xref: /openbmc/u-boot/drivers/mtd/mtdconcat.c (revision 47539e23)
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * SPDX-License-Identifier:	GPL-2.0+
10  *
11  */
12 
13 #define __UBOOT__
14 #ifndef __UBOOT__
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/types.h>
20 #include <linux/backing-dev.h>
21 #include <asm/div64.h>
22 #else
23 #include <div64.h>
24 #include <linux/compat.h>
25 #endif
26 
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/concat.h>
29 
30 #include <ubi_uboot.h>
31 
32 /*
33  * Our storage structure:
34  * Subdev points to an array of pointers to struct mtd_info objects
35  * which is allocated along with this structure
36  *
37  */
38 struct mtd_concat {
39 	struct mtd_info mtd;
40 	int num_subdev;
41 	struct mtd_info **subdev;
42 };
43 
44 /*
45  * how to calculate the size required for the above structure,
46  * including the pointer array subdev points to:
47  */
48 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
49 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
50 
51 /*
52  * Given a pointer to the MTD object in the mtd_concat structure,
53  * we can retrieve the pointer to that structure with this macro.
54  */
55 #define CONCAT(x)  ((struct mtd_concat *)(x))
56 
57 /*
58  * MTD methods which look up the relevant subdevice, translate the
59  * effective address and pass through to the subdevice.
60  */
61 
62 static int
63 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
64 	    size_t * retlen, u_char * buf)
65 {
66 	struct mtd_concat *concat = CONCAT(mtd);
67 	int ret = 0, err;
68 	int i;
69 
70 #ifdef __UBOOT__
71 	*retlen = 0;
72 #endif
73 
74 	for (i = 0; i < concat->num_subdev; i++) {
75 		struct mtd_info *subdev = concat->subdev[i];
76 		size_t size, retsize;
77 
78 		if (from >= subdev->size) {
79 			/* Not destined for this subdev */
80 			size = 0;
81 			from -= subdev->size;
82 			continue;
83 		}
84 		if (from + len > subdev->size)
85 			/* First part goes into this subdev */
86 			size = subdev->size - from;
87 		else
88 			/* Entire transaction goes into this subdev */
89 			size = len;
90 
91 		err = mtd_read(subdev, from, size, &retsize, buf);
92 
93 		/* Save information about bitflips! */
94 		if (unlikely(err)) {
95 			if (mtd_is_eccerr(err)) {
96 				mtd->ecc_stats.failed++;
97 				ret = err;
98 			} else if (mtd_is_bitflip(err)) {
99 				mtd->ecc_stats.corrected++;
100 				/* Do not overwrite -EBADMSG !! */
101 				if (!ret)
102 					ret = err;
103 			} else
104 				return err;
105 		}
106 
107 		*retlen += retsize;
108 		len -= size;
109 		if (len == 0)
110 			return ret;
111 
112 		buf += size;
113 		from = 0;
114 	}
115 	return -EINVAL;
116 }
117 
118 static int
119 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
120 	     size_t * retlen, const u_char * buf)
121 {
122 	struct mtd_concat *concat = CONCAT(mtd);
123 	int err = -EINVAL;
124 	int i;
125 
126 #ifdef __UBOOT__
127 	*retlen = 0;
128 #endif
129 
130 	for (i = 0; i < concat->num_subdev; i++) {
131 		struct mtd_info *subdev = concat->subdev[i];
132 		size_t size, retsize;
133 
134 		if (to >= subdev->size) {
135 			size = 0;
136 			to -= subdev->size;
137 			continue;
138 		}
139 		if (to + len > subdev->size)
140 			size = subdev->size - to;
141 		else
142 			size = len;
143 
144 		err = mtd_write(subdev, to, size, &retsize, buf);
145 		if (err)
146 			break;
147 
148 		*retlen += retsize;
149 		len -= size;
150 		if (len == 0)
151 			break;
152 
153 		err = -EINVAL;
154 		buf += size;
155 		to = 0;
156 	}
157 	return err;
158 }
159 
160 #ifndef __UBOOT__
161 static int
162 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
163 		unsigned long count, loff_t to, size_t * retlen)
164 {
165 	struct mtd_concat *concat = CONCAT(mtd);
166 	struct kvec *vecs_copy;
167 	unsigned long entry_low, entry_high;
168 	size_t total_len = 0;
169 	int i;
170 	int err = -EINVAL;
171 
172 	/* Calculate total length of data */
173 	for (i = 0; i < count; i++)
174 		total_len += vecs[i].iov_len;
175 
176 	/* Check alignment */
177 	if (mtd->writesize > 1) {
178 		uint64_t __to = to;
179 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
180 			return -EINVAL;
181 	}
182 
183 	/* make a copy of vecs */
184 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
185 	if (!vecs_copy)
186 		return -ENOMEM;
187 
188 	entry_low = 0;
189 	for (i = 0; i < concat->num_subdev; i++) {
190 		struct mtd_info *subdev = concat->subdev[i];
191 		size_t size, wsize, retsize, old_iov_len;
192 
193 		if (to >= subdev->size) {
194 			to -= subdev->size;
195 			continue;
196 		}
197 
198 		size = min_t(uint64_t, total_len, subdev->size - to);
199 		wsize = size; /* store for future use */
200 
201 		entry_high = entry_low;
202 		while (entry_high < count) {
203 			if (size <= vecs_copy[entry_high].iov_len)
204 				break;
205 			size -= vecs_copy[entry_high++].iov_len;
206 		}
207 
208 		old_iov_len = vecs_copy[entry_high].iov_len;
209 		vecs_copy[entry_high].iov_len = size;
210 
211 		err = mtd_writev(subdev, &vecs_copy[entry_low],
212 				 entry_high - entry_low + 1, to, &retsize);
213 
214 		vecs_copy[entry_high].iov_len = old_iov_len - size;
215 		vecs_copy[entry_high].iov_base += size;
216 
217 		entry_low = entry_high;
218 
219 		if (err)
220 			break;
221 
222 		*retlen += retsize;
223 		total_len -= wsize;
224 
225 		if (total_len == 0)
226 			break;
227 
228 		err = -EINVAL;
229 		to = 0;
230 	}
231 
232 	kfree(vecs_copy);
233 	return err;
234 }
235 #endif
236 
237 static int
238 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
239 {
240 	struct mtd_concat *concat = CONCAT(mtd);
241 	struct mtd_oob_ops devops = *ops;
242 	int i, err, ret = 0;
243 
244 	ops->retlen = ops->oobretlen = 0;
245 
246 	for (i = 0; i < concat->num_subdev; i++) {
247 		struct mtd_info *subdev = concat->subdev[i];
248 
249 		if (from >= subdev->size) {
250 			from -= subdev->size;
251 			continue;
252 		}
253 
254 		/* partial read ? */
255 		if (from + devops.len > subdev->size)
256 			devops.len = subdev->size - from;
257 
258 		err = mtd_read_oob(subdev, from, &devops);
259 		ops->retlen += devops.retlen;
260 		ops->oobretlen += devops.oobretlen;
261 
262 		/* Save information about bitflips! */
263 		if (unlikely(err)) {
264 			if (mtd_is_eccerr(err)) {
265 				mtd->ecc_stats.failed++;
266 				ret = err;
267 			} else if (mtd_is_bitflip(err)) {
268 				mtd->ecc_stats.corrected++;
269 				/* Do not overwrite -EBADMSG !! */
270 				if (!ret)
271 					ret = err;
272 			} else
273 				return err;
274 		}
275 
276 		if (devops.datbuf) {
277 			devops.len = ops->len - ops->retlen;
278 			if (!devops.len)
279 				return ret;
280 			devops.datbuf += devops.retlen;
281 		}
282 		if (devops.oobbuf) {
283 			devops.ooblen = ops->ooblen - ops->oobretlen;
284 			if (!devops.ooblen)
285 				return ret;
286 			devops.oobbuf += ops->oobretlen;
287 		}
288 
289 		from = 0;
290 	}
291 	return -EINVAL;
292 }
293 
294 static int
295 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
296 {
297 	struct mtd_concat *concat = CONCAT(mtd);
298 	struct mtd_oob_ops devops = *ops;
299 	int i, err;
300 
301 	if (!(mtd->flags & MTD_WRITEABLE))
302 		return -EROFS;
303 
304 	ops->retlen = ops->oobretlen = 0;
305 
306 	for (i = 0; i < concat->num_subdev; i++) {
307 		struct mtd_info *subdev = concat->subdev[i];
308 
309 		if (to >= subdev->size) {
310 			to -= subdev->size;
311 			continue;
312 		}
313 
314 		/* partial write ? */
315 		if (to + devops.len > subdev->size)
316 			devops.len = subdev->size - to;
317 
318 		err = mtd_write_oob(subdev, to, &devops);
319 		ops->retlen += devops.oobretlen;
320 		if (err)
321 			return err;
322 
323 		if (devops.datbuf) {
324 			devops.len = ops->len - ops->retlen;
325 			if (!devops.len)
326 				return 0;
327 			devops.datbuf += devops.retlen;
328 		}
329 		if (devops.oobbuf) {
330 			devops.ooblen = ops->ooblen - ops->oobretlen;
331 			if (!devops.ooblen)
332 				return 0;
333 			devops.oobbuf += devops.oobretlen;
334 		}
335 		to = 0;
336 	}
337 	return -EINVAL;
338 }
339 
340 static void concat_erase_callback(struct erase_info *instr)
341 {
342 	/* Nothing to do here in U-Boot */
343 #ifndef __UBOOT__
344 	wake_up((wait_queue_head_t *) instr->priv);
345 #endif
346 }
347 
348 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
349 {
350 	int err;
351 	wait_queue_head_t waitq;
352 	DECLARE_WAITQUEUE(wait, current);
353 
354 	/*
355 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
356 	 */
357 	init_waitqueue_head(&waitq);
358 
359 	erase->mtd = mtd;
360 	erase->callback = concat_erase_callback;
361 	erase->priv = (unsigned long) &waitq;
362 
363 	/*
364 	 * FIXME: Allow INTERRUPTIBLE. Which means
365 	 * not having the wait_queue head on the stack.
366 	 */
367 	err = mtd_erase(mtd, erase);
368 	if (!err) {
369 		set_current_state(TASK_UNINTERRUPTIBLE);
370 		add_wait_queue(&waitq, &wait);
371 		if (erase->state != MTD_ERASE_DONE
372 		    && erase->state != MTD_ERASE_FAILED)
373 			schedule();
374 		remove_wait_queue(&waitq, &wait);
375 		set_current_state(TASK_RUNNING);
376 
377 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
378 	}
379 	return err;
380 }
381 
382 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
383 {
384 	struct mtd_concat *concat = CONCAT(mtd);
385 	struct mtd_info *subdev;
386 	int i, err;
387 	uint64_t length, offset = 0;
388 	struct erase_info *erase;
389 
390 	/*
391 	 * Check for proper erase block alignment of the to-be-erased area.
392 	 * It is easier to do this based on the super device's erase
393 	 * region info rather than looking at each particular sub-device
394 	 * in turn.
395 	 */
396 	if (!concat->mtd.numeraseregions) {
397 		/* the easy case: device has uniform erase block size */
398 		if (instr->addr & (concat->mtd.erasesize - 1))
399 			return -EINVAL;
400 		if (instr->len & (concat->mtd.erasesize - 1))
401 			return -EINVAL;
402 	} else {
403 		/* device has variable erase size */
404 		struct mtd_erase_region_info *erase_regions =
405 		    concat->mtd.eraseregions;
406 
407 		/*
408 		 * Find the erase region where the to-be-erased area begins:
409 		 */
410 		for (i = 0; i < concat->mtd.numeraseregions &&
411 		     instr->addr >= erase_regions[i].offset; i++) ;
412 		--i;
413 
414 		/*
415 		 * Now erase_regions[i] is the region in which the
416 		 * to-be-erased area begins. Verify that the starting
417 		 * offset is aligned to this region's erase size:
418 		 */
419 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
420 			return -EINVAL;
421 
422 		/*
423 		 * now find the erase region where the to-be-erased area ends:
424 		 */
425 		for (; i < concat->mtd.numeraseregions &&
426 		     (instr->addr + instr->len) >= erase_regions[i].offset;
427 		     ++i) ;
428 		--i;
429 		/*
430 		 * check if the ending offset is aligned to this region's erase size
431 		 */
432 		if (i < 0 || ((instr->addr + instr->len) &
433 					(erase_regions[i].erasesize - 1)))
434 			return -EINVAL;
435 	}
436 
437 	/* make a local copy of instr to avoid modifying the caller's struct */
438 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
439 
440 	if (!erase)
441 		return -ENOMEM;
442 
443 	*erase = *instr;
444 	length = instr->len;
445 
446 	/*
447 	 * find the subdevice where the to-be-erased area begins, adjust
448 	 * starting offset to be relative to the subdevice start
449 	 */
450 	for (i = 0; i < concat->num_subdev; i++) {
451 		subdev = concat->subdev[i];
452 		if (subdev->size <= erase->addr) {
453 			erase->addr -= subdev->size;
454 			offset += subdev->size;
455 		} else {
456 			break;
457 		}
458 	}
459 
460 	/* must never happen since size limit has been verified above */
461 	BUG_ON(i >= concat->num_subdev);
462 
463 	/* now do the erase: */
464 	err = 0;
465 	for (; length > 0; i++) {
466 		/* loop for all subdevices affected by this request */
467 		subdev = concat->subdev[i];	/* get current subdevice */
468 
469 		/* limit length to subdevice's size: */
470 		if (erase->addr + length > subdev->size)
471 			erase->len = subdev->size - erase->addr;
472 		else
473 			erase->len = length;
474 
475 		length -= erase->len;
476 		if ((err = concat_dev_erase(subdev, erase))) {
477 			/* sanity check: should never happen since
478 			 * block alignment has been checked above */
479 			BUG_ON(err == -EINVAL);
480 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
481 				instr->fail_addr = erase->fail_addr + offset;
482 			break;
483 		}
484 		/*
485 		 * erase->addr specifies the offset of the area to be
486 		 * erased *within the current subdevice*. It can be
487 		 * non-zero only the first time through this loop, i.e.
488 		 * for the first subdevice where blocks need to be erased.
489 		 * All the following erases must begin at the start of the
490 		 * current subdevice, i.e. at offset zero.
491 		 */
492 		erase->addr = 0;
493 		offset += subdev->size;
494 	}
495 	instr->state = erase->state;
496 	kfree(erase);
497 	if (err)
498 		return err;
499 
500 	if (instr->callback)
501 		instr->callback(instr);
502 	return 0;
503 }
504 
505 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
506 {
507 	struct mtd_concat *concat = CONCAT(mtd);
508 	int i, err = -EINVAL;
509 
510 	for (i = 0; i < concat->num_subdev; i++) {
511 		struct mtd_info *subdev = concat->subdev[i];
512 		uint64_t size;
513 
514 		if (ofs >= subdev->size) {
515 			size = 0;
516 			ofs -= subdev->size;
517 			continue;
518 		}
519 		if (ofs + len > subdev->size)
520 			size = subdev->size - ofs;
521 		else
522 			size = len;
523 
524 		err = mtd_lock(subdev, ofs, size);
525 		if (err)
526 			break;
527 
528 		len -= size;
529 		if (len == 0)
530 			break;
531 
532 		err = -EINVAL;
533 		ofs = 0;
534 	}
535 
536 	return err;
537 }
538 
539 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
540 {
541 	struct mtd_concat *concat = CONCAT(mtd);
542 	int i, err = 0;
543 
544 	for (i = 0; i < concat->num_subdev; i++) {
545 		struct mtd_info *subdev = concat->subdev[i];
546 		uint64_t size;
547 
548 		if (ofs >= subdev->size) {
549 			size = 0;
550 			ofs -= subdev->size;
551 			continue;
552 		}
553 		if (ofs + len > subdev->size)
554 			size = subdev->size - ofs;
555 		else
556 			size = len;
557 
558 		err = mtd_unlock(subdev, ofs, size);
559 		if (err)
560 			break;
561 
562 		len -= size;
563 		if (len == 0)
564 			break;
565 
566 		err = -EINVAL;
567 		ofs = 0;
568 	}
569 
570 	return err;
571 }
572 
573 static void concat_sync(struct mtd_info *mtd)
574 {
575 	struct mtd_concat *concat = CONCAT(mtd);
576 	int i;
577 
578 	for (i = 0; i < concat->num_subdev; i++) {
579 		struct mtd_info *subdev = concat->subdev[i];
580 		mtd_sync(subdev);
581 	}
582 }
583 
584 #ifndef __UBOOT__
585 static int concat_suspend(struct mtd_info *mtd)
586 {
587 	struct mtd_concat *concat = CONCAT(mtd);
588 	int i, rc = 0;
589 
590 	for (i = 0; i < concat->num_subdev; i++) {
591 		struct mtd_info *subdev = concat->subdev[i];
592 		if ((rc = mtd_suspend(subdev)) < 0)
593 			return rc;
594 	}
595 	return rc;
596 }
597 
598 static void concat_resume(struct mtd_info *mtd)
599 {
600 	struct mtd_concat *concat = CONCAT(mtd);
601 	int i;
602 
603 	for (i = 0; i < concat->num_subdev; i++) {
604 		struct mtd_info *subdev = concat->subdev[i];
605 		mtd_resume(subdev);
606 	}
607 }
608 #endif
609 
610 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
611 {
612 	struct mtd_concat *concat = CONCAT(mtd);
613 	int i, res = 0;
614 
615 	if (!mtd_can_have_bb(concat->subdev[0]))
616 		return res;
617 
618 	for (i = 0; i < concat->num_subdev; i++) {
619 		struct mtd_info *subdev = concat->subdev[i];
620 
621 		if (ofs >= subdev->size) {
622 			ofs -= subdev->size;
623 			continue;
624 		}
625 
626 		res = mtd_block_isbad(subdev, ofs);
627 		break;
628 	}
629 
630 	return res;
631 }
632 
633 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
634 {
635 	struct mtd_concat *concat = CONCAT(mtd);
636 	int i, err = -EINVAL;
637 
638 	for (i = 0; i < concat->num_subdev; i++) {
639 		struct mtd_info *subdev = concat->subdev[i];
640 
641 		if (ofs >= subdev->size) {
642 			ofs -= subdev->size;
643 			continue;
644 		}
645 
646 		err = mtd_block_markbad(subdev, ofs);
647 		if (!err)
648 			mtd->ecc_stats.badblocks++;
649 		break;
650 	}
651 
652 	return err;
653 }
654 
655 /*
656  * try to support NOMMU mmaps on concatenated devices
657  * - we don't support subdev spanning as we can't guarantee it'll work
658  */
659 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
660 					      unsigned long len,
661 					      unsigned long offset,
662 					      unsigned long flags)
663 {
664 	struct mtd_concat *concat = CONCAT(mtd);
665 	int i;
666 
667 	for (i = 0; i < concat->num_subdev; i++) {
668 		struct mtd_info *subdev = concat->subdev[i];
669 
670 		if (offset >= subdev->size) {
671 			offset -= subdev->size;
672 			continue;
673 		}
674 
675 		return mtd_get_unmapped_area(subdev, len, offset, flags);
676 	}
677 
678 	return (unsigned long) -ENOSYS;
679 }
680 
681 /*
682  * This function constructs a virtual MTD device by concatenating
683  * num_devs MTD devices. A pointer to the new device object is
684  * stored to *new_dev upon success. This function does _not_
685  * register any devices: this is the caller's responsibility.
686  */
687 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
688 				   int num_devs,	/* number of subdevices      */
689 #ifndef __UBOOT__
690 				   const char *name)
691 #else
692 				   char *name)
693 #endif
694 {				/* name for the new device   */
695 	int i;
696 	size_t size;
697 	struct mtd_concat *concat;
698 	uint32_t max_erasesize, curr_erasesize;
699 	int num_erase_region;
700 	int max_writebufsize = 0;
701 
702 	debug("Concatenating MTD devices:\n");
703 	for (i = 0; i < num_devs; i++)
704 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
705 	debug("into device \"%s\"\n", name);
706 
707 	/* allocate the device structure */
708 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
709 	concat = kzalloc(size, GFP_KERNEL);
710 	if (!concat) {
711 		printk
712 		    ("memory allocation error while creating concatenated device \"%s\"\n",
713 		     name);
714 		return NULL;
715 	}
716 	concat->subdev = (struct mtd_info **) (concat + 1);
717 
718 	/*
719 	 * Set up the new "super" device's MTD object structure, check for
720 	 * incompatibilities between the subdevices.
721 	 */
722 	concat->mtd.type = subdev[0]->type;
723 	concat->mtd.flags = subdev[0]->flags;
724 	concat->mtd.size = subdev[0]->size;
725 	concat->mtd.erasesize = subdev[0]->erasesize;
726 	concat->mtd.writesize = subdev[0]->writesize;
727 
728 	for (i = 0; i < num_devs; i++)
729 		if (max_writebufsize < subdev[i]->writebufsize)
730 			max_writebufsize = subdev[i]->writebufsize;
731 	concat->mtd.writebufsize = max_writebufsize;
732 
733 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
734 	concat->mtd.oobsize = subdev[0]->oobsize;
735 	concat->mtd.oobavail = subdev[0]->oobavail;
736 #ifndef __UBOOT__
737 	if (subdev[0]->_writev)
738 		concat->mtd._writev = concat_writev;
739 #endif
740 	if (subdev[0]->_read_oob)
741 		concat->mtd._read_oob = concat_read_oob;
742 	if (subdev[0]->_write_oob)
743 		concat->mtd._write_oob = concat_write_oob;
744 	if (subdev[0]->_block_isbad)
745 		concat->mtd._block_isbad = concat_block_isbad;
746 	if (subdev[0]->_block_markbad)
747 		concat->mtd._block_markbad = concat_block_markbad;
748 
749 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
750 
751 #ifndef __UBOOT__
752 	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
753 #endif
754 
755 	concat->subdev[0] = subdev[0];
756 
757 	for (i = 1; i < num_devs; i++) {
758 		if (concat->mtd.type != subdev[i]->type) {
759 			kfree(concat);
760 			printk("Incompatible device type on \"%s\"\n",
761 			       subdev[i]->name);
762 			return NULL;
763 		}
764 		if (concat->mtd.flags != subdev[i]->flags) {
765 			/*
766 			 * Expect all flags except MTD_WRITEABLE to be
767 			 * equal on all subdevices.
768 			 */
769 			if ((concat->mtd.flags ^ subdev[i]->
770 			     flags) & ~MTD_WRITEABLE) {
771 				kfree(concat);
772 				printk("Incompatible device flags on \"%s\"\n",
773 				       subdev[i]->name);
774 				return NULL;
775 			} else
776 				/* if writeable attribute differs,
777 				   make super device writeable */
778 				concat->mtd.flags |=
779 				    subdev[i]->flags & MTD_WRITEABLE;
780 		}
781 
782 #ifndef __UBOOT__
783 		/* only permit direct mapping if the BDIs are all the same
784 		 * - copy-mapping is still permitted
785 		 */
786 		if (concat->mtd.backing_dev_info !=
787 		    subdev[i]->backing_dev_info)
788 			concat->mtd.backing_dev_info =
789 				&default_backing_dev_info;
790 #endif
791 
792 		concat->mtd.size += subdev[i]->size;
793 		concat->mtd.ecc_stats.badblocks +=
794 			subdev[i]->ecc_stats.badblocks;
795 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
796 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
797 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
798 		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
799 		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
800 			kfree(concat);
801 			printk("Incompatible OOB or ECC data on \"%s\"\n",
802 			       subdev[i]->name);
803 			return NULL;
804 		}
805 		concat->subdev[i] = subdev[i];
806 
807 	}
808 
809 	concat->mtd.ecclayout = subdev[0]->ecclayout;
810 
811 	concat->num_subdev = num_devs;
812 	concat->mtd.name = name;
813 
814 	concat->mtd._erase = concat_erase;
815 	concat->mtd._read = concat_read;
816 	concat->mtd._write = concat_write;
817 	concat->mtd._sync = concat_sync;
818 	concat->mtd._lock = concat_lock;
819 	concat->mtd._unlock = concat_unlock;
820 #ifndef __UBOOT__
821 	concat->mtd._suspend = concat_suspend;
822 	concat->mtd._resume = concat_resume;
823 #endif
824 	concat->mtd._get_unmapped_area = concat_get_unmapped_area;
825 
826 	/*
827 	 * Combine the erase block size info of the subdevices:
828 	 *
829 	 * first, walk the map of the new device and see how
830 	 * many changes in erase size we have
831 	 */
832 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
833 	num_erase_region = 1;
834 	for (i = 0; i < num_devs; i++) {
835 		if (subdev[i]->numeraseregions == 0) {
836 			/* current subdevice has uniform erase size */
837 			if (subdev[i]->erasesize != curr_erasesize) {
838 				/* if it differs from the last subdevice's erase size, count it */
839 				++num_erase_region;
840 				curr_erasesize = subdev[i]->erasesize;
841 				if (curr_erasesize > max_erasesize)
842 					max_erasesize = curr_erasesize;
843 			}
844 		} else {
845 			/* current subdevice has variable erase size */
846 			int j;
847 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
848 
849 				/* walk the list of erase regions, count any changes */
850 				if (subdev[i]->eraseregions[j].erasesize !=
851 				    curr_erasesize) {
852 					++num_erase_region;
853 					curr_erasesize =
854 					    subdev[i]->eraseregions[j].
855 					    erasesize;
856 					if (curr_erasesize > max_erasesize)
857 						max_erasesize = curr_erasesize;
858 				}
859 			}
860 		}
861 	}
862 
863 	if (num_erase_region == 1) {
864 		/*
865 		 * All subdevices have the same uniform erase size.
866 		 * This is easy:
867 		 */
868 		concat->mtd.erasesize = curr_erasesize;
869 		concat->mtd.numeraseregions = 0;
870 	} else {
871 		uint64_t tmp64;
872 
873 		/*
874 		 * erase block size varies across the subdevices: allocate
875 		 * space to store the data describing the variable erase regions
876 		 */
877 		struct mtd_erase_region_info *erase_region_p;
878 		uint64_t begin, position;
879 
880 		concat->mtd.erasesize = max_erasesize;
881 		concat->mtd.numeraseregions = num_erase_region;
882 		concat->mtd.eraseregions = erase_region_p =
883 		    kmalloc(num_erase_region *
884 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
885 		if (!erase_region_p) {
886 			kfree(concat);
887 			printk
888 			    ("memory allocation error while creating erase region list"
889 			     " for device \"%s\"\n", name);
890 			return NULL;
891 		}
892 
893 		/*
894 		 * walk the map of the new device once more and fill in
895 		 * in erase region info:
896 		 */
897 		curr_erasesize = subdev[0]->erasesize;
898 		begin = position = 0;
899 		for (i = 0; i < num_devs; i++) {
900 			if (subdev[i]->numeraseregions == 0) {
901 				/* current subdevice has uniform erase size */
902 				if (subdev[i]->erasesize != curr_erasesize) {
903 					/*
904 					 *  fill in an mtd_erase_region_info structure for the area
905 					 *  we have walked so far:
906 					 */
907 					erase_region_p->offset = begin;
908 					erase_region_p->erasesize =
909 					    curr_erasesize;
910 					tmp64 = position - begin;
911 					do_div(tmp64, curr_erasesize);
912 					erase_region_p->numblocks = tmp64;
913 					begin = position;
914 
915 					curr_erasesize = subdev[i]->erasesize;
916 					++erase_region_p;
917 				}
918 				position += subdev[i]->size;
919 			} else {
920 				/* current subdevice has variable erase size */
921 				int j;
922 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
923 					/* walk the list of erase regions, count any changes */
924 					if (subdev[i]->eraseregions[j].
925 					    erasesize != curr_erasesize) {
926 						erase_region_p->offset = begin;
927 						erase_region_p->erasesize =
928 						    curr_erasesize;
929 						tmp64 = position - begin;
930 						do_div(tmp64, curr_erasesize);
931 						erase_region_p->numblocks = tmp64;
932 						begin = position;
933 
934 						curr_erasesize =
935 						    subdev[i]->eraseregions[j].
936 						    erasesize;
937 						++erase_region_p;
938 					}
939 					position +=
940 					    subdev[i]->eraseregions[j].
941 					    numblocks * (uint64_t)curr_erasesize;
942 				}
943 			}
944 		}
945 		/* Now write the final entry */
946 		erase_region_p->offset = begin;
947 		erase_region_p->erasesize = curr_erasesize;
948 		tmp64 = position - begin;
949 		do_div(tmp64, curr_erasesize);
950 		erase_region_p->numblocks = tmp64;
951 	}
952 
953 	return &concat->mtd;
954 }
955 
956 /*
957  * This function destroys an MTD object obtained from concat_mtd_devs()
958  */
959 
960 void mtd_concat_destroy(struct mtd_info *mtd)
961 {
962 	struct mtd_concat *concat = CONCAT(mtd);
963 	if (concat->mtd.numeraseregions)
964 		kfree(concat->mtd.eraseregions);
965 	kfree(concat);
966 }
967 
968 EXPORT_SYMBOL(mtd_concat_create);
969 EXPORT_SYMBOL(mtd_concat_destroy);
970 
971 MODULE_LICENSE("GPL");
972 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
973 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
974