1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * MTD device concatenation layer 4 * 5 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de> 6 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * NAND support by Christian Gan <cgan@iders.ca> 9 * 10 */ 11 12 #ifndef __UBOOT__ 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/types.h> 18 #include <linux/backing-dev.h> 19 #include <asm/div64.h> 20 #else 21 #include <div64.h> 22 #include <linux/compat.h> 23 #endif 24 25 #include <linux/mtd/mtd.h> 26 #include <linux/mtd/concat.h> 27 28 #include <ubi_uboot.h> 29 30 /* 31 * Our storage structure: 32 * Subdev points to an array of pointers to struct mtd_info objects 33 * which is allocated along with this structure 34 * 35 */ 36 struct mtd_concat { 37 struct mtd_info mtd; 38 int num_subdev; 39 struct mtd_info **subdev; 40 }; 41 42 /* 43 * how to calculate the size required for the above structure, 44 * including the pointer array subdev points to: 45 */ 46 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \ 47 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) 48 49 /* 50 * Given a pointer to the MTD object in the mtd_concat structure, 51 * we can retrieve the pointer to that structure with this macro. 52 */ 53 #define CONCAT(x) ((struct mtd_concat *)(x)) 54 55 /* 56 * MTD methods which look up the relevant subdevice, translate the 57 * effective address and pass through to the subdevice. 58 */ 59 60 static int 61 concat_read(struct mtd_info *mtd, loff_t from, size_t len, 62 size_t * retlen, u_char * buf) 63 { 64 struct mtd_concat *concat = CONCAT(mtd); 65 int ret = 0, err; 66 int i; 67 68 #ifdef __UBOOT__ 69 *retlen = 0; 70 #endif 71 72 for (i = 0; i < concat->num_subdev; i++) { 73 struct mtd_info *subdev = concat->subdev[i]; 74 size_t size, retsize; 75 76 if (from >= subdev->size) { 77 /* Not destined for this subdev */ 78 size = 0; 79 from -= subdev->size; 80 continue; 81 } 82 if (from + len > subdev->size) 83 /* First part goes into this subdev */ 84 size = subdev->size - from; 85 else 86 /* Entire transaction goes into this subdev */ 87 size = len; 88 89 err = mtd_read(subdev, from, size, &retsize, buf); 90 91 /* Save information about bitflips! */ 92 if (unlikely(err)) { 93 if (mtd_is_eccerr(err)) { 94 mtd->ecc_stats.failed++; 95 ret = err; 96 } else if (mtd_is_bitflip(err)) { 97 mtd->ecc_stats.corrected++; 98 /* Do not overwrite -EBADMSG !! */ 99 if (!ret) 100 ret = err; 101 } else 102 return err; 103 } 104 105 *retlen += retsize; 106 len -= size; 107 if (len == 0) 108 return ret; 109 110 buf += size; 111 from = 0; 112 } 113 return -EINVAL; 114 } 115 116 static int 117 concat_write(struct mtd_info *mtd, loff_t to, size_t len, 118 size_t * retlen, const u_char * buf) 119 { 120 struct mtd_concat *concat = CONCAT(mtd); 121 int err = -EINVAL; 122 int i; 123 124 #ifdef __UBOOT__ 125 *retlen = 0; 126 #endif 127 128 for (i = 0; i < concat->num_subdev; i++) { 129 struct mtd_info *subdev = concat->subdev[i]; 130 size_t size, retsize; 131 132 if (to >= subdev->size) { 133 size = 0; 134 to -= subdev->size; 135 continue; 136 } 137 if (to + len > subdev->size) 138 size = subdev->size - to; 139 else 140 size = len; 141 142 err = mtd_write(subdev, to, size, &retsize, buf); 143 if (err) 144 break; 145 146 *retlen += retsize; 147 len -= size; 148 if (len == 0) 149 break; 150 151 err = -EINVAL; 152 buf += size; 153 to = 0; 154 } 155 return err; 156 } 157 158 #ifndef __UBOOT__ 159 static int 160 concat_writev(struct mtd_info *mtd, const struct kvec *vecs, 161 unsigned long count, loff_t to, size_t * retlen) 162 { 163 struct mtd_concat *concat = CONCAT(mtd); 164 struct kvec *vecs_copy; 165 unsigned long entry_low, entry_high; 166 size_t total_len = 0; 167 int i; 168 int err = -EINVAL; 169 170 /* Calculate total length of data */ 171 for (i = 0; i < count; i++) 172 total_len += vecs[i].iov_len; 173 174 /* Check alignment */ 175 if (mtd->writesize > 1) { 176 uint64_t __to = to; 177 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) 178 return -EINVAL; 179 } 180 181 /* make a copy of vecs */ 182 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL); 183 if (!vecs_copy) 184 return -ENOMEM; 185 186 entry_low = 0; 187 for (i = 0; i < concat->num_subdev; i++) { 188 struct mtd_info *subdev = concat->subdev[i]; 189 size_t size, wsize, retsize, old_iov_len; 190 191 if (to >= subdev->size) { 192 to -= subdev->size; 193 continue; 194 } 195 196 size = min_t(uint64_t, total_len, subdev->size - to); 197 wsize = size; /* store for future use */ 198 199 entry_high = entry_low; 200 while (entry_high < count) { 201 if (size <= vecs_copy[entry_high].iov_len) 202 break; 203 size -= vecs_copy[entry_high++].iov_len; 204 } 205 206 old_iov_len = vecs_copy[entry_high].iov_len; 207 vecs_copy[entry_high].iov_len = size; 208 209 err = mtd_writev(subdev, &vecs_copy[entry_low], 210 entry_high - entry_low + 1, to, &retsize); 211 212 vecs_copy[entry_high].iov_len = old_iov_len - size; 213 vecs_copy[entry_high].iov_base += size; 214 215 entry_low = entry_high; 216 217 if (err) 218 break; 219 220 *retlen += retsize; 221 total_len -= wsize; 222 223 if (total_len == 0) 224 break; 225 226 err = -EINVAL; 227 to = 0; 228 } 229 230 kfree(vecs_copy); 231 return err; 232 } 233 #endif 234 235 static int 236 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 237 { 238 struct mtd_concat *concat = CONCAT(mtd); 239 struct mtd_oob_ops devops = *ops; 240 int i, err, ret = 0; 241 242 ops->retlen = ops->oobretlen = 0; 243 244 for (i = 0; i < concat->num_subdev; i++) { 245 struct mtd_info *subdev = concat->subdev[i]; 246 247 if (from >= subdev->size) { 248 from -= subdev->size; 249 continue; 250 } 251 252 /* partial read ? */ 253 if (from + devops.len > subdev->size) 254 devops.len = subdev->size - from; 255 256 err = mtd_read_oob(subdev, from, &devops); 257 ops->retlen += devops.retlen; 258 ops->oobretlen += devops.oobretlen; 259 260 /* Save information about bitflips! */ 261 if (unlikely(err)) { 262 if (mtd_is_eccerr(err)) { 263 mtd->ecc_stats.failed++; 264 ret = err; 265 } else if (mtd_is_bitflip(err)) { 266 mtd->ecc_stats.corrected++; 267 /* Do not overwrite -EBADMSG !! */ 268 if (!ret) 269 ret = err; 270 } else 271 return err; 272 } 273 274 if (devops.datbuf) { 275 devops.len = ops->len - ops->retlen; 276 if (!devops.len) 277 return ret; 278 devops.datbuf += devops.retlen; 279 } 280 if (devops.oobbuf) { 281 devops.ooblen = ops->ooblen - ops->oobretlen; 282 if (!devops.ooblen) 283 return ret; 284 devops.oobbuf += ops->oobretlen; 285 } 286 287 from = 0; 288 } 289 return -EINVAL; 290 } 291 292 static int 293 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) 294 { 295 struct mtd_concat *concat = CONCAT(mtd); 296 struct mtd_oob_ops devops = *ops; 297 int i, err; 298 299 if (!(mtd->flags & MTD_WRITEABLE)) 300 return -EROFS; 301 302 ops->retlen = ops->oobretlen = 0; 303 304 for (i = 0; i < concat->num_subdev; i++) { 305 struct mtd_info *subdev = concat->subdev[i]; 306 307 if (to >= subdev->size) { 308 to -= subdev->size; 309 continue; 310 } 311 312 /* partial write ? */ 313 if (to + devops.len > subdev->size) 314 devops.len = subdev->size - to; 315 316 err = mtd_write_oob(subdev, to, &devops); 317 ops->retlen += devops.oobretlen; 318 if (err) 319 return err; 320 321 if (devops.datbuf) { 322 devops.len = ops->len - ops->retlen; 323 if (!devops.len) 324 return 0; 325 devops.datbuf += devops.retlen; 326 } 327 if (devops.oobbuf) { 328 devops.ooblen = ops->ooblen - ops->oobretlen; 329 if (!devops.ooblen) 330 return 0; 331 devops.oobbuf += devops.oobretlen; 332 } 333 to = 0; 334 } 335 return -EINVAL; 336 } 337 338 static void concat_erase_callback(struct erase_info *instr) 339 { 340 /* Nothing to do here in U-Boot */ 341 #ifndef __UBOOT__ 342 wake_up((wait_queue_head_t *) instr->priv); 343 #endif 344 } 345 346 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase) 347 { 348 int err; 349 wait_queue_head_t waitq; 350 DECLARE_WAITQUEUE(wait, current); 351 352 /* 353 * This code was stol^H^H^H^Hinspired by mtdchar.c 354 */ 355 init_waitqueue_head(&waitq); 356 357 erase->mtd = mtd; 358 erase->callback = concat_erase_callback; 359 erase->priv = (unsigned long) &waitq; 360 361 /* 362 * FIXME: Allow INTERRUPTIBLE. Which means 363 * not having the wait_queue head on the stack. 364 */ 365 err = mtd_erase(mtd, erase); 366 if (!err) { 367 set_current_state(TASK_UNINTERRUPTIBLE); 368 add_wait_queue(&waitq, &wait); 369 if (erase->state != MTD_ERASE_DONE 370 && erase->state != MTD_ERASE_FAILED) 371 schedule(); 372 remove_wait_queue(&waitq, &wait); 373 set_current_state(TASK_RUNNING); 374 375 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0; 376 } 377 return err; 378 } 379 380 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) 381 { 382 struct mtd_concat *concat = CONCAT(mtd); 383 struct mtd_info *subdev; 384 int i, err; 385 uint64_t length, offset = 0; 386 struct erase_info *erase; 387 388 /* 389 * Check for proper erase block alignment of the to-be-erased area. 390 * It is easier to do this based on the super device's erase 391 * region info rather than looking at each particular sub-device 392 * in turn. 393 */ 394 if (!concat->mtd.numeraseregions) { 395 /* the easy case: device has uniform erase block size */ 396 if (instr->addr & (concat->mtd.erasesize - 1)) 397 return -EINVAL; 398 if (instr->len & (concat->mtd.erasesize - 1)) 399 return -EINVAL; 400 } else { 401 /* device has variable erase size */ 402 struct mtd_erase_region_info *erase_regions = 403 concat->mtd.eraseregions; 404 405 /* 406 * Find the erase region where the to-be-erased area begins: 407 */ 408 for (i = 0; i < concat->mtd.numeraseregions && 409 instr->addr >= erase_regions[i].offset; i++) ; 410 --i; 411 412 /* 413 * Now erase_regions[i] is the region in which the 414 * to-be-erased area begins. Verify that the starting 415 * offset is aligned to this region's erase size: 416 */ 417 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1)) 418 return -EINVAL; 419 420 /* 421 * now find the erase region where the to-be-erased area ends: 422 */ 423 for (; i < concat->mtd.numeraseregions && 424 (instr->addr + instr->len) >= erase_regions[i].offset; 425 ++i) ; 426 --i; 427 /* 428 * check if the ending offset is aligned to this region's erase size 429 */ 430 if (i < 0 || ((instr->addr + instr->len) & 431 (erase_regions[i].erasesize - 1))) 432 return -EINVAL; 433 } 434 435 /* make a local copy of instr to avoid modifying the caller's struct */ 436 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); 437 438 if (!erase) 439 return -ENOMEM; 440 441 *erase = *instr; 442 length = instr->len; 443 444 /* 445 * find the subdevice where the to-be-erased area begins, adjust 446 * starting offset to be relative to the subdevice start 447 */ 448 for (i = 0; i < concat->num_subdev; i++) { 449 subdev = concat->subdev[i]; 450 if (subdev->size <= erase->addr) { 451 erase->addr -= subdev->size; 452 offset += subdev->size; 453 } else { 454 break; 455 } 456 } 457 458 /* must never happen since size limit has been verified above */ 459 BUG_ON(i >= concat->num_subdev); 460 461 /* now do the erase: */ 462 err = 0; 463 for (; length > 0; i++) { 464 /* loop for all subdevices affected by this request */ 465 subdev = concat->subdev[i]; /* get current subdevice */ 466 467 /* limit length to subdevice's size: */ 468 if (erase->addr + length > subdev->size) 469 erase->len = subdev->size - erase->addr; 470 else 471 erase->len = length; 472 473 length -= erase->len; 474 if ((err = concat_dev_erase(subdev, erase))) { 475 /* sanity check: should never happen since 476 * block alignment has been checked above */ 477 BUG_ON(err == -EINVAL); 478 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 479 instr->fail_addr = erase->fail_addr + offset; 480 break; 481 } 482 /* 483 * erase->addr specifies the offset of the area to be 484 * erased *within the current subdevice*. It can be 485 * non-zero only the first time through this loop, i.e. 486 * for the first subdevice where blocks need to be erased. 487 * All the following erases must begin at the start of the 488 * current subdevice, i.e. at offset zero. 489 */ 490 erase->addr = 0; 491 offset += subdev->size; 492 } 493 instr->state = erase->state; 494 kfree(erase); 495 if (err) 496 return err; 497 498 if (instr->callback) 499 instr->callback(instr); 500 return 0; 501 } 502 503 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 504 { 505 struct mtd_concat *concat = CONCAT(mtd); 506 int i, err = -EINVAL; 507 508 for (i = 0; i < concat->num_subdev; i++) { 509 struct mtd_info *subdev = concat->subdev[i]; 510 uint64_t size; 511 512 if (ofs >= subdev->size) { 513 size = 0; 514 ofs -= subdev->size; 515 continue; 516 } 517 if (ofs + len > subdev->size) 518 size = subdev->size - ofs; 519 else 520 size = len; 521 522 err = mtd_lock(subdev, ofs, size); 523 if (err) 524 break; 525 526 len -= size; 527 if (len == 0) 528 break; 529 530 err = -EINVAL; 531 ofs = 0; 532 } 533 534 return err; 535 } 536 537 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 538 { 539 struct mtd_concat *concat = CONCAT(mtd); 540 int i, err = 0; 541 542 for (i = 0; i < concat->num_subdev; i++) { 543 struct mtd_info *subdev = concat->subdev[i]; 544 uint64_t size; 545 546 if (ofs >= subdev->size) { 547 size = 0; 548 ofs -= subdev->size; 549 continue; 550 } 551 if (ofs + len > subdev->size) 552 size = subdev->size - ofs; 553 else 554 size = len; 555 556 err = mtd_unlock(subdev, ofs, size); 557 if (err) 558 break; 559 560 len -= size; 561 if (len == 0) 562 break; 563 564 err = -EINVAL; 565 ofs = 0; 566 } 567 568 return err; 569 } 570 571 static void concat_sync(struct mtd_info *mtd) 572 { 573 struct mtd_concat *concat = CONCAT(mtd); 574 int i; 575 576 for (i = 0; i < concat->num_subdev; i++) { 577 struct mtd_info *subdev = concat->subdev[i]; 578 mtd_sync(subdev); 579 } 580 } 581 582 #ifndef __UBOOT__ 583 static int concat_suspend(struct mtd_info *mtd) 584 { 585 struct mtd_concat *concat = CONCAT(mtd); 586 int i, rc = 0; 587 588 for (i = 0; i < concat->num_subdev; i++) { 589 struct mtd_info *subdev = concat->subdev[i]; 590 if ((rc = mtd_suspend(subdev)) < 0) 591 return rc; 592 } 593 return rc; 594 } 595 596 static void concat_resume(struct mtd_info *mtd) 597 { 598 struct mtd_concat *concat = CONCAT(mtd); 599 int i; 600 601 for (i = 0; i < concat->num_subdev; i++) { 602 struct mtd_info *subdev = concat->subdev[i]; 603 mtd_resume(subdev); 604 } 605 } 606 #endif 607 608 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) 609 { 610 struct mtd_concat *concat = CONCAT(mtd); 611 int i, res = 0; 612 613 if (!mtd_can_have_bb(concat->subdev[0])) 614 return res; 615 616 for (i = 0; i < concat->num_subdev; i++) { 617 struct mtd_info *subdev = concat->subdev[i]; 618 619 if (ofs >= subdev->size) { 620 ofs -= subdev->size; 621 continue; 622 } 623 624 res = mtd_block_isbad(subdev, ofs); 625 break; 626 } 627 628 return res; 629 } 630 631 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) 632 { 633 struct mtd_concat *concat = CONCAT(mtd); 634 int i, err = -EINVAL; 635 636 for (i = 0; i < concat->num_subdev; i++) { 637 struct mtd_info *subdev = concat->subdev[i]; 638 639 if (ofs >= subdev->size) { 640 ofs -= subdev->size; 641 continue; 642 } 643 644 err = mtd_block_markbad(subdev, ofs); 645 if (!err) 646 mtd->ecc_stats.badblocks++; 647 break; 648 } 649 650 return err; 651 } 652 653 /* 654 * try to support NOMMU mmaps on concatenated devices 655 * - we don't support subdev spanning as we can't guarantee it'll work 656 */ 657 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd, 658 unsigned long len, 659 unsigned long offset, 660 unsigned long flags) 661 { 662 struct mtd_concat *concat = CONCAT(mtd); 663 int i; 664 665 for (i = 0; i < concat->num_subdev; i++) { 666 struct mtd_info *subdev = concat->subdev[i]; 667 668 if (offset >= subdev->size) { 669 offset -= subdev->size; 670 continue; 671 } 672 673 return mtd_get_unmapped_area(subdev, len, offset, flags); 674 } 675 676 return (unsigned long) -ENOSYS; 677 } 678 679 /* 680 * This function constructs a virtual MTD device by concatenating 681 * num_devs MTD devices. A pointer to the new device object is 682 * stored to *new_dev upon success. This function does _not_ 683 * register any devices: this is the caller's responsibility. 684 */ 685 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */ 686 int num_devs, /* number of subdevices */ 687 #ifndef __UBOOT__ 688 const char *name) 689 #else 690 char *name) 691 #endif 692 { /* name for the new device */ 693 int i; 694 size_t size; 695 struct mtd_concat *concat; 696 uint32_t max_erasesize, curr_erasesize; 697 int num_erase_region; 698 int max_writebufsize = 0; 699 700 debug("Concatenating MTD devices:\n"); 701 for (i = 0; i < num_devs; i++) 702 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); 703 debug("into device \"%s\"\n", name); 704 705 /* allocate the device structure */ 706 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); 707 concat = kzalloc(size, GFP_KERNEL); 708 if (!concat) { 709 printk 710 ("memory allocation error while creating concatenated device \"%s\"\n", 711 name); 712 return NULL; 713 } 714 concat->subdev = (struct mtd_info **) (concat + 1); 715 716 /* 717 * Set up the new "super" device's MTD object structure, check for 718 * incompatibilities between the subdevices. 719 */ 720 concat->mtd.type = subdev[0]->type; 721 concat->mtd.flags = subdev[0]->flags; 722 concat->mtd.size = subdev[0]->size; 723 concat->mtd.erasesize = subdev[0]->erasesize; 724 concat->mtd.writesize = subdev[0]->writesize; 725 726 for (i = 0; i < num_devs; i++) 727 if (max_writebufsize < subdev[i]->writebufsize) 728 max_writebufsize = subdev[i]->writebufsize; 729 concat->mtd.writebufsize = max_writebufsize; 730 731 concat->mtd.subpage_sft = subdev[0]->subpage_sft; 732 concat->mtd.oobsize = subdev[0]->oobsize; 733 concat->mtd.oobavail = subdev[0]->oobavail; 734 #ifndef __UBOOT__ 735 if (subdev[0]->_writev) 736 concat->mtd._writev = concat_writev; 737 #endif 738 if (subdev[0]->_read_oob) 739 concat->mtd._read_oob = concat_read_oob; 740 if (subdev[0]->_write_oob) 741 concat->mtd._write_oob = concat_write_oob; 742 if (subdev[0]->_block_isbad) 743 concat->mtd._block_isbad = concat_block_isbad; 744 if (subdev[0]->_block_markbad) 745 concat->mtd._block_markbad = concat_block_markbad; 746 747 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; 748 749 #ifndef __UBOOT__ 750 concat->mtd.backing_dev_info = subdev[0]->backing_dev_info; 751 #endif 752 753 concat->subdev[0] = subdev[0]; 754 755 for (i = 1; i < num_devs; i++) { 756 if (concat->mtd.type != subdev[i]->type) { 757 kfree(concat); 758 printk("Incompatible device type on \"%s\"\n", 759 subdev[i]->name); 760 return NULL; 761 } 762 if (concat->mtd.flags != subdev[i]->flags) { 763 /* 764 * Expect all flags except MTD_WRITEABLE to be 765 * equal on all subdevices. 766 */ 767 if ((concat->mtd.flags ^ subdev[i]-> 768 flags) & ~MTD_WRITEABLE) { 769 kfree(concat); 770 printk("Incompatible device flags on \"%s\"\n", 771 subdev[i]->name); 772 return NULL; 773 } else 774 /* if writeable attribute differs, 775 make super device writeable */ 776 concat->mtd.flags |= 777 subdev[i]->flags & MTD_WRITEABLE; 778 } 779 780 #ifndef __UBOOT__ 781 /* only permit direct mapping if the BDIs are all the same 782 * - copy-mapping is still permitted 783 */ 784 if (concat->mtd.backing_dev_info != 785 subdev[i]->backing_dev_info) 786 concat->mtd.backing_dev_info = 787 &default_backing_dev_info; 788 #endif 789 790 concat->mtd.size += subdev[i]->size; 791 concat->mtd.ecc_stats.badblocks += 792 subdev[i]->ecc_stats.badblocks; 793 if (concat->mtd.writesize != subdev[i]->writesize || 794 concat->mtd.subpage_sft != subdev[i]->subpage_sft || 795 concat->mtd.oobsize != subdev[i]->oobsize || 796 !concat->mtd._read_oob != !subdev[i]->_read_oob || 797 !concat->mtd._write_oob != !subdev[i]->_write_oob) { 798 kfree(concat); 799 printk("Incompatible OOB or ECC data on \"%s\"\n", 800 subdev[i]->name); 801 return NULL; 802 } 803 concat->subdev[i] = subdev[i]; 804 805 } 806 807 concat->mtd.ecclayout = subdev[0]->ecclayout; 808 809 concat->num_subdev = num_devs; 810 concat->mtd.name = name; 811 812 concat->mtd._erase = concat_erase; 813 concat->mtd._read = concat_read; 814 concat->mtd._write = concat_write; 815 concat->mtd._sync = concat_sync; 816 concat->mtd._lock = concat_lock; 817 concat->mtd._unlock = concat_unlock; 818 #ifndef __UBOOT__ 819 concat->mtd._suspend = concat_suspend; 820 concat->mtd._resume = concat_resume; 821 #endif 822 concat->mtd._get_unmapped_area = concat_get_unmapped_area; 823 824 /* 825 * Combine the erase block size info of the subdevices: 826 * 827 * first, walk the map of the new device and see how 828 * many changes in erase size we have 829 */ 830 max_erasesize = curr_erasesize = subdev[0]->erasesize; 831 num_erase_region = 1; 832 for (i = 0; i < num_devs; i++) { 833 if (subdev[i]->numeraseregions == 0) { 834 /* current subdevice has uniform erase size */ 835 if (subdev[i]->erasesize != curr_erasesize) { 836 /* if it differs from the last subdevice's erase size, count it */ 837 ++num_erase_region; 838 curr_erasesize = subdev[i]->erasesize; 839 if (curr_erasesize > max_erasesize) 840 max_erasesize = curr_erasesize; 841 } 842 } else { 843 /* current subdevice has variable erase size */ 844 int j; 845 for (j = 0; j < subdev[i]->numeraseregions; j++) { 846 847 /* walk the list of erase regions, count any changes */ 848 if (subdev[i]->eraseregions[j].erasesize != 849 curr_erasesize) { 850 ++num_erase_region; 851 curr_erasesize = 852 subdev[i]->eraseregions[j]. 853 erasesize; 854 if (curr_erasesize > max_erasesize) 855 max_erasesize = curr_erasesize; 856 } 857 } 858 } 859 } 860 861 if (num_erase_region == 1) { 862 /* 863 * All subdevices have the same uniform erase size. 864 * This is easy: 865 */ 866 concat->mtd.erasesize = curr_erasesize; 867 concat->mtd.numeraseregions = 0; 868 } else { 869 uint64_t tmp64; 870 871 /* 872 * erase block size varies across the subdevices: allocate 873 * space to store the data describing the variable erase regions 874 */ 875 struct mtd_erase_region_info *erase_region_p; 876 uint64_t begin, position; 877 878 concat->mtd.erasesize = max_erasesize; 879 concat->mtd.numeraseregions = num_erase_region; 880 concat->mtd.eraseregions = erase_region_p = 881 kmalloc(num_erase_region * 882 sizeof (struct mtd_erase_region_info), GFP_KERNEL); 883 if (!erase_region_p) { 884 kfree(concat); 885 printk 886 ("memory allocation error while creating erase region list" 887 " for device \"%s\"\n", name); 888 return NULL; 889 } 890 891 /* 892 * walk the map of the new device once more and fill in 893 * in erase region info: 894 */ 895 curr_erasesize = subdev[0]->erasesize; 896 begin = position = 0; 897 for (i = 0; i < num_devs; i++) { 898 if (subdev[i]->numeraseregions == 0) { 899 /* current subdevice has uniform erase size */ 900 if (subdev[i]->erasesize != curr_erasesize) { 901 /* 902 * fill in an mtd_erase_region_info structure for the area 903 * we have walked so far: 904 */ 905 erase_region_p->offset = begin; 906 erase_region_p->erasesize = 907 curr_erasesize; 908 tmp64 = position - begin; 909 do_div(tmp64, curr_erasesize); 910 erase_region_p->numblocks = tmp64; 911 begin = position; 912 913 curr_erasesize = subdev[i]->erasesize; 914 ++erase_region_p; 915 } 916 position += subdev[i]->size; 917 } else { 918 /* current subdevice has variable erase size */ 919 int j; 920 for (j = 0; j < subdev[i]->numeraseregions; j++) { 921 /* walk the list of erase regions, count any changes */ 922 if (subdev[i]->eraseregions[j]. 923 erasesize != curr_erasesize) { 924 erase_region_p->offset = begin; 925 erase_region_p->erasesize = 926 curr_erasesize; 927 tmp64 = position - begin; 928 do_div(tmp64, curr_erasesize); 929 erase_region_p->numblocks = tmp64; 930 begin = position; 931 932 curr_erasesize = 933 subdev[i]->eraseregions[j]. 934 erasesize; 935 ++erase_region_p; 936 } 937 position += 938 subdev[i]->eraseregions[j]. 939 numblocks * (uint64_t)curr_erasesize; 940 } 941 } 942 } 943 /* Now write the final entry */ 944 erase_region_p->offset = begin; 945 erase_region_p->erasesize = curr_erasesize; 946 tmp64 = position - begin; 947 do_div(tmp64, curr_erasesize); 948 erase_region_p->numblocks = tmp64; 949 } 950 951 return &concat->mtd; 952 } 953 954 /* 955 * This function destroys an MTD object obtained from concat_mtd_devs() 956 */ 957 958 void mtd_concat_destroy(struct mtd_info *mtd) 959 { 960 struct mtd_concat *concat = CONCAT(mtd); 961 if (concat->mtd.numeraseregions) 962 kfree(concat->mtd.eraseregions); 963 kfree(concat); 964 } 965 966 EXPORT_SYMBOL(mtd_concat_create); 967 EXPORT_SYMBOL(mtd_concat_destroy); 968 969 MODULE_LICENSE("GPL"); 970 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); 971 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); 972