, "%s\n", type); 231 } 232 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 233 234 static ssize_t mtd_flags_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct mtd_info *mtd = dev_get_drvdata(dev); 238 239 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 240 241 } 242 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 243 244 static ssize_t mtd_size_show(struct device *dev, 245 struct device_attribute *attr, char *buf) 246 { 247 struct mtd_info *mtd = dev_get_drvdata(dev); 248 249 return snprintf(buf, PAGE_SIZE, "%llu\n", 250 (unsigned long long)mtd->size); 251 252 } 253 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 254 255 static ssize_t mtd_erasesize_show(struct device *dev, 256 struct device_attribute *attr, char *buf) 257 { 258 struct mtd_info *mtd = dev_get_drvdata(dev); 259 260 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 261 262 } 263 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 264 265 static ssize_t mtd_writesize_show(struct device *dev, 266 struct device_attribute *attr, char *buf) 267 { 268 struct mtd_info *mtd = dev_get_drvdata(dev); 269 270 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 271 272 } 273 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 274 275 static ssize_t mtd_subpagesize_show(struct device *dev, 276 struct device_attribute *attr, char *buf) 277 { 278 struct mtd_info *mtd = dev_get_drvdata(dev); 279 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 280 281 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 282 283 } 284 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 285 286 static ssize_t mtd_oobsize_show(struct device *dev, 287 struct device_attribute *attr, char *buf) 288 { 289 struct mtd_info *mtd = dev_get_drvdata(dev); 290 291 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 292 293 } 294 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 295 296 static ssize_t mtd_numeraseregions_show(struct device *dev, 297 struct device_attribute *attr, char *buf) 298 { 299 struct mtd_info *mtd = dev_get_drvdata(dev); 300 301 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 302 303 } 304 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 305 NULL); 306 307 static ssize_t mtd_name_show(struct device *dev, 308 struct device_attribute *attr, char *buf) 309 { 310 struct mtd_info *mtd = dev_get_drvdata(dev); 311 312 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 313 314 } 315 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 316 317 static ssize_t mtd_ecc_strength_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct mtd_info *mtd = dev_get_drvdata(dev); 321 322 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 323 } 324 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 325 326 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 327 struct device_attribute *attr, 328 char *buf) 329 { 330 struct mtd_info *mtd = dev_get_drvdata(dev); 331 332 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 333 } 334 335 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 336 struct device_attribute *attr, 337 const char *buf, size_t count) 338 { 339 struct mtd_info *mtd = dev_get_drvdata(dev); 340 unsigned int bitflip_threshold; 341 int retval; 342 343 retval = kstrtouint(buf, 0, &bitflip_threshold); 344 if (retval) 345 return retval; 346 347 mtd->bitflip_threshold = bitflip_threshold; 348 return count; 349 } 350 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 351 mtd_bitflip_threshold_show, 352 mtd_bitflip_threshold_store); 353 354 static ssize_t mtd_ecc_step_size_show(struct device *dev, 355 struct device_attribute *attr, char *buf) 356 { 357 struct mtd_info *mtd = dev_get_drvdata(dev); 358 359 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 360 361 } 362 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 363 364 static struct attribute *mtd_attrs[] = { 365 &dev_attr_type.attr, 366 &dev_attr_flags.attr, 367 &dev_attr_size.attr, 368 &dev_attr_erasesize.attr, 369 &dev_attr_writesize.attr, 370 &dev_attr_subpagesize.attr, 371 &dev_attr_oobsize.attr, 372 &dev_attr_numeraseregions.attr, 373 &dev_attr_name.attr, 374 &dev_attr_ecc_strength.attr, 375 &dev_attr_ecc_step_size.attr, 376 &dev_attr_bitflip_threshold.attr, 377 NULL, 378 }; 379 ATTRIBUTE_GROUPS(mtd); 380 381 static struct device_type mtd_devtype = { 382 .name = "mtd", 383 .groups = mtd_groups, 384 .release = mtd_release, 385 }; 386 #endif 387 388 /** 389 * add_mtd_device - register an MTD device 390 * @mtd: pointer to new MTD device info structure 391 * 392 * Add a device to the list of MTD devices present in the system, and 393 * notify each currently active MTD 'user' of its arrival. Returns 394 * zero on success or 1 on failure, which currently will only happen 395 * if there is insufficient memory or a sysfs error. 396 */ 397 398 int add_mtd_device(struct mtd_info *mtd) 399 { 400 #ifndef __UBOOT__ 401 struct mtd_notifier *not; 402 #endif 403 int i, error; 404 405 #ifndef __UBOOT__ 406 if (!mtd->backing_dev_info) { 407 switch (mtd->type) { 408 case MTD_RAM: 409 mtd->backing_dev_info = &mtd_bdi_rw_mappable; 410 break; 411 case MTD_ROM: 412 mtd->backing_dev_info = &mtd_bdi_ro_mappable; 413 break; 414 default: 415 mtd->backing_dev_info = &mtd_bdi_unmappable; 416 break; 417 } 418 } 419 #endif 420 421 BUG_ON(mtd->writesize == 0); 422 mutex_lock(&mtd_table_mutex); 423 424 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 425 if (i < 0) 426 goto fail_locked; 427 428 mtd->index = i; 429 mtd->usecount = 0; 430 431 /* default value if not set by driver */ 432 if (mtd->bitflip_threshold == 0) 433 mtd->bitflip_threshold = mtd->ecc_strength; 434 435 if (is_power_of_2(mtd->erasesize)) 436 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 437 else 438 mtd->erasesize_shift = 0; 439 440 if (is_power_of_2(mtd->writesize)) 441 mtd->writesize_shift = ffs(mtd->writesize) - 1; 442 else 443 mtd->writesize_shift = 0; 444 445 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 446 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 447 448 /* Some chips always power up locked. Unlock them now */ 449 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 450 error = mtd_unlock(mtd, 0, mtd->size); 451 if (error && error != -EOPNOTSUPP) 452 printk(KERN_WARNING 453 "%s: unlock failed, writes may not work\n", 454 mtd->name); 455 } 456 457 #ifndef __UBOOT__ 458 /* Caller should have set dev.parent to match the 459 * physical device. 460 */ 461 mtd->dev.type = &mtd_devtype; 462 mtd->dev.class = &mtd_class; 463 mtd->dev.devt = MTD_DEVT(i); 464 dev_set_name(&mtd->dev, "mtd%d", i); 465 dev_set_drvdata(&mtd->dev, mtd); 466 if (device_register(&mtd->dev) != 0) 467 goto fail_added; 468 469 if (MTD_DEVT(i)) 470 device_create(&mtd_class, mtd->dev.parent, 471 MTD_DEVT(i) + 1, 472 NULL, "mtd%dro", i); 473 474 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 475 /* No need to get a refcount on the module containing 476 the notifier, since we hold the mtd_table_mutex */ 477 list_for_each_entry(not, &mtd_notifiers, list) 478 not->add(mtd); 479 #else 480 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 481 #endif 482 483 mutex_unlock(&mtd_table_mutex); 484 /* We _know_ we aren't being removed, because 485 our caller is still holding us here. So none 486 of this try_ nonsense, and no bitching about it 487 either. :) */ 488 __module_get(THIS_MODULE); 489 return 0; 490 491 #ifndef __UBOOT__ 492 fail_added: 493 idr_remove(&mtd_idr, i); 494 #endif 495 fail_locked: 496 mutex_unlock(&mtd_table_mutex); 497 return 1; 498 } 499 500 /** 501 * del_mtd_device - unregister an MTD device 502 * @mtd: pointer to MTD device info structure 503 * 504 * Remove a device from the list of MTD devices present in the system, 505 * and notify each currently active MTD 'user' of its departure. 506 * Returns zero on success or 1 on failure, which currently will happen 507 * if the requested device does not appear to be present in the list. 508 */ 509 510 int del_mtd_device(struct mtd_info *mtd) 511 { 512 int ret; 513 #ifndef __UBOOT__ 514 struct mtd_notifier *not; 515 #endif 516 517 mutex_lock(&mtd_table_mutex); 518 519 if (idr_find(&mtd_idr, mtd->index) != mtd) { 520 ret = -ENODEV; 521 goto out_error; 522 } 523 524 #ifndef __UBOOT__ 525 /* No need to get a refcount on the module containing 526 the notifier, since we hold the mtd_table_mutex */ 527 list_for_each_entry(not, &mtd_notifiers, list) 528 not->remove(mtd); 529 #endif 530 531 if (mtd->usecount) { 532 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 533 mtd->index, mtd->name, mtd->usecount); 534 ret = -EBUSY; 535 } else { 536 #ifndef __UBOOT__ 537 device_unregister(&mtd->dev); 538 #endif 539 540 idr_remove(&mtd_idr, mtd->index); 541 542 module_put(THIS_MODULE); 543 ret = 0; 544 } 545 546 out_error: 547 mutex_unlock(&mtd_table_mutex); 548 return ret; 549 } 550 551 #ifndef __UBOOT__ 552 /** 553 * mtd_device_parse_register - parse partitions and register an MTD device. 554 * 555 * @mtd: the MTD device to register 556 * @types: the list of MTD partition probes to try, see 557 * 'parse_mtd_partitions()' for more information 558 * @parser_data: MTD partition parser-specific data 559 * @parts: fallback partition information to register, if parsing fails; 560 * only valid if %nr_parts > %0 561 * @nr_parts: the number of partitions in parts, if zero then the full 562 * MTD device is registered if no partition info is found 563 * 564 * This function aggregates MTD partitions parsing (done by 565 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 566 * basically follows the most common pattern found in many MTD drivers: 567 * 568 * * It first tries to probe partitions on MTD device @mtd using parsers 569 * specified in @types (if @types is %NULL, then the default list of parsers 570 * is used, see 'parse_mtd_partitions()' for more information). If none are 571 * found this functions tries to fallback to information specified in 572 * @parts/@nr_parts. 573 * * If any partitioning info was found, this function registers the found 574 * partitions. 575 * * If no partitions were found this function just registers the MTD device 576 * @mtd and exits. 577 * 578 * Returns zero in case of success and a negative error code in case of failure. 579 */ 580 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 581 struct mtd_part_parser_data *parser_data, 582 const struct mtd_partition *parts, 583 int nr_parts) 584 { 585 int err; 586 struct mtd_partition *real_parts; 587 588 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 589 if (err <= 0 && nr_parts && parts) { 590 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 591 GFP_KERNEL); 592 if (!real_parts) 593 err = -ENOMEM; 594 else 595 err = nr_parts; 596 } 597 598 if (err > 0) { 599 err = add_mtd_partitions(mtd, real_parts, err); 600 kfree(real_parts); 601 } else if (err == 0) { 602 err = add_mtd_device(mtd); 603 if (err == 1) 604 err = -ENODEV; 605 } 606 607 return err; 608 } 609 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 610 611 /** 612 * mtd_device_unregister - unregister an existing MTD device. 613 * 614 * @master: the MTD device to unregister. This will unregister both the master 615 * and any partitions if registered. 616 */ 617 int mtd_device_unregister(struct mtd_info *master) 618 { 619 int err; 620 621 err = del_mtd_partitions(master); 622 if (err) 623 return err; 624 625 if (!device_is_registered(&master->dev)) 626 return 0; 627 628 return del_mtd_device(master); 629 } 630 EXPORT_SYMBOL_GPL(mtd_device_unregister); 631 632 /** 633 * register_mtd_user - register a 'user' of MTD devices. 634 * @new: pointer to notifier info structure 635 * 636 * Registers a pair of callbacks function to be called upon addition 637 * or removal of MTD devices. Causes the 'add' callback to be immediately 638 * invoked for each MTD device currently present in the system. 639 */ 640 void register_mtd_user (struct mtd_notifier *new) 641 { 642 struct mtd_info *mtd; 643 644 mutex_lock(&mtd_table_mutex); 645 646 list_add(&new->list, &mtd_notifiers); 647 648 __module_get(THIS_MODULE); 649 650 mtd_for_each_device(mtd) 651 new->add(mtd); 652 653 mutex_unlock(&mtd_table_mutex); 654 } 655 EXPORT_SYMBOL_GPL(register_mtd_user); 656 657 /** 658 * unregister_mtd_user - unregister a 'user' of MTD devices. 659 * @old: pointer to notifier info structure 660 * 661 * Removes a callback function pair from the list of 'users' to be 662 * notified upon addition or removal of MTD devices. Causes the 663 * 'remove' callback to be immediately invoked for each MTD device 664 * currently present in the system. 665 */ 666 int unregister_mtd_user (struct mtd_notifier *old) 667 { 668 struct mtd_info *mtd; 669 670 mutex_lock(&mtd_table_mutex); 671 672 module_put(THIS_MODULE); 673 674 mtd_for_each_device(mtd) 675 old->remove(mtd); 676 677 list_del(&old->list); 678 mutex_unlock(&mtd_table_mutex); 679 return 0; 680 } 681 EXPORT_SYMBOL_GPL(unregister_mtd_user); 682 #endif 683 684 /** 685 * get_mtd_device - obtain a validated handle for an MTD device 686 * @mtd: last known address of the required MTD device 687 * @num: internal device number of the required MTD device 688 * 689 * Given a number and NULL address, return the num'th entry in the device 690 * table, if any. Given an address and num == -1, search the device table 691 * for a device with that address and return if it's still present. Given 692 * both, return the num'th driver only if its address matches. Return 693 * error code if not. 694 */ 695 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 696 { 697 struct mtd_info *ret = NULL, *other; 698 int err = -ENODEV; 699 700 mutex_lock(&mtd_table_mutex); 701 702 if (num == -1) { 703 mtd_for_each_device(other) { 704 if (other == mtd) { 705 ret = mtd; 706 break; 707 } 708 } 709 } else if (num >= 0) { 710 ret = idr_find(&mtd_idr, num); 711 if (mtd && mtd != ret) 712 ret = NULL; 713 } 714 715 if (!ret) { 716 ret = ERR_PTR(err); 717 goto out; 718 } 719 720 err = __get_mtd_device(ret); 721 if (err) 722 ret = ERR_PTR(err); 723 out: 724 mutex_unlock(&mtd_table_mutex); 725 return ret; 726 } 727 EXPORT_SYMBOL_GPL(get_mtd_device); 728 729 730 int __get_mtd_device(struct mtd_info *mtd) 731 { 732 int err; 733 734 if (!try_module_get(mtd->owner)) 735 return -ENODEV; 736 737 if (mtd->_get_device) { 738 err = mtd->_get_device(mtd); 739 740 if (err) { 741 module_put(mtd->owner); 742 return err; 743 } 744 } 745 mtd->usecount++; 746 return 0; 747 } 748 EXPORT_SYMBOL_GPL(__get_mtd_device); 749 750 /** 751 * get_mtd_device_nm - obtain a validated handle for an MTD device by 752 * device name 753 * @name: MTD device name to open 754 * 755 * This function returns MTD device description structure in case of 756 * success and an error code in case of failure. 757 */ 758 struct mtd_info *get_mtd_device_nm(const char *name) 759 { 760 int err = -ENODEV; 761 struct mtd_info *mtd = NULL, *other; 762 763 mutex_lock(&mtd_table_mutex); 764 765 mtd_for_each_device(other) { 766 if (!strcmp(name, other->name)) { 767 mtd = other; 768 break; 769 } 770 } 771 772 if (!mtd) 773 goto out_unlock; 774 775 err = __get_mtd_device(mtd); 776 if (err) 777 goto out_unlock; 778 779 mutex_unlock(&mtd_table_mutex); 780 return mtd; 781 782 out_unlock: 783 mutex_unlock(&mtd_table_mutex); 784 return ERR_PTR(err); 785 } 786 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 787 788 #if defined(CONFIG_CMD_MTDPARTS_SPREAD) 789 /** 790 * mtd_get_len_incl_bad 791 * 792 * Check if length including bad blocks fits into device. 793 * 794 * @param mtd an MTD device 795 * @param offset offset in flash 796 * @param length image length 797 * @return image length including bad blocks in *len_incl_bad and whether or not 798 * the length returned was truncated in *truncated 799 */ 800 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, 801 const uint64_t length, uint64_t *len_incl_bad, 802 int *truncated) 803 { 804 *truncated = 0; 805 *len_incl_bad = 0; 806 807 if (!mtd->block_isbad) { 808 *len_incl_bad = length; 809 return; 810 } 811 812 uint64_t len_excl_bad = 0; 813 uint64_t block_len; 814 815 while (len_excl_bad < length) { 816 if (offset >= mtd->size) { 817 *truncated = 1; 818 return; 819 } 820 821 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1)); 822 823 if (!mtd->block_isbad(mtd, offset & ~(mtd->erasesize - 1))) 824 len_excl_bad += block_len; 825 826 *len_incl_bad += block_len; 827 offset += block_len; 828 } 829 } 830 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */ 831 832 void put_mtd_device(struct mtd_info *mtd) 833 { 834 mutex_lock(&mtd_table_mutex); 835 __put_mtd_device(mtd); 836 mutex_unlock(&mtd_table_mutex); 837 838 } 839 EXPORT_SYMBOL_GPL(put_mtd_device); 840 841 void __put_mtd_device(struct mtd_info *mtd) 842 { 843 --mtd->usecount; 844 BUG_ON(mtd->usecount < 0); 845 846 if (mtd->_put_device) 847 mtd->_put_device(mtd); 848 849 module_put(mtd->owner); 850 } 851 EXPORT_SYMBOL_GPL(__put_mtd_device); 852 853 /* 854 * Erase is an asynchronous operation. Device drivers are supposed 855 * to call instr->callback() whenever the operation completes, even 856 * if it completes with a failure. 857 * Callers are supposed to pass a callback function and wait for it 858 * to be called before writing to the block. 859 */ 860 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 861 { 862 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) 863 return -EINVAL; 864 if (!(mtd->flags & MTD_WRITEABLE)) 865 return -EROFS; 866 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 867 if (!instr->len) { 868 instr->state = MTD_ERASE_DONE; 869 mtd_erase_callback(instr); 870 return 0; 871 } 872 return mtd->_erase(mtd, instr); 873 } 874 EXPORT_SYMBOL_GPL(mtd_erase); 875 876 #ifndef __UBOOT__ 877 /* 878 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 879 */ 880 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 881 void **virt, resource_size_t *phys) 882 { 883 *retlen = 0; 884 *virt = NULL; 885 if (phys) 886 *phys = 0; 887 if (!mtd->_point) 888 return -EOPNOTSUPP; 889 if (from < 0 || from > mtd->size || len > mtd->size - from) 890 return -EINVAL; 891 if (!len) 892 return 0; 893 return mtd->_point(mtd, from, len, retlen, virt, phys); 894 } 895 EXPORT_SYMBOL_GPL(mtd_point); 896 897 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 898 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 899 { 900 if (!mtd->_point) 901 return -EOPNOTSUPP; 902 if (from < 0 || from > mtd->size || len > mtd->size - from) 903 return -EINVAL; 904 if (!len) 905 return 0; 906 return mtd->_unpoint(mtd, from, len); 907 } 908 EXPORT_SYMBOL_GPL(mtd_unpoint); 909 #endif 910 911 /* 912 * Allow NOMMU mmap() to directly map the device (if not NULL) 913 * - return the address to which the offset maps 914 * - return -ENOSYS to indicate refusal to do the mapping 915 */ 916 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 917 unsigned long offset, unsigned long flags) 918 { 919 if (!mtd->_get_unmapped_area) 920 return -EOPNOTSUPP; 921 if (offset > mtd->size || len > mtd->size - offset) 922 return -EINVAL; 923 return mtd->_get_unmapped_area(mtd, len, offset, flags); 924 } 925 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 926 927 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 928 u_char *buf) 929 { 930 int ret_code; 931 *retlen = 0; 932 if (from < 0 || from > mtd->size || len > mtd->size - from) 933 return -EINVAL; 934 if (!len) 935 return 0; 936 937 /* 938 * In the absence of an error, drivers return a non-negative integer 939 * representing the maximum number of bitflips that were corrected on 940 * any one ecc region (if applicable; zero otherwise). 941 */ 942 ret_code = mtd->_read(mtd, from, len, retlen, buf); 943 if (unlikely(ret_code < 0)) 944 return ret_code; 945 if (mtd->ecc_strength == 0) 946 return 0; /* device lacks ecc */ 947 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 948 } 949 EXPORT_SYMBOL_GPL(mtd_read); 950 951 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 952 const u_char *buf) 953 { 954 *retlen = 0; 955 if (to < 0 || to > mtd->size || len > mtd->size - to) 956 return -EINVAL; 957 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 958 return -EROFS; 959 if (!len) 960 return 0; 961 return mtd->_write(mtd, to, len, retlen, buf); 962 } 963 EXPORT_SYMBOL_GPL(mtd_write); 964 965 /* 966 * In blackbox flight recorder like scenarios we want to make successful writes 967 * in interrupt context. panic_write() is only intended to be called when its 968 * known the kernel is about to panic and we need the write to succeed. Since 969 * the kernel is not going to be running for much longer, this function can 970 * break locks and delay to ensure the write succeeds (but not sleep). 971 */ 972 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 973 const u_char *buf) 974 { 975 *retlen = 0; 976 if (!mtd->_panic_write) 977 return -EOPNOTSUPP; 978 if (to < 0 || to > mtd->size || len > mtd->size - to) 979 return -EINVAL; 980 if (!(mtd->flags & MTD_WRITEABLE)) 981 return -EROFS; 982 if (!len) 983 return 0; 984 return mtd->_panic_write(mtd, to, len, retlen, buf); 985 } 986 EXPORT_SYMBOL_GPL(mtd_panic_write); 987 988 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 989 { 990 int ret_code; 991 ops->retlen = ops->oobretlen = 0; 992 if (!mtd->_read_oob) 993 return -EOPNOTSUPP; 994 /* 995 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 996 * similar to mtd->_read(), returning a non-negative integer 997 * representing max bitflips. In other cases, mtd->_read_oob() may 998 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 999 */ 1000 ret_code = mtd->_read_oob(mtd, from, ops); 1001 if (unlikely(ret_code < 0)) 1002 return ret_code; 1003 if (mtd->ecc_strength == 0) 1004 return 0; /* device lacks ecc */ 1005 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1006 } 1007 EXPORT_SYMBOL_GPL(mtd_read_oob); 1008 1009 /* 1010 * Method to access the protection register area, present in some flash 1011 * devices. The user data is one time programmable but the factory data is read 1012 * only. 1013 */ 1014 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1015 struct otp_info *buf) 1016 { 1017 if (!mtd->_get_fact_prot_info) 1018 return -EOPNOTSUPP; 1019 if (!len) 1020 return 0; 1021 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1022 } 1023 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1024 1025 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1026 size_t *retlen, u_char *buf) 1027 { 1028 *retlen = 0; 1029 if (!mtd->_read_fact_prot_reg) 1030 return -EOPNOTSUPP; 1031 if (!len) 1032 return 0; 1033 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1034 } 1035 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1036 1037 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1038 struct otp_info *buf) 1039 { 1040 if (!mtd->_get_user_prot_info) 1041 return -EOPNOTSUPP; 1042 if (!len) 1043 return 0; 1044 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1045 } 1046 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1047 1048 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1049 size_t *retlen, u_char *buf) 1050 { 1051 *retlen = 0; 1052 if (!mtd->_read_user_prot_reg) 1053 return -EOPNOTSUPP; 1054 if (!len) 1055 return 0; 1056 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1057 } 1058 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1059 1060 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1061 size_t *retlen, u_char *buf) 1062 { 1063 int ret; 1064 1065 *retlen = 0; 1066 if (!mtd->_write_user_prot_reg) 1067 return -EOPNOTSUPP; 1068 if (!len) 1069 return 0; 1070 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1071 if (ret) 1072 return ret; 1073 1074 /* 1075 * If no data could be written at all, we are out of memory and 1076 * must return -ENOSPC. 1077 */ 1078 return (*retlen) ? 0 : -ENOSPC; 1079 } 1080 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1081 1082 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1083 { 1084 if (!mtd->_lock_user_prot_reg) 1085 return -EOPNOTSUPP; 1086 if (!len) 1087 return 0; 1088 return mtd->_lock_user_prot_reg(mtd, from, len); 1089 } 1090 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1091 1092 /* Chip-supported device locking */ 1093 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1094 { 1095 if (!mtd->_lock) 1096 return -EOPNOTSUPP; 1097 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1098 return -EINVAL; 1099 if (!len) 1100 return 0; 1101 return mtd->_lock(mtd, ofs, len); 1102 } 1103 EXPORT_SYMBOL_GPL(mtd_lock); 1104 1105 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1106 { 1107 if (!mtd->_unlock) 1108 return -EOPNOTSUPP; 1109 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1110 return -EINVAL; 1111 if (!len) 1112 return 0; 1113 return mtd->_unlock(mtd, ofs, len); 1114 } 1115 EXPORT_SYMBOL_GPL(mtd_unlock); 1116 1117 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1118 { 1119 if (!mtd->_is_locked) 1120 return -EOPNOTSUPP; 1121 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1122 return -EINVAL; 1123 if (!len) 1124 return 0; 1125 return mtd->_is_locked(mtd, ofs, len); 1126 } 1127 EXPORT_SYMBOL_GPL(mtd_is_locked); 1128 1129 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1130 { 1131 if (!mtd->_block_isbad) 1132 return 0; 1133 if (ofs < 0 || ofs > mtd->size) 1134 return -EINVAL; 1135 return mtd->_block_isbad(mtd, ofs); 1136 } 1137 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1138 1139 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1140 { 1141 if (!mtd->_block_markbad) 1142 return -EOPNOTSUPP; 1143 if (ofs < 0 || ofs > mtd->size) 1144 return -EINVAL; 1145 if (!(mtd->flags & MTD_WRITEABLE)) 1146 return -EROFS; 1147 return mtd->_block_markbad(mtd, ofs); 1148 } 1149 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1150 1151 #ifndef __UBOOT__ 1152 /* 1153 * default_mtd_writev - the default writev method 1154 * @mtd: mtd device description object pointer 1155 * @vecs: the vectors to write 1156 * @count: count of vectors in @vecs 1157 * @to: the MTD device offset to write to 1158 * @retlen: on exit contains the count of bytes written to the MTD device. 1159 * 1160 * This function returns zero in case of success and a negative error code in 1161 * case of failure. 1162 */ 1163 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1164 unsigned long count, loff_t to, size_t *retlen) 1165 { 1166 unsigned long i; 1167 size_t totlen = 0, thislen; 1168 int ret = 0; 1169 1170 for (i = 0; i < count; i++) { 1171 if (!vecs[i].iov_len) 1172 continue; 1173 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1174 vecs[i].iov_base); 1175 totlen += thislen; 1176 if (ret || thislen != vecs[i].iov_len) 1177 break; 1178 to += vecs[i].iov_len; 1179 } 1180 *retlen = totlen; 1181 return ret; 1182 } 1183 1184 /* 1185 * mtd_writev - the vector-based MTD write method 1186 * @mtd: mtd device description object pointer 1187 * @vecs: the vectors to write 1188 * @count: count of vectors in @vecs 1189 * @to: the MTD device offset to write to 1190 * @retlen: on exit contains the count of bytes written to the MTD device. 1191 * 1192 * This function returns zero in case of success and a negative error code in 1193 * case of failure. 1194 */ 1195 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1196 unsigned long count, loff_t to, size_t *retlen) 1197 { 1198 *retlen = 0; 1199 if (!(mtd->flags & MTD_WRITEABLE)) 1200 return -EROFS; 1201 if (!mtd->_writev) 1202 return default_mtd_writev(mtd, vecs, count, to, retlen); 1203 return mtd->_writev(mtd, vecs, count, to, retlen); 1204 } 1205 EXPORT_SYMBOL_GPL(mtd_writev); 1206 1207 /** 1208 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1209 * @mtd: mtd device description object pointer 1210 * @size: a pointer to the ideal or maximum size of the allocation, points 1211 * to the actual allocation size on success. 1212 * 1213 * This routine attempts to allocate a contiguous kernel buffer up to 1214 * the specified size, backing off the size of the request exponentially 1215 * until the request succeeds or until the allocation size falls below 1216 * the system page size. This attempts to make sure it does not adversely 1217 * impact system performance, so when allocating more than one page, we 1218 * ask the memory allocator to avoid re-trying, swapping, writing back 1219 * or performing I/O. 1220 * 1221 * Note, this function also makes sure that the allocated buffer is aligned to 1222 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1223 * 1224 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1225 * to handle smaller (i.e. degraded) buffer allocations under low- or 1226 * fragmented-memory situations where such reduced allocations, from a 1227 * requested ideal, are allowed. 1228 * 1229 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1230 */ 1231 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1232 { 1233 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1234 __GFP_NORETRY | __GFP_NO_KSWAPD; 1235 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1236 void *kbuf; 1237 1238 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1239 1240 while (*size > min_alloc) { 1241 kbuf = kmalloc(*size, flags); 1242 if (kbuf) 1243 return kbuf; 1244 1245 *size >>= 1; 1246 *size = ALIGN(*size, mtd->writesize); 1247 } 1248 1249 /* 1250 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1251 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1252 */ 1253 return kmalloc(*size, GFP_KERNEL); 1254 } 1255 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1256 #endif 1257 1258 #ifdef CONFIG_PROC_FS 1259 1260 /*====================================================================*/ 1261 /* Support for /proc/mtd */ 1262 1263 static int mtd_proc_show(struct seq_file *m, void *v) 1264 { 1265 struct mtd_info *mtd; 1266 1267 seq_puts(m, "dev: size erasesize name\n"); 1268 mutex_lock(&mtd_table_mutex); 1269 mtd_for_each_device(mtd) { 1270 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1271 mtd->index, (unsigned long long)mtd->size, 1272 mtd->erasesize, mtd->name); 1273 } 1274 mutex_unlock(&mtd_table_mutex); 1275 return 0; 1276 } 1277 1278 static int mtd_proc_open(struct inode *inode, struct file *file) 1279 { 1280 return single_open(file, mtd_proc_show, NULL); 1281 } 1282 1283 static const struct file_operations mtd_proc_ops = { 1284 .open = mtd_proc_open, 1285 .read = seq_read, 1286 .llseek = seq_lseek, 1287 .release = single_release, 1288 }; 1289 #endif /* CONFIG_PROC_FS */ 1290 1291 /*====================================================================*/ 1292 /* Init code */ 1293 1294 #ifndef __UBOOT__ 1295 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1296 { 1297 int ret; 1298 1299 ret = bdi_init(bdi); 1300 if (!ret) 1301 ret = bdi_register(bdi, NULL, "%s", name); 1302 1303 if (ret) 1304 bdi_destroy(bdi); 1305 1306 return ret; 1307 } 1308 1309 static struct proc_dir_entry *proc_mtd; 1310 1311 static int __init init_mtd(void) 1312 { 1313 int ret; 1314 1315 ret = class_register(&mtd_class); 1316 if (ret) 1317 goto err_reg; 1318 1319 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap"); 1320 if (ret) 1321 goto err_bdi1; 1322 1323 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap"); 1324 if (ret) 1325 goto err_bdi2; 1326 1327 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap"); 1328 if (ret) 1329 goto err_bdi3; 1330 1331 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1332 1333 ret = init_mtdchar(); 1334 if (ret) 1335 goto out_procfs; 1336 1337 return 0; 1338 1339 out_procfs: 1340 if (proc_mtd) 1341 remove_proc_entry("mtd", NULL); 1342 err_bdi3: 1343 bdi_destroy(&mtd_bdi_ro_mappable); 1344 err_bdi2: 1345 bdi_destroy(&mtd_bdi_unmappable); 1346 err_bdi1: 1347 class_unregister(&mtd_class); 1348 err_reg: 1349 pr_err("Error registering mtd class or bdi: %d\n", ret); 1350 return ret; 1351 } 1352 1353 static void __exit cleanup_mtd(void) 1354 { 1355 cleanup_mtdchar(); 1356 if (proc_mtd) 1357 remove_proc_entry("mtd", NULL); 1358 class_unregister(&mtd_class); 1359 bdi_destroy(&mtd_bdi_unmappable); 1360 bdi_destroy(&mtd_bdi_ro_mappable); 1361 bdi_destroy(&mtd_bdi_rw_mappable); 1362 } 1363 1364 module_init(init_mtd); 1365 module_exit(cleanup_mtd); 1366 #endif 1367 1368 MODULE_LICENSE("GPL"); 1369 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1370 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1371