xref: /openbmc/u-boot/drivers/mtd/mtdconcat.c (revision 38041db7)
1 /*
2  * MTD device concatenation layer
3  *
4  * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
5  *
6  * NAND support by Christian Gan <cgan@iders.ca>
7  *
8  * This code is GPL
9  */
10 
11 #include <linux/mtd/mtd.h>
12 #include <linux/mtd/compat.h>
13 #include <linux/mtd/concat.h>
14 #include <ubi_uboot.h>
15 
16 /*
17  * Our storage structure:
18  * Subdev points to an array of pointers to struct mtd_info objects
19  * which is allocated along with this structure
20  *
21  */
22 struct mtd_concat {
23 	struct mtd_info mtd;
24 	int num_subdev;
25 	struct mtd_info **subdev;
26 };
27 
28 /*
29  * how to calculate the size required for the above structure,
30  * including the pointer array subdev points to:
31  */
32 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
33 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
34 
35 /*
36  * Given a pointer to the MTD object in the mtd_concat structure,
37  * we can retrieve the pointer to that structure with this macro.
38  */
39 #define CONCAT(x)  ((struct mtd_concat *)(x))
40 
41 /*
42  * MTD methods which look up the relevant subdevice, translate the
43  * effective address and pass through to the subdevice.
44  */
45 
46 static int
47 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
48 	    size_t * retlen, u_char * buf)
49 {
50 	struct mtd_concat *concat = CONCAT(mtd);
51 	int ret = 0, err;
52 	int i;
53 
54 	*retlen = 0;
55 
56 	for (i = 0; i < concat->num_subdev; i++) {
57 		struct mtd_info *subdev = concat->subdev[i];
58 		size_t size, retsize;
59 
60 		if (from >= subdev->size) {
61 			/* Not destined for this subdev */
62 			size = 0;
63 			from -= subdev->size;
64 			continue;
65 		}
66 		if (from + len > subdev->size)
67 			/* First part goes into this subdev */
68 			size = subdev->size - from;
69 		else
70 			/* Entire transaction goes into this subdev */
71 			size = len;
72 
73 		err = subdev->read(subdev, from, size, &retsize, buf);
74 
75 		/* Save information about bitflips! */
76 		if (unlikely(err)) {
77 			if (err == -EBADMSG) {
78 				mtd->ecc_stats.failed++;
79 				ret = err;
80 			} else if (err == -EUCLEAN) {
81 				mtd->ecc_stats.corrected++;
82 				/* Do not overwrite -EBADMSG !! */
83 				if (!ret)
84 					ret = err;
85 			} else
86 				return err;
87 		}
88 
89 		*retlen += retsize;
90 		len -= size;
91 		if (len == 0)
92 			return ret;
93 
94 		buf += size;
95 		from = 0;
96 	}
97 	return -EINVAL;
98 }
99 
100 static int
101 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
102 	     size_t * retlen, const u_char * buf)
103 {
104 	struct mtd_concat *concat = CONCAT(mtd);
105 	int err = -EINVAL;
106 	int i;
107 
108 	if (!(mtd->flags & MTD_WRITEABLE))
109 		return -EROFS;
110 
111 	*retlen = 0;
112 
113 	for (i = 0; i < concat->num_subdev; i++) {
114 		struct mtd_info *subdev = concat->subdev[i];
115 		size_t size, retsize;
116 
117 		if (to >= subdev->size) {
118 			size = 0;
119 			to -= subdev->size;
120 			continue;
121 		}
122 		if (to + len > subdev->size)
123 			size = subdev->size - to;
124 		else
125 			size = len;
126 
127 		if (!(subdev->flags & MTD_WRITEABLE))
128 			err = -EROFS;
129 		else
130 			err = subdev->write(subdev, to, size, &retsize, buf);
131 
132 		if (err)
133 			break;
134 
135 		*retlen += retsize;
136 		len -= size;
137 		if (len == 0)
138 			break;
139 
140 		err = -EINVAL;
141 		buf += size;
142 		to = 0;
143 	}
144 	return err;
145 }
146 
147 static int
148 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
149 {
150 	struct mtd_concat *concat = CONCAT(mtd);
151 	struct mtd_oob_ops devops = *ops;
152 	int i, err, ret = 0;
153 
154 	ops->retlen = ops->oobretlen = 0;
155 
156 	for (i = 0; i < concat->num_subdev; i++) {
157 		struct mtd_info *subdev = concat->subdev[i];
158 
159 		if (from >= subdev->size) {
160 			from -= subdev->size;
161 			continue;
162 		}
163 
164 		/* partial read ? */
165 		if (from + devops.len > subdev->size)
166 			devops.len = subdev->size - from;
167 
168 		err = subdev->read_oob(subdev, from, &devops);
169 		ops->retlen += devops.retlen;
170 		ops->oobretlen += devops.oobretlen;
171 
172 		/* Save information about bitflips! */
173 		if (unlikely(err)) {
174 			if (err == -EBADMSG) {
175 				mtd->ecc_stats.failed++;
176 				ret = err;
177 			} else if (err == -EUCLEAN) {
178 				mtd->ecc_stats.corrected++;
179 				/* Do not overwrite -EBADMSG !! */
180 				if (!ret)
181 					ret = err;
182 			} else
183 				return err;
184 		}
185 
186 		if (devops.datbuf) {
187 			devops.len = ops->len - ops->retlen;
188 			if (!devops.len)
189 				return ret;
190 			devops.datbuf += devops.retlen;
191 		}
192 		if (devops.oobbuf) {
193 			devops.ooblen = ops->ooblen - ops->oobretlen;
194 			if (!devops.ooblen)
195 				return ret;
196 			devops.oobbuf += ops->oobretlen;
197 		}
198 
199 		from = 0;
200 	}
201 	return -EINVAL;
202 }
203 
204 static int
205 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
206 {
207 	struct mtd_concat *concat = CONCAT(mtd);
208 	struct mtd_oob_ops devops = *ops;
209 	int i, err;
210 
211 	if (!(mtd->flags & MTD_WRITEABLE))
212 		return -EROFS;
213 
214 	ops->retlen = 0;
215 
216 	for (i = 0; i < concat->num_subdev; i++) {
217 		struct mtd_info *subdev = concat->subdev[i];
218 
219 		if (to >= subdev->size) {
220 			to -= subdev->size;
221 			continue;
222 		}
223 
224 		/* partial write ? */
225 		if (to + devops.len > subdev->size)
226 			devops.len = subdev->size - to;
227 
228 		err = subdev->write_oob(subdev, to, &devops);
229 		ops->retlen += devops.retlen;
230 		if (err)
231 			return err;
232 
233 		if (devops.datbuf) {
234 			devops.len = ops->len - ops->retlen;
235 			if (!devops.len)
236 				return 0;
237 			devops.datbuf += devops.retlen;
238 		}
239 		if (devops.oobbuf) {
240 			devops.ooblen = ops->ooblen - ops->oobretlen;
241 			if (!devops.ooblen)
242 				return 0;
243 			devops.oobbuf += devops.oobretlen;
244 		}
245 		to = 0;
246 	}
247 	return -EINVAL;
248 }
249 
250 static void concat_erase_callback(struct erase_info *instr)
251 {
252 	/* Nothing to do here in U-Boot */
253 }
254 
255 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
256 {
257 	int err;
258 	wait_queue_head_t waitq;
259 	DECLARE_WAITQUEUE(wait, current);
260 
261 	/*
262 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
263 	 */
264 	init_waitqueue_head(&waitq);
265 
266 	erase->mtd = mtd;
267 	erase->callback = concat_erase_callback;
268 	erase->priv = (unsigned long) &waitq;
269 
270 	/*
271 	 * FIXME: Allow INTERRUPTIBLE. Which means
272 	 * not having the wait_queue head on the stack.
273 	 */
274 	err = mtd->erase(mtd, erase);
275 	if (!err) {
276 		set_current_state(TASK_UNINTERRUPTIBLE);
277 		add_wait_queue(&waitq, &wait);
278 		if (erase->state != MTD_ERASE_DONE
279 		    && erase->state != MTD_ERASE_FAILED)
280 			schedule();
281 		remove_wait_queue(&waitq, &wait);
282 		set_current_state(TASK_RUNNING);
283 
284 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
285 	}
286 	return err;
287 }
288 
289 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
290 {
291 	struct mtd_concat *concat = CONCAT(mtd);
292 	struct mtd_info *subdev;
293 	int i, err;
294 	uint64_t length, offset = 0;
295 	struct erase_info *erase;
296 
297 	if (!(mtd->flags & MTD_WRITEABLE))
298 		return -EROFS;
299 
300 	if (instr->addr > concat->mtd.size)
301 		return -EINVAL;
302 
303 	if (instr->len + instr->addr > concat->mtd.size)
304 		return -EINVAL;
305 
306 	/*
307 	 * Check for proper erase block alignment of the to-be-erased area.
308 	 * It is easier to do this based on the super device's erase
309 	 * region info rather than looking at each particular sub-device
310 	 * in turn.
311 	 */
312 	if (!concat->mtd.numeraseregions) {
313 		/* the easy case: device has uniform erase block size */
314 		if (instr->addr & (concat->mtd.erasesize - 1))
315 			return -EINVAL;
316 		if (instr->len & (concat->mtd.erasesize - 1))
317 			return -EINVAL;
318 	} else {
319 		/* device has variable erase size */
320 		struct mtd_erase_region_info *erase_regions =
321 		    concat->mtd.eraseregions;
322 
323 		/*
324 		 * Find the erase region where the to-be-erased area begins:
325 		 */
326 		for (i = 0; i < concat->mtd.numeraseregions &&
327 		     instr->addr >= erase_regions[i].offset; i++) ;
328 		--i;
329 
330 		/*
331 		 * Now erase_regions[i] is the region in which the
332 		 * to-be-erased area begins. Verify that the starting
333 		 * offset is aligned to this region's erase size:
334 		 */
335 		if (instr->addr & (erase_regions[i].erasesize - 1))
336 			return -EINVAL;
337 
338 		/*
339 		 * now find the erase region where the to-be-erased area ends:
340 		 */
341 		for (; i < concat->mtd.numeraseregions &&
342 		     (instr->addr + instr->len) >= erase_regions[i].offset;
343 		     ++i) ;
344 		--i;
345 		/*
346 		 * check if the ending offset is aligned to this region's erase size
347 		 */
348 		if ((instr->addr + instr->len) & (erase_regions[i].erasesize -
349 						  1))
350 			return -EINVAL;
351 	}
352 
353 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
354 
355 	/* make a local copy of instr to avoid modifying the caller's struct */
356 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
357 
358 	if (!erase)
359 		return -ENOMEM;
360 
361 	*erase = *instr;
362 	length = instr->len;
363 
364 	/*
365 	 * find the subdevice where the to-be-erased area begins, adjust
366 	 * starting offset to be relative to the subdevice start
367 	 */
368 	for (i = 0; i < concat->num_subdev; i++) {
369 		subdev = concat->subdev[i];
370 		if (subdev->size <= erase->addr) {
371 			erase->addr -= subdev->size;
372 			offset += subdev->size;
373 		} else {
374 			break;
375 		}
376 	}
377 
378 	/* must never happen since size limit has been verified above */
379 	BUG_ON(i >= concat->num_subdev);
380 
381 	/* now do the erase: */
382 	err = 0;
383 	for (; length > 0; i++) {
384 		/* loop for all subdevices affected by this request */
385 		subdev = concat->subdev[i];	/* get current subdevice */
386 
387 		/* limit length to subdevice's size: */
388 		if (erase->addr + length > subdev->size)
389 			erase->len = subdev->size - erase->addr;
390 		else
391 			erase->len = length;
392 
393 		if (!(subdev->flags & MTD_WRITEABLE)) {
394 			err = -EROFS;
395 			break;
396 		}
397 		length -= erase->len;
398 		if ((err = concat_dev_erase(subdev, erase))) {
399 			/* sanity check: should never happen since
400 			 * block alignment has been checked above */
401 			BUG_ON(err == -EINVAL);
402 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
403 				instr->fail_addr = erase->fail_addr + offset;
404 			break;
405 		}
406 		/*
407 		 * erase->addr specifies the offset of the area to be
408 		 * erased *within the current subdevice*. It can be
409 		 * non-zero only the first time through this loop, i.e.
410 		 * for the first subdevice where blocks need to be erased.
411 		 * All the following erases must begin at the start of the
412 		 * current subdevice, i.e. at offset zero.
413 		 */
414 		erase->addr = 0;
415 		offset += subdev->size;
416 	}
417 	instr->state = erase->state;
418 	kfree(erase);
419 	if (err)
420 		return err;
421 
422 	if (instr->callback)
423 		instr->callback(instr);
424 	return 0;
425 }
426 
427 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
428 {
429 	struct mtd_concat *concat = CONCAT(mtd);
430 	int i, err = -EINVAL;
431 
432 	if ((len + ofs) > mtd->size)
433 		return -EINVAL;
434 
435 	for (i = 0; i < concat->num_subdev; i++) {
436 		struct mtd_info *subdev = concat->subdev[i];
437 		uint64_t size;
438 
439 		if (ofs >= subdev->size) {
440 			size = 0;
441 			ofs -= subdev->size;
442 			continue;
443 		}
444 		if (ofs + len > subdev->size)
445 			size = subdev->size - ofs;
446 		else
447 			size = len;
448 
449 		err = subdev->lock(subdev, ofs, size);
450 
451 		if (err)
452 			break;
453 
454 		len -= size;
455 		if (len == 0)
456 			break;
457 
458 		err = -EINVAL;
459 		ofs = 0;
460 	}
461 
462 	return err;
463 }
464 
465 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
466 {
467 	struct mtd_concat *concat = CONCAT(mtd);
468 	int i, err = 0;
469 
470 	if ((len + ofs) > mtd->size)
471 		return -EINVAL;
472 
473 	for (i = 0; i < concat->num_subdev; i++) {
474 		struct mtd_info *subdev = concat->subdev[i];
475 		uint64_t size;
476 
477 		if (ofs >= subdev->size) {
478 			size = 0;
479 			ofs -= subdev->size;
480 			continue;
481 		}
482 		if (ofs + len > subdev->size)
483 			size = subdev->size - ofs;
484 		else
485 			size = len;
486 
487 		err = subdev->unlock(subdev, ofs, size);
488 
489 		if (err)
490 			break;
491 
492 		len -= size;
493 		if (len == 0)
494 			break;
495 
496 		err = -EINVAL;
497 		ofs = 0;
498 	}
499 
500 	return err;
501 }
502 
503 static void concat_sync(struct mtd_info *mtd)
504 {
505 	struct mtd_concat *concat = CONCAT(mtd);
506 	int i;
507 
508 	for (i = 0; i < concat->num_subdev; i++) {
509 		struct mtd_info *subdev = concat->subdev[i];
510 		subdev->sync(subdev);
511 	}
512 }
513 
514 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
515 {
516 	struct mtd_concat *concat = CONCAT(mtd);
517 	int i, res = 0;
518 
519 	if (!concat->subdev[0]->block_isbad)
520 		return res;
521 
522 	if (ofs > mtd->size)
523 		return -EINVAL;
524 
525 	for (i = 0; i < concat->num_subdev; i++) {
526 		struct mtd_info *subdev = concat->subdev[i];
527 
528 		if (ofs >= subdev->size) {
529 			ofs -= subdev->size;
530 			continue;
531 		}
532 
533 		res = subdev->block_isbad(subdev, ofs);
534 		break;
535 	}
536 
537 	return res;
538 }
539 
540 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
541 {
542 	struct mtd_concat *concat = CONCAT(mtd);
543 	int i, err = -EINVAL;
544 
545 	if (!concat->subdev[0]->block_markbad)
546 		return 0;
547 
548 	if (ofs > mtd->size)
549 		return -EINVAL;
550 
551 	for (i = 0; i < concat->num_subdev; i++) {
552 		struct mtd_info *subdev = concat->subdev[i];
553 
554 		if (ofs >= subdev->size) {
555 			ofs -= subdev->size;
556 			continue;
557 		}
558 
559 		err = subdev->block_markbad(subdev, ofs);
560 		if (!err)
561 			mtd->ecc_stats.badblocks++;
562 		break;
563 	}
564 
565 	return err;
566 }
567 
568 /*
569  * This function constructs a virtual MTD device by concatenating
570  * num_devs MTD devices. A pointer to the new device object is
571  * stored to *new_dev upon success. This function does _not_
572  * register any devices: this is the caller's responsibility.
573  */
574 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
575 				   int num_devs,	/* number of subdevices      */
576 				   const char *name)
577 {				/* name for the new device   */
578 	int i;
579 	size_t size;
580 	struct mtd_concat *concat;
581 	uint32_t max_erasesize, curr_erasesize;
582 	int num_erase_region;
583 
584 	debug("Concatenating MTD devices:\n");
585 	for (i = 0; i < num_devs; i++)
586 		debug("(%d): \"%s\"\n", i, subdev[i]->name);
587 	debug("into device \"%s\"\n", name);
588 
589 	/* allocate the device structure */
590 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
591 	concat = kzalloc(size, GFP_KERNEL);
592 	if (!concat) {
593 		printk
594 		    ("memory allocation error while creating concatenated device \"%s\"\n",
595 		     name);
596 		return NULL;
597 	}
598 	concat->subdev = (struct mtd_info **) (concat + 1);
599 
600 	/*
601 	 * Set up the new "super" device's MTD object structure, check for
602 	 * incompatibilites between the subdevices.
603 	 */
604 	concat->mtd.type = subdev[0]->type;
605 	concat->mtd.flags = subdev[0]->flags;
606 	concat->mtd.size = subdev[0]->size;
607 	concat->mtd.erasesize = subdev[0]->erasesize;
608 	concat->mtd.writesize = subdev[0]->writesize;
609 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
610 	concat->mtd.oobsize = subdev[0]->oobsize;
611 	concat->mtd.oobavail = subdev[0]->oobavail;
612 	if (subdev[0]->read_oob)
613 		concat->mtd.read_oob = concat_read_oob;
614 	if (subdev[0]->write_oob)
615 		concat->mtd.write_oob = concat_write_oob;
616 	if (subdev[0]->block_isbad)
617 		concat->mtd.block_isbad = concat_block_isbad;
618 	if (subdev[0]->block_markbad)
619 		concat->mtd.block_markbad = concat_block_markbad;
620 
621 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
622 
623 	concat->subdev[0] = subdev[0];
624 
625 	for (i = 1; i < num_devs; i++) {
626 		if (concat->mtd.type != subdev[i]->type) {
627 			kfree(concat);
628 			printk("Incompatible device type on \"%s\"\n",
629 			       subdev[i]->name);
630 			return NULL;
631 		}
632 		if (concat->mtd.flags != subdev[i]->flags) {
633 			/*
634 			 * Expect all flags except MTD_WRITEABLE to be
635 			 * equal on all subdevices.
636 			 */
637 			if ((concat->mtd.flags ^ subdev[i]->
638 			     flags) & ~MTD_WRITEABLE) {
639 				kfree(concat);
640 				printk("Incompatible device flags on \"%s\"\n",
641 				       subdev[i]->name);
642 				return NULL;
643 			} else
644 				/* if writeable attribute differs,
645 				   make super device writeable */
646 				concat->mtd.flags |=
647 				    subdev[i]->flags & MTD_WRITEABLE;
648 		}
649 
650 		concat->mtd.size += subdev[i]->size;
651 		concat->mtd.ecc_stats.badblocks +=
652 			subdev[i]->ecc_stats.badblocks;
653 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
654 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
655 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
656 		    !concat->mtd.read_oob  != !subdev[i]->read_oob ||
657 		    !concat->mtd.write_oob != !subdev[i]->write_oob) {
658 			kfree(concat);
659 			printk("Incompatible OOB or ECC data on \"%s\"\n",
660 			       subdev[i]->name);
661 			return NULL;
662 		}
663 		concat->subdev[i] = subdev[i];
664 
665 	}
666 
667 	concat->mtd.ecclayout = subdev[0]->ecclayout;
668 
669 	concat->num_subdev = num_devs;
670 	concat->mtd.name = name;
671 
672 	concat->mtd.erase = concat_erase;
673 	concat->mtd.read = concat_read;
674 	concat->mtd.write = concat_write;
675 	concat->mtd.sync = concat_sync;
676 	concat->mtd.lock = concat_lock;
677 	concat->mtd.unlock = concat_unlock;
678 
679 	/*
680 	 * Combine the erase block size info of the subdevices:
681 	 *
682 	 * first, walk the map of the new device and see how
683 	 * many changes in erase size we have
684 	 */
685 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
686 	num_erase_region = 1;
687 	for (i = 0; i < num_devs; i++) {
688 		if (subdev[i]->numeraseregions == 0) {
689 			/* current subdevice has uniform erase size */
690 			if (subdev[i]->erasesize != curr_erasesize) {
691 				/* if it differs from the last subdevice's erase size, count it */
692 				++num_erase_region;
693 				curr_erasesize = subdev[i]->erasesize;
694 				if (curr_erasesize > max_erasesize)
695 					max_erasesize = curr_erasesize;
696 			}
697 		} else {
698 			/* current subdevice has variable erase size */
699 			int j;
700 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
701 
702 				/* walk the list of erase regions, count any changes */
703 				if (subdev[i]->eraseregions[j].erasesize !=
704 				    curr_erasesize) {
705 					++num_erase_region;
706 					curr_erasesize =
707 					    subdev[i]->eraseregions[j].
708 					    erasesize;
709 					if (curr_erasesize > max_erasesize)
710 						max_erasesize = curr_erasesize;
711 				}
712 			}
713 		}
714 	}
715 
716 	if (num_erase_region == 1) {
717 		/*
718 		 * All subdevices have the same uniform erase size.
719 		 * This is easy:
720 		 */
721 		concat->mtd.erasesize = curr_erasesize;
722 		concat->mtd.numeraseregions = 0;
723 	} else {
724 		uint64_t tmp64;
725 
726 		/*
727 		 * erase block size varies across the subdevices: allocate
728 		 * space to store the data describing the variable erase regions
729 		 */
730 		struct mtd_erase_region_info *erase_region_p;
731 		uint64_t begin, position;
732 
733 		concat->mtd.erasesize = max_erasesize;
734 		concat->mtd.numeraseregions = num_erase_region;
735 		concat->mtd.eraseregions = erase_region_p =
736 		    kmalloc(num_erase_region *
737 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
738 		if (!erase_region_p) {
739 			kfree(concat);
740 			printk
741 			    ("memory allocation error while creating erase region list"
742 			     " for device \"%s\"\n", name);
743 			return NULL;
744 		}
745 
746 		/*
747 		 * walk the map of the new device once more and fill in
748 		 * in erase region info:
749 		 */
750 		curr_erasesize = subdev[0]->erasesize;
751 		begin = position = 0;
752 		for (i = 0; i < num_devs; i++) {
753 			if (subdev[i]->numeraseregions == 0) {
754 				/* current subdevice has uniform erase size */
755 				if (subdev[i]->erasesize != curr_erasesize) {
756 					/*
757 					 *  fill in an mtd_erase_region_info structure for the area
758 					 *  we have walked so far:
759 					 */
760 					erase_region_p->offset = begin;
761 					erase_region_p->erasesize =
762 					    curr_erasesize;
763 					tmp64 = position - begin;
764 					do_div(tmp64, curr_erasesize);
765 					erase_region_p->numblocks = tmp64;
766 					begin = position;
767 
768 					curr_erasesize = subdev[i]->erasesize;
769 					++erase_region_p;
770 				}
771 				position += subdev[i]->size;
772 			} else {
773 				/* current subdevice has variable erase size */
774 				int j;
775 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
776 					/* walk the list of erase regions, count any changes */
777 					if (subdev[i]->eraseregions[j].
778 					    erasesize != curr_erasesize) {
779 						erase_region_p->offset = begin;
780 						erase_region_p->erasesize =
781 						    curr_erasesize;
782 						tmp64 = position - begin;
783 						do_div(tmp64, curr_erasesize);
784 						erase_region_p->numblocks = tmp64;
785 						begin = position;
786 
787 						curr_erasesize =
788 						    subdev[i]->eraseregions[j].
789 						    erasesize;
790 						++erase_region_p;
791 					}
792 					position +=
793 					    subdev[i]->eraseregions[j].
794 					    numblocks * (uint64_t)curr_erasesize;
795 				}
796 			}
797 		}
798 		/* Now write the final entry */
799 		erase_region_p->offset = begin;
800 		erase_region_p->erasesize = curr_erasesize;
801 		tmp64 = position - begin;
802 		do_div(tmp64, curr_erasesize);
803 		erase_region_p->numblocks = tmp64;
804 	}
805 
806 	return &concat->mtd;
807 }
808