xref: /openbmc/u-boot/drivers/mtd/mtdcore.c (revision 0f347a0096ad0c1e56d1b18b7eb60731d40d49c2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  *
9  */
10 
11 #ifndef __UBOOT__
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/ptrace.h>
15 #include <linux/seq_file.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/major.h>
19 #include <linux/fs.h>
20 #include <linux/err.h>
21 #include <linux/ioctl.h>
22 #include <linux/init.h>
23 #include <linux/proc_fs.h>
24 #include <linux/idr.h>
25 #include <linux/backing-dev.h>
26 #include <linux/gfp.h>
27 #include <linux/slab.h>
28 #else
29 #include <linux/err.h>
30 #include <ubi_uboot.h>
31 #endif
32 
33 #include <linux/log2.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/partitions.h>
36 
37 #include "mtdcore.h"
38 
39 #ifndef __UBOOT__
40 /*
41  * backing device capabilities for non-mappable devices (such as NAND flash)
42  * - permits private mappings, copies are taken of the data
43  */
44 static struct backing_dev_info mtd_bdi_unmappable = {
45 	.capabilities	= BDI_CAP_MAP_COPY,
46 };
47 
48 /*
49  * backing device capabilities for R/O mappable devices (such as ROM)
50  * - permits private mappings, copies are taken of the data
51  * - permits non-writable shared mappings
52  */
53 static struct backing_dev_info mtd_bdi_ro_mappable = {
54 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
55 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
56 };
57 
58 /*
59  * backing device capabilities for writable mappable devices (such as RAM)
60  * - permits private mappings, copies are taken of the data
61  * - permits non-writable shared mappings
62  */
63 static struct backing_dev_info mtd_bdi_rw_mappable = {
64 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
65 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
66 			   BDI_CAP_WRITE_MAP),
67 };
68 
69 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
70 static int mtd_cls_resume(struct device *dev);
71 
72 static struct class mtd_class = {
73 	.name = "mtd",
74 	.owner = THIS_MODULE,
75 	.suspend = mtd_cls_suspend,
76 	.resume = mtd_cls_resume,
77 };
78 #else
79 struct mtd_info *mtd_table[MAX_MTD_DEVICES];
80 
81 #define MAX_IDR_ID	64
82 
83 struct idr_layer {
84 	int	used;
85 	void	*ptr;
86 };
87 
88 struct idr {
89 	struct idr_layer id[MAX_IDR_ID];
90 };
91 
92 #define DEFINE_IDR(name)	struct idr name;
93 
94 void idr_remove(struct idr *idp, int id)
95 {
96 	if (idp->id[id].used)
97 		idp->id[id].used = 0;
98 
99 	return;
100 }
101 void *idr_find(struct idr *idp, int id)
102 {
103 	if (idp->id[id].used)
104 		return idp->id[id].ptr;
105 
106 	return NULL;
107 }
108 
109 void *idr_get_next(struct idr *idp, int *next)
110 {
111 	void *ret;
112 	int id = *next;
113 
114 	ret = idr_find(idp, id);
115 	if (ret) {
116 		id ++;
117 		if (!idp->id[id].used)
118 			id = 0;
119 		*next = id;
120 	} else {
121 		*next = 0;
122 	}
123 
124 	return ret;
125 }
126 
127 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
128 {
129 	struct idr_layer *idl;
130 	int i = 0;
131 
132 	while (i < MAX_IDR_ID) {
133 		idl = &idp->id[i];
134 		if (idl->used == 0) {
135 			idl->used = 1;
136 			idl->ptr = ptr;
137 			return i;
138 		}
139 		i++;
140 	}
141 	return -ENOSPC;
142 }
143 #endif
144 
145 static DEFINE_IDR(mtd_idr);
146 
147 /* These are exported solely for the purpose of mtd_blkdevs.c. You
148    should not use them for _anything_ else */
149 DEFINE_MUTEX(mtd_table_mutex);
150 EXPORT_SYMBOL_GPL(mtd_table_mutex);
151 
152 struct mtd_info *__mtd_next_device(int i)
153 {
154 	return idr_get_next(&mtd_idr, &i);
155 }
156 EXPORT_SYMBOL_GPL(__mtd_next_device);
157 
158 #ifndef __UBOOT__
159 static LIST_HEAD(mtd_notifiers);
160 
161 
162 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
163 
164 /* REVISIT once MTD uses the driver model better, whoever allocates
165  * the mtd_info will probably want to use the release() hook...
166  */
167 static void mtd_release(struct device *dev)
168 {
169 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
170 	dev_t index = MTD_DEVT(mtd->index);
171 
172 	/* remove /dev/mtdXro node if needed */
173 	if (index)
174 		device_destroy(&mtd_class, index + 1);
175 }
176 
177 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
178 {
179 	struct mtd_info *mtd = dev_get_drvdata(dev);
180 
181 	return mtd ? mtd_suspend(mtd) : 0;
182 }
183 
184 static int mtd_cls_resume(struct device *dev)
185 {
186 	struct mtd_info *mtd = dev_get_drvdata(dev);
187 
188 	if (mtd)
189 		mtd_resume(mtd);
190 	return 0;
191 }
192 
193 static ssize_t mtd_type_show(struct device *dev,
194 		struct device_attribute *attr, char *buf)
195 {
196 	struct mtd_info *mtd = dev_get_drvdata(dev);
197 	char *type;
198 
199 	switch (mtd->type) {
200 	case MTD_ABSENT:
201 		type = "absent";
202 		break;
203 	case MTD_RAM:
204 		type = "ram";
205 		break;
206 	case MTD_ROM:
207 		type = "rom";
208 		break;
209 	case MTD_NORFLASH:
210 		type = "nor";
211 		break;
212 	case MTD_NANDFLASH:
213 		type = "nand";
214 		break;
215 	case MTD_DATAFLASH:
216 		type = "dataflash";
217 		break;
218 	case MTD_UBIVOLUME:
219 		type = "ubi";
220 		break;
221 	case MTD_MLCNANDFLASH:
222 		type = "mlc-nand";
223 		break;
224 	default:
225 		type = "unknown";
226 	}
227 
228 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
229 }
230 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
231 
232 static ssize_t mtd_flags_show(struct device *dev,
233 		struct device_attribute *attr, char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
238 
239 }
240 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
241 
242 static ssize_t mtd_size_show(struct device *dev,
243 		struct device_attribute *attr, char *buf)
244 {
245 	struct mtd_info *mtd = dev_get_drvdata(dev);
246 
247 	return snprintf(buf, PAGE_SIZE, "%llu\n",
248 		(unsigned long long)mtd->size);
249 
250 }
251 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
252 
253 static ssize_t mtd_erasesize_show(struct device *dev,
254 		struct device_attribute *attr, char *buf)
255 {
256 	struct mtd_info *mtd = dev_get_drvdata(dev);
257 
258 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
259 
260 }
261 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
262 
263 static ssize_t mtd_writesize_show(struct device *dev,
264 		struct device_attribute *attr, char *buf)
265 {
266 	struct mtd_info *mtd = dev_get_drvdata(dev);
267 
268 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
269 
270 }
271 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
272 
273 static ssize_t mtd_subpagesize_show(struct device *dev,
274 		struct device_attribute *attr, char *buf)
275 {
276 	struct mtd_info *mtd = dev_get_drvdata(dev);
277 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
278 
279 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
280 
281 }
282 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
283 
284 static ssize_t mtd_oobsize_show(struct device *dev,
285 		struct device_attribute *attr, char *buf)
286 {
287 	struct mtd_info *mtd = dev_get_drvdata(dev);
288 
289 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
290 
291 }
292 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
293 
294 static ssize_t mtd_numeraseregions_show(struct device *dev,
295 		struct device_attribute *attr, char *buf)
296 {
297 	struct mtd_info *mtd = dev_get_drvdata(dev);
298 
299 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
300 
301 }
302 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
303 	NULL);
304 
305 static ssize_t mtd_name_show(struct device *dev,
306 		struct device_attribute *attr, char *buf)
307 {
308 	struct mtd_info *mtd = dev_get_drvdata(dev);
309 
310 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
311 
312 }
313 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
314 
315 static ssize_t mtd_ecc_strength_show(struct device *dev,
316 				     struct device_attribute *attr, char *buf)
317 {
318 	struct mtd_info *mtd = dev_get_drvdata(dev);
319 
320 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
321 }
322 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
323 
324 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
325 					  struct device_attribute *attr,
326 					  char *buf)
327 {
328 	struct mtd_info *mtd = dev_get_drvdata(dev);
329 
330 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
331 }
332 
333 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
334 					   struct device_attribute *attr,
335 					   const char *buf, size_t count)
336 {
337 	struct mtd_info *mtd = dev_get_drvdata(dev);
338 	unsigned int bitflip_threshold;
339 	int retval;
340 
341 	retval = kstrtouint(buf, 0, &bitflip_threshold);
342 	if (retval)
343 		return retval;
344 
345 	mtd->bitflip_threshold = bitflip_threshold;
346 	return count;
347 }
348 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
349 		   mtd_bitflip_threshold_show,
350 		   mtd_bitflip_threshold_store);
351 
352 static ssize_t mtd_ecc_step_size_show(struct device *dev,
353 		struct device_attribute *attr, char *buf)
354 {
355 	struct mtd_info *mtd = dev_get_drvdata(dev);
356 
357 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
358 
359 }
360 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
361 
362 static struct attribute *mtd_attrs[] = {
363 	&dev_attr_type.attr,
364 	&dev_attr_flags.attr,
365 	&dev_attr_size.attr,
366 	&dev_attr_erasesize.attr,
367 	&dev_attr_writesize.attr,
368 	&dev_attr_subpagesize.attr,
369 	&dev_attr_oobsize.attr,
370 	&dev_attr_numeraseregions.attr,
371 	&dev_attr_name.attr,
372 	&dev_attr_ecc_strength.attr,
373 	&dev_attr_ecc_step_size.attr,
374 	&dev_attr_bitflip_threshold.attr,
375 	NULL,
376 };
377 ATTRIBUTE_GROUPS(mtd);
378 
379 static struct device_type mtd_devtype = {
380 	.name		= "mtd",
381 	.groups		= mtd_groups,
382 	.release	= mtd_release,
383 };
384 #endif
385 
386 /**
387  *	add_mtd_device - register an MTD device
388  *	@mtd: pointer to new MTD device info structure
389  *
390  *	Add a device to the list of MTD devices present in the system, and
391  *	notify each currently active MTD 'user' of its arrival. Returns
392  *	zero on success or 1 on failure, which currently will only happen
393  *	if there is insufficient memory or a sysfs error.
394  */
395 
396 int add_mtd_device(struct mtd_info *mtd)
397 {
398 #ifndef __UBOOT__
399 	struct mtd_notifier *not;
400 #endif
401 	int i, error;
402 
403 #ifndef __UBOOT__
404 	if (!mtd->backing_dev_info) {
405 		switch (mtd->type) {
406 		case MTD_RAM:
407 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
408 			break;
409 		case MTD_ROM:
410 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
411 			break;
412 		default:
413 			mtd->backing_dev_info = &mtd_bdi_unmappable;
414 			break;
415 		}
416 	}
417 #endif
418 
419 	BUG_ON(mtd->writesize == 0);
420 	mutex_lock(&mtd_table_mutex);
421 
422 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
423 	if (i < 0)
424 		goto fail_locked;
425 
426 	mtd->index = i;
427 	mtd->usecount = 0;
428 
429 	INIT_LIST_HEAD(&mtd->partitions);
430 
431 	/* default value if not set by driver */
432 	if (mtd->bitflip_threshold == 0)
433 		mtd->bitflip_threshold = mtd->ecc_strength;
434 
435 	if (is_power_of_2(mtd->erasesize))
436 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
437 	else
438 		mtd->erasesize_shift = 0;
439 
440 	if (is_power_of_2(mtd->writesize))
441 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
442 	else
443 		mtd->writesize_shift = 0;
444 
445 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
446 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
447 
448 	/* Some chips always power up locked. Unlock them now */
449 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
450 		error = mtd_unlock(mtd, 0, mtd->size);
451 		if (error && error != -EOPNOTSUPP)
452 			printk(KERN_WARNING
453 			       "%s: unlock failed, writes may not work\n",
454 			       mtd->name);
455 	}
456 
457 #ifndef __UBOOT__
458 	/* Caller should have set dev.parent to match the
459 	 * physical device.
460 	 */
461 	mtd->dev.type = &mtd_devtype;
462 	mtd->dev.class = &mtd_class;
463 	mtd->dev.devt = MTD_DEVT(i);
464 	dev_set_name(&mtd->dev, "mtd%d", i);
465 	dev_set_drvdata(&mtd->dev, mtd);
466 	if (device_register(&mtd->dev) != 0)
467 		goto fail_added;
468 
469 	if (MTD_DEVT(i))
470 		device_create(&mtd_class, mtd->dev.parent,
471 			      MTD_DEVT(i) + 1,
472 			      NULL, "mtd%dro", i);
473 
474 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
475 	/* No need to get a refcount on the module containing
476 	   the notifier, since we hold the mtd_table_mutex */
477 	list_for_each_entry(not, &mtd_notifiers, list)
478 		not->add(mtd);
479 #else
480 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
481 #endif
482 
483 	mutex_unlock(&mtd_table_mutex);
484 	/* We _know_ we aren't being removed, because
485 	   our caller is still holding us here. So none
486 	   of this try_ nonsense, and no bitching about it
487 	   either. :) */
488 	__module_get(THIS_MODULE);
489 	return 0;
490 
491 #ifndef __UBOOT__
492 fail_added:
493 	idr_remove(&mtd_idr, i);
494 #endif
495 fail_locked:
496 	mutex_unlock(&mtd_table_mutex);
497 	return 1;
498 }
499 
500 /**
501  *	del_mtd_device - unregister an MTD device
502  *	@mtd: pointer to MTD device info structure
503  *
504  *	Remove a device from the list of MTD devices present in the system,
505  *	and notify each currently active MTD 'user' of its departure.
506  *	Returns zero on success or 1 on failure, which currently will happen
507  *	if the requested device does not appear to be present in the list.
508  */
509 
510 int del_mtd_device(struct mtd_info *mtd)
511 {
512 	int ret;
513 #ifndef __UBOOT__
514 	struct mtd_notifier *not;
515 #endif
516 
517 	mutex_lock(&mtd_table_mutex);
518 
519 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
520 		ret = -ENODEV;
521 		goto out_error;
522 	}
523 
524 #ifndef __UBOOT__
525 	/* No need to get a refcount on the module containing
526 		the notifier, since we hold the mtd_table_mutex */
527 	list_for_each_entry(not, &mtd_notifiers, list)
528 		not->remove(mtd);
529 #endif
530 
531 	if (mtd->usecount) {
532 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
533 		       mtd->index, mtd->name, mtd->usecount);
534 		ret = -EBUSY;
535 	} else {
536 #ifndef __UBOOT__
537 		device_unregister(&mtd->dev);
538 #endif
539 
540 		idr_remove(&mtd_idr, mtd->index);
541 
542 		module_put(THIS_MODULE);
543 		ret = 0;
544 	}
545 
546 out_error:
547 	mutex_unlock(&mtd_table_mutex);
548 	return ret;
549 }
550 
551 #ifndef __UBOOT__
552 /**
553  * mtd_device_parse_register - parse partitions and register an MTD device.
554  *
555  * @mtd: the MTD device to register
556  * @types: the list of MTD partition probes to try, see
557  *         'parse_mtd_partitions()' for more information
558  * @parser_data: MTD partition parser-specific data
559  * @parts: fallback partition information to register, if parsing fails;
560  *         only valid if %nr_parts > %0
561  * @nr_parts: the number of partitions in parts, if zero then the full
562  *            MTD device is registered if no partition info is found
563  *
564  * This function aggregates MTD partitions parsing (done by
565  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
566  * basically follows the most common pattern found in many MTD drivers:
567  *
568  * * It first tries to probe partitions on MTD device @mtd using parsers
569  *   specified in @types (if @types is %NULL, then the default list of parsers
570  *   is used, see 'parse_mtd_partitions()' for more information). If none are
571  *   found this functions tries to fallback to information specified in
572  *   @parts/@nr_parts.
573  * * If any partitioning info was found, this function registers the found
574  *   partitions.
575  * * If no partitions were found this function just registers the MTD device
576  *   @mtd and exits.
577  *
578  * Returns zero in case of success and a negative error code in case of failure.
579  */
580 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
581 			      struct mtd_part_parser_data *parser_data,
582 			      const struct mtd_partition *parts,
583 			      int nr_parts)
584 {
585 	int err;
586 	struct mtd_partition *real_parts;
587 
588 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
589 	if (err <= 0 && nr_parts && parts) {
590 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
591 				     GFP_KERNEL);
592 		if (!real_parts)
593 			err = -ENOMEM;
594 		else
595 			err = nr_parts;
596 	}
597 
598 	if (err > 0) {
599 		err = add_mtd_partitions(mtd, real_parts, err);
600 		kfree(real_parts);
601 	} else if (err == 0) {
602 		err = add_mtd_device(mtd);
603 		if (err == 1)
604 			err = -ENODEV;
605 	}
606 
607 	return err;
608 }
609 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
610 
611 /**
612  * mtd_device_unregister - unregister an existing MTD device.
613  *
614  * @master: the MTD device to unregister.  This will unregister both the master
615  *          and any partitions if registered.
616  */
617 int mtd_device_unregister(struct mtd_info *master)
618 {
619 	int err;
620 
621 	err = del_mtd_partitions(master);
622 	if (err)
623 		return err;
624 
625 	if (!device_is_registered(&master->dev))
626 		return 0;
627 
628 	return del_mtd_device(master);
629 }
630 EXPORT_SYMBOL_GPL(mtd_device_unregister);
631 
632 /**
633  *	register_mtd_user - register a 'user' of MTD devices.
634  *	@new: pointer to notifier info structure
635  *
636  *	Registers a pair of callbacks function to be called upon addition
637  *	or removal of MTD devices. Causes the 'add' callback to be immediately
638  *	invoked for each MTD device currently present in the system.
639  */
640 void register_mtd_user (struct mtd_notifier *new)
641 {
642 	struct mtd_info *mtd;
643 
644 	mutex_lock(&mtd_table_mutex);
645 
646 	list_add(&new->list, &mtd_notifiers);
647 
648 	__module_get(THIS_MODULE);
649 
650 	mtd_for_each_device(mtd)
651 		new->add(mtd);
652 
653 	mutex_unlock(&mtd_table_mutex);
654 }
655 EXPORT_SYMBOL_GPL(register_mtd_user);
656 
657 /**
658  *	unregister_mtd_user - unregister a 'user' of MTD devices.
659  *	@old: pointer to notifier info structure
660  *
661  *	Removes a callback function pair from the list of 'users' to be
662  *	notified upon addition or removal of MTD devices. Causes the
663  *	'remove' callback to be immediately invoked for each MTD device
664  *	currently present in the system.
665  */
666 int unregister_mtd_user (struct mtd_notifier *old)
667 {
668 	struct mtd_info *mtd;
669 
670 	mutex_lock(&mtd_table_mutex);
671 
672 	module_put(THIS_MODULE);
673 
674 	mtd_for_each_device(mtd)
675 		old->remove(mtd);
676 
677 	list_del(&old->list);
678 	mutex_unlock(&mtd_table_mutex);
679 	return 0;
680 }
681 EXPORT_SYMBOL_GPL(unregister_mtd_user);
682 #endif
683 
684 /**
685  *	get_mtd_device - obtain a validated handle for an MTD device
686  *	@mtd: last known address of the required MTD device
687  *	@num: internal device number of the required MTD device
688  *
689  *	Given a number and NULL address, return the num'th entry in the device
690  *	table, if any.	Given an address and num == -1, search the device table
691  *	for a device with that address and return if it's still present. Given
692  *	both, return the num'th driver only if its address matches. Return
693  *	error code if not.
694  */
695 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
696 {
697 	struct mtd_info *ret = NULL, *other;
698 	int err = -ENODEV;
699 
700 	mutex_lock(&mtd_table_mutex);
701 
702 	if (num == -1) {
703 		mtd_for_each_device(other) {
704 			if (other == mtd) {
705 				ret = mtd;
706 				break;
707 			}
708 		}
709 	} else if (num >= 0) {
710 		ret = idr_find(&mtd_idr, num);
711 		if (mtd && mtd != ret)
712 			ret = NULL;
713 	}
714 
715 	if (!ret) {
716 		ret = ERR_PTR(err);
717 		goto out;
718 	}
719 
720 	err = __get_mtd_device(ret);
721 	if (err)
722 		ret = ERR_PTR(err);
723 out:
724 	mutex_unlock(&mtd_table_mutex);
725 	return ret;
726 }
727 EXPORT_SYMBOL_GPL(get_mtd_device);
728 
729 
730 int __get_mtd_device(struct mtd_info *mtd)
731 {
732 	int err;
733 
734 	if (!try_module_get(mtd->owner))
735 		return -ENODEV;
736 
737 	if (mtd->_get_device) {
738 		err = mtd->_get_device(mtd);
739 
740 		if (err) {
741 			module_put(mtd->owner);
742 			return err;
743 		}
744 	}
745 	mtd->usecount++;
746 	return 0;
747 }
748 EXPORT_SYMBOL_GPL(__get_mtd_device);
749 
750 /**
751  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
752  *	device name
753  *	@name: MTD device name to open
754  *
755  * 	This function returns MTD device description structure in case of
756  * 	success and an error code in case of failure.
757  */
758 struct mtd_info *get_mtd_device_nm(const char *name)
759 {
760 	int err = -ENODEV;
761 	struct mtd_info *mtd = NULL, *other;
762 
763 	mutex_lock(&mtd_table_mutex);
764 
765 	mtd_for_each_device(other) {
766 		if (!strcmp(name, other->name)) {
767 			mtd = other;
768 			break;
769 		}
770 	}
771 
772 	if (!mtd)
773 		goto out_unlock;
774 
775 	err = __get_mtd_device(mtd);
776 	if (err)
777 		goto out_unlock;
778 
779 	mutex_unlock(&mtd_table_mutex);
780 	return mtd;
781 
782 out_unlock:
783 	mutex_unlock(&mtd_table_mutex);
784 	return ERR_PTR(err);
785 }
786 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
787 
788 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
789 /**
790  * mtd_get_len_incl_bad
791  *
792  * Check if length including bad blocks fits into device.
793  *
794  * @param mtd an MTD device
795  * @param offset offset in flash
796  * @param length image length
797  * @return image length including bad blocks in *len_incl_bad and whether or not
798  *         the length returned was truncated in *truncated
799  */
800 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
801 			  const uint64_t length, uint64_t *len_incl_bad,
802 			  int *truncated)
803 {
804 	*truncated = 0;
805 	*len_incl_bad = 0;
806 
807 	if (!mtd->_block_isbad) {
808 		*len_incl_bad = length;
809 		return;
810 	}
811 
812 	uint64_t len_excl_bad = 0;
813 	uint64_t block_len;
814 
815 	while (len_excl_bad < length) {
816 		if (offset >= mtd->size) {
817 			*truncated = 1;
818 			return;
819 		}
820 
821 		block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
822 
823 		if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
824 			len_excl_bad += block_len;
825 
826 		*len_incl_bad += block_len;
827 		offset       += block_len;
828 	}
829 }
830 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
831 
832 void put_mtd_device(struct mtd_info *mtd)
833 {
834 	mutex_lock(&mtd_table_mutex);
835 	__put_mtd_device(mtd);
836 	mutex_unlock(&mtd_table_mutex);
837 
838 }
839 EXPORT_SYMBOL_GPL(put_mtd_device);
840 
841 void __put_mtd_device(struct mtd_info *mtd)
842 {
843 	--mtd->usecount;
844 	BUG_ON(mtd->usecount < 0);
845 
846 	if (mtd->_put_device)
847 		mtd->_put_device(mtd);
848 
849 	module_put(mtd->owner);
850 }
851 EXPORT_SYMBOL_GPL(__put_mtd_device);
852 
853 /*
854  * Erase is an asynchronous operation.  Device drivers are supposed
855  * to call instr->callback() whenever the operation completes, even
856  * if it completes with a failure.
857  * Callers are supposed to pass a callback function and wait for it
858  * to be called before writing to the block.
859  */
860 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
861 {
862 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
863 		return -EINVAL;
864 	if (!(mtd->flags & MTD_WRITEABLE))
865 		return -EROFS;
866 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
867 	if (!instr->len) {
868 		instr->state = MTD_ERASE_DONE;
869 		mtd_erase_callback(instr);
870 		return 0;
871 	}
872 	return mtd->_erase(mtd, instr);
873 }
874 EXPORT_SYMBOL_GPL(mtd_erase);
875 
876 #ifndef __UBOOT__
877 /*
878  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
879  */
880 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
881 	      void **virt, resource_size_t *phys)
882 {
883 	*retlen = 0;
884 	*virt = NULL;
885 	if (phys)
886 		*phys = 0;
887 	if (!mtd->_point)
888 		return -EOPNOTSUPP;
889 	if (from < 0 || from > mtd->size || len > mtd->size - from)
890 		return -EINVAL;
891 	if (!len)
892 		return 0;
893 	return mtd->_point(mtd, from, len, retlen, virt, phys);
894 }
895 EXPORT_SYMBOL_GPL(mtd_point);
896 
897 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
898 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
899 {
900 	if (!mtd->_point)
901 		return -EOPNOTSUPP;
902 	if (from < 0 || from > mtd->size || len > mtd->size - from)
903 		return -EINVAL;
904 	if (!len)
905 		return 0;
906 	return mtd->_unpoint(mtd, from, len);
907 }
908 EXPORT_SYMBOL_GPL(mtd_unpoint);
909 #endif
910 
911 /*
912  * Allow NOMMU mmap() to directly map the device (if not NULL)
913  * - return the address to which the offset maps
914  * - return -ENOSYS to indicate refusal to do the mapping
915  */
916 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
917 				    unsigned long offset, unsigned long flags)
918 {
919 	if (!mtd->_get_unmapped_area)
920 		return -EOPNOTSUPP;
921 	if (offset > mtd->size || len > mtd->size - offset)
922 		return -EINVAL;
923 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
924 }
925 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
926 
927 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
928 	     u_char *buf)
929 {
930 	int ret_code;
931 	*retlen = 0;
932 	if (from < 0 || from > mtd->size || len > mtd->size - from)
933 		return -EINVAL;
934 	if (!len)
935 		return 0;
936 
937 	/*
938 	 * In the absence of an error, drivers return a non-negative integer
939 	 * representing the maximum number of bitflips that were corrected on
940 	 * any one ecc region (if applicable; zero otherwise).
941 	 */
942 	if (mtd->_read) {
943 		ret_code = mtd->_read(mtd, from, len, retlen, buf);
944 	} else if (mtd->_read_oob) {
945 		struct mtd_oob_ops ops = {
946 			.len = len,
947 			.datbuf = buf,
948 		};
949 
950 		ret_code = mtd->_read_oob(mtd, from, &ops);
951 		*retlen = ops.retlen;
952 	} else {
953 		return -ENOTSUPP;
954 	}
955 
956 	if (unlikely(ret_code < 0))
957 		return ret_code;
958 	if (mtd->ecc_strength == 0)
959 		return 0;	/* device lacks ecc */
960 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
961 }
962 EXPORT_SYMBOL_GPL(mtd_read);
963 
964 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
965 	      const u_char *buf)
966 {
967 	*retlen = 0;
968 	if (to < 0 || to > mtd->size || len > mtd->size - to)
969 		return -EINVAL;
970 	if ((!mtd->_write && !mtd->_write_oob) ||
971 	    !(mtd->flags & MTD_WRITEABLE))
972 		return -EROFS;
973 	if (!len)
974 		return 0;
975 
976 	if (!mtd->_write) {
977 		struct mtd_oob_ops ops = {
978 			.len = len,
979 			.datbuf = (u8 *)buf,
980 		};
981 		int ret;
982 
983 		ret = mtd->_write_oob(mtd, to, &ops);
984 		*retlen = ops.retlen;
985 		return ret;
986 	}
987 
988 	return mtd->_write(mtd, to, len, retlen, buf);
989 }
990 EXPORT_SYMBOL_GPL(mtd_write);
991 
992 /*
993  * In blackbox flight recorder like scenarios we want to make successful writes
994  * in interrupt context. panic_write() is only intended to be called when its
995  * known the kernel is about to panic and we need the write to succeed. Since
996  * the kernel is not going to be running for much longer, this function can
997  * break locks and delay to ensure the write succeeds (but not sleep).
998  */
999 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1000 		    const u_char *buf)
1001 {
1002 	*retlen = 0;
1003 	if (!mtd->_panic_write)
1004 		return -EOPNOTSUPP;
1005 	if (to < 0 || to > mtd->size || len > mtd->size - to)
1006 		return -EINVAL;
1007 	if (!(mtd->flags & MTD_WRITEABLE))
1008 		return -EROFS;
1009 	if (!len)
1010 		return 0;
1011 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1012 }
1013 EXPORT_SYMBOL_GPL(mtd_panic_write);
1014 
1015 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1016 			     struct mtd_oob_ops *ops)
1017 {
1018 	/*
1019 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1020 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1021 	 *  this case.
1022 	 */
1023 	if (!ops->datbuf)
1024 		ops->len = 0;
1025 
1026 	if (!ops->oobbuf)
1027 		ops->ooblen = 0;
1028 
1029 	if (offs < 0 || offs + ops->len > mtd->size)
1030 		return -EINVAL;
1031 
1032 	if (ops->ooblen) {
1033 		u64 maxooblen;
1034 
1035 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1036 			return -EINVAL;
1037 
1038 		maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1039 			      mtd_div_by_ws(offs, mtd)) *
1040 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1041 		if (ops->ooblen > maxooblen)
1042 			return -EINVAL;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1049 {
1050 	int ret_code;
1051 	ops->retlen = ops->oobretlen = 0;
1052 
1053 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1054 	if (ret_code)
1055 		return ret_code;
1056 
1057 	/* Check the validity of a potential fallback on mtd->_read */
1058 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1059 		return -EOPNOTSUPP;
1060 
1061 	if (mtd->_read_oob)
1062 		ret_code = mtd->_read_oob(mtd, from, ops);
1063 	else
1064 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1065 				      ops->datbuf);
1066 
1067 	/*
1068 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1069 	 * similar to mtd->_read(), returning a non-negative integer
1070 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1071 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1072 	 */
1073 	if (unlikely(ret_code < 0))
1074 		return ret_code;
1075 	if (mtd->ecc_strength == 0)
1076 		return 0;	/* device lacks ecc */
1077 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1078 }
1079 EXPORT_SYMBOL_GPL(mtd_read_oob);
1080 
1081 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1082 				struct mtd_oob_ops *ops)
1083 {
1084 	int ret;
1085 
1086 	ops->retlen = ops->oobretlen = 0;
1087 
1088 	if (!(mtd->flags & MTD_WRITEABLE))
1089 		return -EROFS;
1090 
1091 	ret = mtd_check_oob_ops(mtd, to, ops);
1092 	if (ret)
1093 		return ret;
1094 
1095 	/* Check the validity of a potential fallback on mtd->_write */
1096 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1097 		return -EOPNOTSUPP;
1098 
1099 	if (mtd->_write_oob)
1100 		return mtd->_write_oob(mtd, to, ops);
1101 	else
1102 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1103 				   ops->datbuf);
1104 }
1105 EXPORT_SYMBOL_GPL(mtd_write_oob);
1106 
1107 /**
1108  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1109  * @mtd: MTD device structure
1110  * @section: ECC section. Depending on the layout you may have all the ECC
1111  *	     bytes stored in a single contiguous section, or one section
1112  *	     per ECC chunk (and sometime several sections for a single ECC
1113  *	     ECC chunk)
1114  * @oobecc: OOB region struct filled with the appropriate ECC position
1115  *	    information
1116  *
1117  * This function returns ECC section information in the OOB area. If you want
1118  * to get all the ECC bytes information, then you should call
1119  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1120  *
1121  * Returns zero on success, a negative error code otherwise.
1122  */
1123 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1124 		      struct mtd_oob_region *oobecc)
1125 {
1126 	memset(oobecc, 0, sizeof(*oobecc));
1127 
1128 	if (!mtd || section < 0)
1129 		return -EINVAL;
1130 
1131 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1132 		return -ENOTSUPP;
1133 
1134 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1135 }
1136 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1137 
1138 /**
1139  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1140  *			section
1141  * @mtd: MTD device structure
1142  * @section: Free section you are interested in. Depending on the layout
1143  *	     you may have all the free bytes stored in a single contiguous
1144  *	     section, or one section per ECC chunk plus an extra section
1145  *	     for the remaining bytes (or other funky layout).
1146  * @oobfree: OOB region struct filled with the appropriate free position
1147  *	     information
1148  *
1149  * This function returns free bytes position in the OOB area. If you want
1150  * to get all the free bytes information, then you should call
1151  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1152  *
1153  * Returns zero on success, a negative error code otherwise.
1154  */
1155 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1156 		       struct mtd_oob_region *oobfree)
1157 {
1158 	memset(oobfree, 0, sizeof(*oobfree));
1159 
1160 	if (!mtd || section < 0)
1161 		return -EINVAL;
1162 
1163 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1164 		return -ENOTSUPP;
1165 
1166 	return mtd->ooblayout->free(mtd, section, oobfree);
1167 }
1168 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1169 
1170 /**
1171  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1172  * @mtd: mtd info structure
1173  * @byte: the byte we are searching for
1174  * @sectionp: pointer where the section id will be stored
1175  * @oobregion: used to retrieve the ECC position
1176  * @iter: iterator function. Should be either mtd_ooblayout_free or
1177  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1178  *
1179  * This function returns the section id and oobregion information of a
1180  * specific byte. For example, say you want to know where the 4th ECC byte is
1181  * stored, you'll use:
1182  *
1183  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1184  *
1185  * Returns zero on success, a negative error code otherwise.
1186  */
1187 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1188 				int *sectionp, struct mtd_oob_region *oobregion,
1189 				int (*iter)(struct mtd_info *,
1190 					    int section,
1191 					    struct mtd_oob_region *oobregion))
1192 {
1193 	int pos = 0, ret, section = 0;
1194 
1195 	memset(oobregion, 0, sizeof(*oobregion));
1196 
1197 	while (1) {
1198 		ret = iter(mtd, section, oobregion);
1199 		if (ret)
1200 			return ret;
1201 
1202 		if (pos + oobregion->length > byte)
1203 			break;
1204 
1205 		pos += oobregion->length;
1206 		section++;
1207 	}
1208 
1209 	/*
1210 	 * Adjust region info to make it start at the beginning at the
1211 	 * 'start' ECC byte.
1212 	 */
1213 	oobregion->offset += byte - pos;
1214 	oobregion->length -= byte - pos;
1215 	*sectionp = section;
1216 
1217 	return 0;
1218 }
1219 
1220 /**
1221  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1222  *				  ECC byte
1223  * @mtd: mtd info structure
1224  * @eccbyte: the byte we are searching for
1225  * @sectionp: pointer where the section id will be stored
1226  * @oobregion: OOB region information
1227  *
1228  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1229  * byte.
1230  *
1231  * Returns zero on success, a negative error code otherwise.
1232  */
1233 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1234 				 int *section,
1235 				 struct mtd_oob_region *oobregion)
1236 {
1237 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1238 					 mtd_ooblayout_ecc);
1239 }
1240 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1241 
1242 /**
1243  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1244  * @mtd: mtd info structure
1245  * @buf: destination buffer to store OOB bytes
1246  * @oobbuf: OOB buffer
1247  * @start: first byte to retrieve
1248  * @nbytes: number of bytes to retrieve
1249  * @iter: section iterator
1250  *
1251  * Extract bytes attached to a specific category (ECC or free)
1252  * from the OOB buffer and copy them into buf.
1253  *
1254  * Returns zero on success, a negative error code otherwise.
1255  */
1256 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1257 				const u8 *oobbuf, int start, int nbytes,
1258 				int (*iter)(struct mtd_info *,
1259 					    int section,
1260 					    struct mtd_oob_region *oobregion))
1261 {
1262 	struct mtd_oob_region oobregion;
1263 	int section, ret;
1264 
1265 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1266 					&oobregion, iter);
1267 
1268 	while (!ret) {
1269 		int cnt;
1270 
1271 		cnt = min_t(int, nbytes, oobregion.length);
1272 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1273 		buf += cnt;
1274 		nbytes -= cnt;
1275 
1276 		if (!nbytes)
1277 			break;
1278 
1279 		ret = iter(mtd, ++section, &oobregion);
1280 	}
1281 
1282 	return ret;
1283 }
1284 
1285 /**
1286  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1287  * @mtd: mtd info structure
1288  * @buf: source buffer to get OOB bytes from
1289  * @oobbuf: OOB buffer
1290  * @start: first OOB byte to set
1291  * @nbytes: number of OOB bytes to set
1292  * @iter: section iterator
1293  *
1294  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1295  * is selected by passing the appropriate iterator.
1296  *
1297  * Returns zero on success, a negative error code otherwise.
1298  */
1299 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1300 				u8 *oobbuf, int start, int nbytes,
1301 				int (*iter)(struct mtd_info *,
1302 					    int section,
1303 					    struct mtd_oob_region *oobregion))
1304 {
1305 	struct mtd_oob_region oobregion;
1306 	int section, ret;
1307 
1308 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1309 					&oobregion, iter);
1310 
1311 	while (!ret) {
1312 		int cnt;
1313 
1314 		cnt = min_t(int, nbytes, oobregion.length);
1315 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1316 		buf += cnt;
1317 		nbytes -= cnt;
1318 
1319 		if (!nbytes)
1320 			break;
1321 
1322 		ret = iter(mtd, ++section, &oobregion);
1323 	}
1324 
1325 	return ret;
1326 }
1327 
1328 /**
1329  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1330  * @mtd: mtd info structure
1331  * @iter: category iterator
1332  *
1333  * Count the number of bytes in a given category.
1334  *
1335  * Returns a positive value on success, a negative error code otherwise.
1336  */
1337 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1338 				int (*iter)(struct mtd_info *,
1339 					    int section,
1340 					    struct mtd_oob_region *oobregion))
1341 {
1342 	struct mtd_oob_region oobregion;
1343 	int section = 0, ret, nbytes = 0;
1344 
1345 	while (1) {
1346 		ret = iter(mtd, section++, &oobregion);
1347 		if (ret) {
1348 			if (ret == -ERANGE)
1349 				ret = nbytes;
1350 			break;
1351 		}
1352 
1353 		nbytes += oobregion.length;
1354 	}
1355 
1356 	return ret;
1357 }
1358 
1359 /**
1360  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1361  * @mtd: mtd info structure
1362  * @eccbuf: destination buffer to store ECC bytes
1363  * @oobbuf: OOB buffer
1364  * @start: first ECC byte to retrieve
1365  * @nbytes: number of ECC bytes to retrieve
1366  *
1367  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1368  *
1369  * Returns zero on success, a negative error code otherwise.
1370  */
1371 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1372 			       const u8 *oobbuf, int start, int nbytes)
1373 {
1374 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1375 				       mtd_ooblayout_ecc);
1376 }
1377 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1378 
1379 /**
1380  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1381  * @mtd: mtd info structure
1382  * @eccbuf: source buffer to get ECC bytes from
1383  * @oobbuf: OOB buffer
1384  * @start: first ECC byte to set
1385  * @nbytes: number of ECC bytes to set
1386  *
1387  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1388  *
1389  * Returns zero on success, a negative error code otherwise.
1390  */
1391 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1392 			       u8 *oobbuf, int start, int nbytes)
1393 {
1394 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1395 				       mtd_ooblayout_ecc);
1396 }
1397 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1398 
1399 /**
1400  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1401  * @mtd: mtd info structure
1402  * @databuf: destination buffer to store ECC bytes
1403  * @oobbuf: OOB buffer
1404  * @start: first ECC byte to retrieve
1405  * @nbytes: number of ECC bytes to retrieve
1406  *
1407  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1408  *
1409  * Returns zero on success, a negative error code otherwise.
1410  */
1411 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1412 				const u8 *oobbuf, int start, int nbytes)
1413 {
1414 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1415 				       mtd_ooblayout_free);
1416 }
1417 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1418 
1419 /**
1420  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1421  * @mtd: mtd info structure
1422  * @eccbuf: source buffer to get data bytes from
1423  * @oobbuf: OOB buffer
1424  * @start: first ECC byte to set
1425  * @nbytes: number of ECC bytes to set
1426  *
1427  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1428  *
1429  * Returns zero on success, a negative error code otherwise.
1430  */
1431 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1432 				u8 *oobbuf, int start, int nbytes)
1433 {
1434 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1435 				       mtd_ooblayout_free);
1436 }
1437 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1438 
1439 /**
1440  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1441  * @mtd: mtd info structure
1442  *
1443  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1444  *
1445  * Returns zero on success, a negative error code otherwise.
1446  */
1447 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1448 {
1449 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1450 }
1451 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1452 
1453 /**
1454  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1455  * @mtd: mtd info structure
1456  *
1457  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1458  *
1459  * Returns zero on success, a negative error code otherwise.
1460  */
1461 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1462 {
1463 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1464 }
1465 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1466 
1467 /*
1468  * Method to access the protection register area, present in some flash
1469  * devices. The user data is one time programmable but the factory data is read
1470  * only.
1471  */
1472 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1473 			   struct otp_info *buf)
1474 {
1475 	if (!mtd->_get_fact_prot_info)
1476 		return -EOPNOTSUPP;
1477 	if (!len)
1478 		return 0;
1479 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1480 }
1481 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1482 
1483 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1484 			   size_t *retlen, u_char *buf)
1485 {
1486 	*retlen = 0;
1487 	if (!mtd->_read_fact_prot_reg)
1488 		return -EOPNOTSUPP;
1489 	if (!len)
1490 		return 0;
1491 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1492 }
1493 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1494 
1495 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1496 			   struct otp_info *buf)
1497 {
1498 	if (!mtd->_get_user_prot_info)
1499 		return -EOPNOTSUPP;
1500 	if (!len)
1501 		return 0;
1502 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1503 }
1504 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1505 
1506 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1507 			   size_t *retlen, u_char *buf)
1508 {
1509 	*retlen = 0;
1510 	if (!mtd->_read_user_prot_reg)
1511 		return -EOPNOTSUPP;
1512 	if (!len)
1513 		return 0;
1514 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1515 }
1516 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1517 
1518 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1519 			    size_t *retlen, u_char *buf)
1520 {
1521 	int ret;
1522 
1523 	*retlen = 0;
1524 	if (!mtd->_write_user_prot_reg)
1525 		return -EOPNOTSUPP;
1526 	if (!len)
1527 		return 0;
1528 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1529 	if (ret)
1530 		return ret;
1531 
1532 	/*
1533 	 * If no data could be written at all, we are out of memory and
1534 	 * must return -ENOSPC.
1535 	 */
1536 	return (*retlen) ? 0 : -ENOSPC;
1537 }
1538 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1539 
1540 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1541 {
1542 	if (!mtd->_lock_user_prot_reg)
1543 		return -EOPNOTSUPP;
1544 	if (!len)
1545 		return 0;
1546 	return mtd->_lock_user_prot_reg(mtd, from, len);
1547 }
1548 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1549 
1550 /* Chip-supported device locking */
1551 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1552 {
1553 	if (!mtd->_lock)
1554 		return -EOPNOTSUPP;
1555 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1556 		return -EINVAL;
1557 	if (!len)
1558 		return 0;
1559 	return mtd->_lock(mtd, ofs, len);
1560 }
1561 EXPORT_SYMBOL_GPL(mtd_lock);
1562 
1563 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1564 {
1565 	if (!mtd->_unlock)
1566 		return -EOPNOTSUPP;
1567 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1568 		return -EINVAL;
1569 	if (!len)
1570 		return 0;
1571 	return mtd->_unlock(mtd, ofs, len);
1572 }
1573 EXPORT_SYMBOL_GPL(mtd_unlock);
1574 
1575 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1576 {
1577 	if (!mtd->_is_locked)
1578 		return -EOPNOTSUPP;
1579 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1580 		return -EINVAL;
1581 	if (!len)
1582 		return 0;
1583 	return mtd->_is_locked(mtd, ofs, len);
1584 }
1585 EXPORT_SYMBOL_GPL(mtd_is_locked);
1586 
1587 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1588 {
1589 	if (ofs < 0 || ofs > mtd->size)
1590 		return -EINVAL;
1591 	if (!mtd->_block_isreserved)
1592 		return 0;
1593 	return mtd->_block_isreserved(mtd, ofs);
1594 }
1595 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1596 
1597 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1598 {
1599 	if (ofs < 0 || ofs > mtd->size)
1600 		return -EINVAL;
1601 	if (!mtd->_block_isbad)
1602 		return 0;
1603 	return mtd->_block_isbad(mtd, ofs);
1604 }
1605 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1606 
1607 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1608 {
1609 	if (!mtd->_block_markbad)
1610 		return -EOPNOTSUPP;
1611 	if (ofs < 0 || ofs > mtd->size)
1612 		return -EINVAL;
1613 	if (!(mtd->flags & MTD_WRITEABLE))
1614 		return -EROFS;
1615 	return mtd->_block_markbad(mtd, ofs);
1616 }
1617 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1618 
1619 #ifndef __UBOOT__
1620 /*
1621  * default_mtd_writev - the default writev method
1622  * @mtd: mtd device description object pointer
1623  * @vecs: the vectors to write
1624  * @count: count of vectors in @vecs
1625  * @to: the MTD device offset to write to
1626  * @retlen: on exit contains the count of bytes written to the MTD device.
1627  *
1628  * This function returns zero in case of success and a negative error code in
1629  * case of failure.
1630  */
1631 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1632 			      unsigned long count, loff_t to, size_t *retlen)
1633 {
1634 	unsigned long i;
1635 	size_t totlen = 0, thislen;
1636 	int ret = 0;
1637 
1638 	for (i = 0; i < count; i++) {
1639 		if (!vecs[i].iov_len)
1640 			continue;
1641 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1642 				vecs[i].iov_base);
1643 		totlen += thislen;
1644 		if (ret || thislen != vecs[i].iov_len)
1645 			break;
1646 		to += vecs[i].iov_len;
1647 	}
1648 	*retlen = totlen;
1649 	return ret;
1650 }
1651 
1652 /*
1653  * mtd_writev - the vector-based MTD write method
1654  * @mtd: mtd device description object pointer
1655  * @vecs: the vectors to write
1656  * @count: count of vectors in @vecs
1657  * @to: the MTD device offset to write to
1658  * @retlen: on exit contains the count of bytes written to the MTD device.
1659  *
1660  * This function returns zero in case of success and a negative error code in
1661  * case of failure.
1662  */
1663 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1664 	       unsigned long count, loff_t to, size_t *retlen)
1665 {
1666 	*retlen = 0;
1667 	if (!(mtd->flags & MTD_WRITEABLE))
1668 		return -EROFS;
1669 	if (!mtd->_writev)
1670 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1671 	return mtd->_writev(mtd, vecs, count, to, retlen);
1672 }
1673 EXPORT_SYMBOL_GPL(mtd_writev);
1674 
1675 /**
1676  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1677  * @mtd: mtd device description object pointer
1678  * @size: a pointer to the ideal or maximum size of the allocation, points
1679  *        to the actual allocation size on success.
1680  *
1681  * This routine attempts to allocate a contiguous kernel buffer up to
1682  * the specified size, backing off the size of the request exponentially
1683  * until the request succeeds or until the allocation size falls below
1684  * the system page size. This attempts to make sure it does not adversely
1685  * impact system performance, so when allocating more than one page, we
1686  * ask the memory allocator to avoid re-trying, swapping, writing back
1687  * or performing I/O.
1688  *
1689  * Note, this function also makes sure that the allocated buffer is aligned to
1690  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1691  *
1692  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1693  * to handle smaller (i.e. degraded) buffer allocations under low- or
1694  * fragmented-memory situations where such reduced allocations, from a
1695  * requested ideal, are allowed.
1696  *
1697  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1698  */
1699 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1700 {
1701 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1702 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1703 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1704 	void *kbuf;
1705 
1706 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1707 
1708 	while (*size > min_alloc) {
1709 		kbuf = kmalloc(*size, flags);
1710 		if (kbuf)
1711 			return kbuf;
1712 
1713 		*size >>= 1;
1714 		*size = ALIGN(*size, mtd->writesize);
1715 	}
1716 
1717 	/*
1718 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1719 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1720 	 */
1721 	return kmalloc(*size, GFP_KERNEL);
1722 }
1723 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1724 #endif
1725 
1726 #ifdef CONFIG_PROC_FS
1727 
1728 /*====================================================================*/
1729 /* Support for /proc/mtd */
1730 
1731 static int mtd_proc_show(struct seq_file *m, void *v)
1732 {
1733 	struct mtd_info *mtd;
1734 
1735 	seq_puts(m, "dev:    size   erasesize  name\n");
1736 	mutex_lock(&mtd_table_mutex);
1737 	mtd_for_each_device(mtd) {
1738 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1739 			   mtd->index, (unsigned long long)mtd->size,
1740 			   mtd->erasesize, mtd->name);
1741 	}
1742 	mutex_unlock(&mtd_table_mutex);
1743 	return 0;
1744 }
1745 
1746 static int mtd_proc_open(struct inode *inode, struct file *file)
1747 {
1748 	return single_open(file, mtd_proc_show, NULL);
1749 }
1750 
1751 static const struct file_operations mtd_proc_ops = {
1752 	.open		= mtd_proc_open,
1753 	.read		= seq_read,
1754 	.llseek		= seq_lseek,
1755 	.release	= single_release,
1756 };
1757 #endif /* CONFIG_PROC_FS */
1758 
1759 /*====================================================================*/
1760 /* Init code */
1761 
1762 #ifndef __UBOOT__
1763 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1764 {
1765 	int ret;
1766 
1767 	ret = bdi_init(bdi);
1768 	if (!ret)
1769 		ret = bdi_register(bdi, NULL, "%s", name);
1770 
1771 	if (ret)
1772 		bdi_destroy(bdi);
1773 
1774 	return ret;
1775 }
1776 
1777 static struct proc_dir_entry *proc_mtd;
1778 
1779 static int __init init_mtd(void)
1780 {
1781 	int ret;
1782 
1783 	ret = class_register(&mtd_class);
1784 	if (ret)
1785 		goto err_reg;
1786 
1787 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1788 	if (ret)
1789 		goto err_bdi1;
1790 
1791 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1792 	if (ret)
1793 		goto err_bdi2;
1794 
1795 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1796 	if (ret)
1797 		goto err_bdi3;
1798 
1799 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1800 
1801 	ret = init_mtdchar();
1802 	if (ret)
1803 		goto out_procfs;
1804 
1805 	return 0;
1806 
1807 out_procfs:
1808 	if (proc_mtd)
1809 		remove_proc_entry("mtd", NULL);
1810 err_bdi3:
1811 	bdi_destroy(&mtd_bdi_ro_mappable);
1812 err_bdi2:
1813 	bdi_destroy(&mtd_bdi_unmappable);
1814 err_bdi1:
1815 	class_unregister(&mtd_class);
1816 err_reg:
1817 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1818 	return ret;
1819 }
1820 
1821 static void __exit cleanup_mtd(void)
1822 {
1823 	cleanup_mtdchar();
1824 	if (proc_mtd)
1825 		remove_proc_entry("mtd", NULL);
1826 	class_unregister(&mtd_class);
1827 	bdi_destroy(&mtd_bdi_unmappable);
1828 	bdi_destroy(&mtd_bdi_ro_mappable);
1829 	bdi_destroy(&mtd_bdi_rw_mappable);
1830 }
1831 
1832 module_init(init_mtd);
1833 module_exit(cleanup_mtd);
1834 #endif
1835 
1836 MODULE_LICENSE("GPL");
1837 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1838 MODULE_DESCRIPTION("Core MTD registration and access routines");
1839