xref: /openbmc/u-boot/drivers/mtd/mtdconcat.c (revision 274bced8)
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * SPDX-License-Identifier:	GPL-2.0+
10  *
11  */
12 
13 #ifndef __UBOOT__
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/types.h>
19 #include <linux/backing-dev.h>
20 #include <asm/div64.h>
21 #else
22 #include <div64.h>
23 #include <linux/compat.h>
24 #endif
25 
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/concat.h>
28 
29 #include <ubi_uboot.h>
30 
31 /*
32  * Our storage structure:
33  * Subdev points to an array of pointers to struct mtd_info objects
34  * which is allocated along with this structure
35  *
36  */
37 struct mtd_concat {
38 	struct mtd_info mtd;
39 	int num_subdev;
40 	struct mtd_info **subdev;
41 };
42 
43 /*
44  * how to calculate the size required for the above structure,
45  * including the pointer array subdev points to:
46  */
47 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
48 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
49 
50 /*
51  * Given a pointer to the MTD object in the mtd_concat structure,
52  * we can retrieve the pointer to that structure with this macro.
53  */
54 #define CONCAT(x)  ((struct mtd_concat *)(x))
55 
56 /*
57  * MTD methods which look up the relevant subdevice, translate the
58  * effective address and pass through to the subdevice.
59  */
60 
61 static int
62 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
63 	    size_t * retlen, u_char * buf)
64 {
65 	struct mtd_concat *concat = CONCAT(mtd);
66 	int ret = 0, err;
67 	int i;
68 
69 #ifdef __UBOOT__
70 	*retlen = 0;
71 #endif
72 
73 	for (i = 0; i < concat->num_subdev; i++) {
74 		struct mtd_info *subdev = concat->subdev[i];
75 		size_t size, retsize;
76 
77 		if (from >= subdev->size) {
78 			/* Not destined for this subdev */
79 			size = 0;
80 			from -= subdev->size;
81 			continue;
82 		}
83 		if (from + len > subdev->size)
84 			/* First part goes into this subdev */
85 			size = subdev->size - from;
86 		else
87 			/* Entire transaction goes into this subdev */
88 			size = len;
89 
90 		err = mtd_read(subdev, from, size, &retsize, buf);
91 
92 		/* Save information about bitflips! */
93 		if (unlikely(err)) {
94 			if (mtd_is_eccerr(err)) {
95 				mtd->ecc_stats.failed++;
96 				ret = err;
97 			} else if (mtd_is_bitflip(err)) {
98 				mtd->ecc_stats.corrected++;
99 				/* Do not overwrite -EBADMSG !! */
100 				if (!ret)
101 					ret = err;
102 			} else
103 				return err;
104 		}
105 
106 		*retlen += retsize;
107 		len -= size;
108 		if (len == 0)
109 			return ret;
110 
111 		buf += size;
112 		from = 0;
113 	}
114 	return -EINVAL;
115 }
116 
117 static int
118 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
119 	     size_t * retlen, const u_char * buf)
120 {
121 	struct mtd_concat *concat = CONCAT(mtd);
122 	int err = -EINVAL;
123 	int i;
124 
125 #ifdef __UBOOT__
126 	*retlen = 0;
127 #endif
128 
129 	for (i = 0; i < concat->num_subdev; i++) {
130 		struct mtd_info *subdev = concat->subdev[i];
131 		size_t size, retsize;
132 
133 		if (to >= subdev->size) {
134 			size = 0;
135 			to -= subdev->size;
136 			continue;
137 		}
138 		if (to + len > subdev->size)
139 			size = subdev->size - to;
140 		else
141 			size = len;
142 
143 		err = mtd_write(subdev, to, size, &retsize, buf);
144 		if (err)
145 			break;
146 
147 		*retlen += retsize;
148 		len -= size;
149 		if (len == 0)
150 			break;
151 
152 		err = -EINVAL;
153 		buf += size;
154 		to = 0;
155 	}
156 	return err;
157 }
158 
159 #ifndef __UBOOT__
160 static int
161 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
162 		unsigned long count, loff_t to, size_t * retlen)
163 {
164 	struct mtd_concat *concat = CONCAT(mtd);
165 	struct kvec *vecs_copy;
166 	unsigned long entry_low, entry_high;
167 	size_t total_len = 0;
168 	int i;
169 	int err = -EINVAL;
170 
171 	/* Calculate total length of data */
172 	for (i = 0; i < count; i++)
173 		total_len += vecs[i].iov_len;
174 
175 	/* Check alignment */
176 	if (mtd->writesize > 1) {
177 		uint64_t __to = to;
178 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
179 			return -EINVAL;
180 	}
181 
182 	/* make a copy of vecs */
183 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
184 	if (!vecs_copy)
185 		return -ENOMEM;
186 
187 	entry_low = 0;
188 	for (i = 0; i < concat->num_subdev; i++) {
189 		struct mtd_info *subdev = concat->subdev[i];
190 		size_t size, wsize, retsize, old_iov_len;
191 
192 		if (to >= subdev->size) {
193 			to -= subdev->size;
194 			continue;
195 		}
196 
197 		size = min_t(uint64_t, total_len, subdev->size - to);
198 		wsize = size; /* store for future use */
199 
200 		entry_high = entry_low;
201 		while (entry_high < count) {
202 			if (size <= vecs_copy[entry_high].iov_len)
203 				break;
204 			size -= vecs_copy[entry_high++].iov_len;
205 		}
206 
207 		old_iov_len = vecs_copy[entry_high].iov_len;
208 		vecs_copy[entry_high].iov_len = size;
209 
210 		err = mtd_writev(subdev, &vecs_copy[entry_low],
211 				 entry_high - entry_low + 1, to, &retsize);
212 
213 		vecs_copy[entry_high].iov_len = old_iov_len - size;
214 		vecs_copy[entry_high].iov_base += size;
215 
216 		entry_low = entry_high;
217 
218 		if (err)
219 			break;
220 
221 		*retlen += retsize;
222 		total_len -= wsize;
223 
224 		if (total_len == 0)
225 			break;
226 
227 		err = -EINVAL;
228 		to = 0;
229 	}
230 
231 	kfree(vecs_copy);
232 	return err;
233 }
234 #endif
235 
236 static int
237 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
238 {
239 	struct mtd_concat *concat = CONCAT(mtd);
240 	struct mtd_oob_ops devops = *ops;
241 	int i, err, ret = 0;
242 
243 	ops->retlen = ops->oobretlen = 0;
244 
245 	for (i = 0; i < concat->num_subdev; i++) {
246 		struct mtd_info *subdev = concat->subdev[i];
247 
248 		if (from >= subdev->size) {
249 			from -= subdev->size;
250 			continue;
251 		}
252 
253 		/* partial read ? */
254 		if (from + devops.len > subdev->size)
255 			devops.len = subdev->size - from;
256 
257 		err = mtd_read_oob(subdev, from, &devops);
258 		ops->retlen += devops.retlen;
259 		ops->oobretlen += devops.oobretlen;
260 
261 		/* Save information about bitflips! */
262 		if (unlikely(err)) {
263 			if (mtd_is_eccerr(err)) {
264 				mtd->ecc_stats.failed++;
265 				ret = err;
266 			} else if (mtd_is_bitflip(err)) {
267 				mtd->ecc_stats.corrected++;
268 				/* Do not overwrite -EBADMSG !! */
269 				if (!ret)
270 					ret = err;
271 			} else
272 				return err;
273 		}
274 
275 		if (devops.datbuf) {
276 			devops.len = ops->len - ops->retlen;
277 			if (!devops.len)
278 				return ret;
279 			devops.datbuf += devops.retlen;
280 		}
281 		if (devops.oobbuf) {
282 			devops.ooblen = ops->ooblen - ops->oobretlen;
283 			if (!devops.ooblen)
284 				return ret;
285 			devops.oobbuf += ops->oobretlen;
286 		}
287 
288 		from = 0;
289 	}
290 	return -EINVAL;
291 }
292 
293 static int
294 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
295 {
296 	struct mtd_concat *concat = CONCAT(mtd);
297 	struct mtd_oob_ops devops = *ops;
298 	int i, err;
299 
300 	if (!(mtd->flags & MTD_WRITEABLE))
301 		return -EROFS;
302 
303 	ops->retlen = ops->oobretlen = 0;
304 
305 	for (i = 0; i < concat->num_subdev; i++) {
306 		struct mtd_info *subdev = concat->subdev[i];
307 
308 		if (to >= subdev->size) {
309 			to -= subdev->size;
310 			continue;
311 		}
312 
313 		/* partial write ? */
314 		if (to + devops.len > subdev->size)
315 			devops.len = subdev->size - to;
316 
317 		err = mtd_write_oob(subdev, to, &devops);
318 		ops->retlen += devops.oobretlen;
319 		if (err)
320 			return err;
321 
322 		if (devops.datbuf) {
323 			devops.len = ops->len - ops->retlen;
324 			if (!devops.len)
325 				return 0;
326 			devops.datbuf += devops.retlen;
327 		}
328 		if (devops.oobbuf) {
329 			devops.ooblen = ops->ooblen - ops->oobretlen;
330 			if (!devops.ooblen)
331 				return 0;
332 			devops.oobbuf += devops.oobretlen;
333 		}
334 		to = 0;
335 	}
336 	return -EINVAL;
337 }
338 
339 static void concat_erase_callback(struct erase_info *instr)
340 {
341 	/* Nothing to do here in U-Boot */
342 #ifndef __UBOOT__
343 	wake_up((wait_queue_head_t *) instr->priv);
344 #endif
345 }
346 
347 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
348 {
349 	int err;
350 	wait_queue_head_t waitq;
351 	DECLARE_WAITQUEUE(wait, current);
352 
353 	/*
354 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
355 	 */
356 	init_waitqueue_head(&waitq);
357 
358 	erase->mtd = mtd;
359 	erase->callback = concat_erase_callback;
360 	erase->priv = (unsigned long) &waitq;
361 
362 	/*
363 	 * FIXME: Allow INTERRUPTIBLE. Which means
364 	 * not having the wait_queue head on the stack.
365 	 */
366 	err = mtd_erase(mtd, erase);
367 	if (!err) {
368 		set_current_state(TASK_UNINTERRUPTIBLE);
369 		add_wait_queue(&waitq, &wait);
370 		if (erase->state != MTD_ERASE_DONE
371 		    && erase->state != MTD_ERASE_FAILED)
372 			schedule();
373 		remove_wait_queue(&waitq, &wait);
374 		set_current_state(TASK_RUNNING);
375 
376 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
377 	}
378 	return err;
379 }
380 
381 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
382 {
383 	struct mtd_concat *concat = CONCAT(mtd);
384 	struct mtd_info *subdev;
385 	int i, err;
386 	uint64_t length, offset = 0;
387 	struct erase_info *erase;
388 
389 	/*
390 	 * Check for proper erase block alignment of the to-be-erased area.
391 	 * It is easier to do this based on the super device's erase
392 	 * region info rather than looking at each particular sub-device
393 	 * in turn.
394 	 */
395 	if (!concat->mtd.numeraseregions) {
396 		/* the easy case: device has uniform erase block size */
397 		if (instr->addr & (concat->mtd.erasesize - 1))
398 			return -EINVAL;
399 		if (instr->len & (concat->mtd.erasesize - 1))
400 			return -EINVAL;
401 	} else {
402 		/* device has variable erase size */
403 		struct mtd_erase_region_info *erase_regions =
404 		    concat->mtd.eraseregions;
405 
406 		/*
407 		 * Find the erase region where the to-be-erased area begins:
408 		 */
409 		for (i = 0; i < concat->mtd.numeraseregions &&
410 		     instr->addr >= erase_regions[i].offset; i++) ;
411 		--i;
412 
413 		/*
414 		 * Now erase_regions[i] is the region in which the
415 		 * to-be-erased area begins. Verify that the starting
416 		 * offset is aligned to this region's erase size:
417 		 */
418 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
419 			return -EINVAL;
420 
421 		/*
422 		 * now find the erase region where the to-be-erased area ends:
423 		 */
424 		for (; i < concat->mtd.numeraseregions &&
425 		     (instr->addr + instr->len) >= erase_regions[i].offset;
426 		     ++i) ;
427 		--i;
428 		/*
429 		 * check if the ending offset is aligned to this region's erase size
430 		 */
431 		if (i < 0 || ((instr->addr + instr->len) &
432 					(erase_regions[i].erasesize - 1)))
433 			return -EINVAL;
434 	}
435 
436 	/* make a local copy of instr to avoid modifying the caller's struct */
437 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
438 
439 	if (!erase)
440 		return -ENOMEM;
441 
442 	*erase = *instr;
443 	length = instr->len;
444 
445 	/*
446 	 * find the subdevice where the to-be-erased area begins, adjust
447 	 * starting offset to be relative to the subdevice start
448 	 */
449 	for (i = 0; i < concat->num_subdev; i++) {
450 		subdev = concat->subdev[i];
451 		if (subdev->size <= erase->addr) {
452 			erase->addr -= subdev->size;
453 			offset += subdev->size;
454 		} else {
455 			break;
456 		}
457 	}
458 
459 	/* must never happen since size limit has been verified above */
460 	BUG_ON(i >= concat->num_subdev);
461 
462 	/* now do the erase: */
463 	err = 0;
464 	for (; length > 0; i++) {
465 		/* loop for all subdevices affected by this request */
466 		subdev = concat->subdev[i];	/* get current subdevice */
467 
468 		/* limit length to subdevice's size: */
469 		if (erase->addr + length > subdev->size)
470 			erase->len = subdev->size - erase->addr;
471 		else
472 			erase->len = length;
473 
474 		length -= erase->len;
475 		if ((err = concat_dev_erase(subdev, erase))) {
476 			/* sanity check: should never happen since
477 			 * block alignment has been checked above */
478 			BUG_ON(err == -EINVAL);
479 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
480 				instr->fail_addr = erase->fail_addr + offset;
481 			break;
482 		}
483 		/*
484 		 * erase->addr specifies the offset of the area to be
485 		 * erased *within the current subdevice*. It can be
486 		 * non-zero only the first time through this loop, i.e.
487 		 * for the first subdevice where blocks need to be erased.
488 		 * All the following erases must begin at the start of the
489 		 * current subdevice, i.e. at offset zero.
490 		 */
491 		erase->addr = 0;
492 		offset += subdev->size;
493 	}
494 	instr->state = erase->state;
495 	kfree(erase);
496 	if (err)
497 		return err;
498 
499 	if (instr->callback)
500 		instr->callback(instr);
501 	return 0;
502 }
503 
504 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
505 {
506 	struct mtd_concat *concat = CONCAT(mtd);
507 	int i, err = -EINVAL;
508 
509 	for (i = 0; i < concat->num_subdev; i++) {
510 		struct mtd_info *subdev = concat->subdev[i];
511 		uint64_t size;
512 
513 		if (ofs >= subdev->size) {
514 			size = 0;
515 			ofs -= subdev->size;
516 			continue;
517 		}
518 		if (ofs + len > subdev->size)
519 			size = subdev->size - ofs;
520 		else
521 			size = len;
522 
523 		err = mtd_lock(subdev, ofs, size);
524 		if (err)
525 			break;
526 
527 		len -= size;
528 		if (len == 0)
529 			break;
530 
531 		err = -EINVAL;
532 		ofs = 0;
533 	}
534 
535 	return err;
536 }
537 
538 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
539 {
540 	struct mtd_concat *concat = CONCAT(mtd);
541 	int i, err = 0;
542 
543 	for (i = 0; i < concat->num_subdev; i++) {
544 		struct mtd_info *subdev = concat->subdev[i];
545 		uint64_t size;
546 
547 		if (ofs >= subdev->size) {
548 			size = 0;
549 			ofs -= subdev->size;
550 			continue;
551 		}
552 		if (ofs + len > subdev->size)
553 			size = subdev->size - ofs;
554 		else
555 			size = len;
556 
557 		err = mtd_unlock(subdev, ofs, size);
558 		if (err)
559 			break;
560 
561 		len -= size;
562 		if (len == 0)
563 			break;
564 
565 		err = -EINVAL;
566 		ofs = 0;
567 	}
568 
569 	return err;
570 }
571 
572 static void concat_sync(struct mtd_info *mtd)
573 {
574 	struct mtd_concat *concat = CONCAT(mtd);
575 	int i;
576 
577 	for (i = 0; i < concat->num_subdev; i++) {
578 		struct mtd_info *subdev = concat->subdev[i];
579 		mtd_sync(subdev);
580 	}
581 }
582 
583 #ifndef __UBOOT__
584 static int concat_suspend(struct mtd_info *mtd)
585 {
586 	struct mtd_concat *concat = CONCAT(mtd);
587 	int i, rc = 0;
588 
589 	for (i = 0; i < concat->num_subdev; i++) {
590 		struct mtd_info *subdev = concat->subdev[i];
591 		if ((rc = mtd_suspend(subdev)) < 0)
592 			return rc;
593 	}
594 	return rc;
595 }
596 
597 static void concat_resume(struct mtd_info *mtd)
598 {
599 	struct mtd_concat *concat = CONCAT(mtd);
600 	int i;
601 
602 	for (i = 0; i < concat->num_subdev; i++) {
603 		struct mtd_info *subdev = concat->subdev[i];
604 		mtd_resume(subdev);
605 	}
606 }
607 #endif
608 
609 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
610 {
611 	struct mtd_concat *concat = CONCAT(mtd);
612 	int i, res = 0;
613 
614 	if (!mtd_can_have_bb(concat->subdev[0]))
615 		return res;
616 
617 	for (i = 0; i < concat->num_subdev; i++) {
618 		struct mtd_info *subdev = concat->subdev[i];
619 
620 		if (ofs >= subdev->size) {
621 			ofs -= subdev->size;
622 			continue;
623 		}
624 
625 		res = mtd_block_isbad(subdev, ofs);
626 		break;
627 	}
628 
629 	return res;
630 }
631 
632 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
633 {
634 	struct mtd_concat *concat = CONCAT(mtd);
635 	int i, err = -EINVAL;
636 
637 	for (i = 0; i < concat->num_subdev; i++) {
638 		struct mtd_info *subdev = concat->subdev[i];
639 
640 		if (ofs >= subdev->size) {
641 			ofs -= subdev->size;
642 			continue;
643 		}
644 
645 		err = mtd_block_markbad(subdev, ofs);
646 		if (!err)
647 			mtd->ecc_stats.badblocks++;
648 		break;
649 	}
650 
651 	return err;
652 }
653 
654 /*
655  * try to support NOMMU mmaps on concatenated devices
656  * - we don't support subdev spanning as we can't guarantee it'll work
657  */
658 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
659 					      unsigned long len,
660 					      unsigned long offset,
661 					      unsigned long flags)
662 {
663 	struct mtd_concat *concat = CONCAT(mtd);
664 	int i;
665 
666 	for (i = 0; i < concat->num_subdev; i++) {
667 		struct mtd_info *subdev = concat->subdev[i];
668 
669 		if (offset >= subdev->size) {
670 			offset -= subdev->size;
671 			continue;
672 		}
673 
674 		return mtd_get_unmapped_area(subdev, len, offset, flags);
675 	}
676 
677 	return (unsigned long) -ENOSYS;
678 }
679 
680 /*
681  * This function constructs a virtual MTD device by concatenating
682  * num_devs MTD devices. A pointer to the new device object is
683  * stored to *new_dev upon success. This function does _not_
684  * register any devices: this is the caller's responsibility.
685  */
686 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
687 				   int num_devs,	/* number of subdevices      */
688 #ifndef __UBOOT__
689 				   const char *name)
690 #else
691 				   char *name)
692 #endif
693 {				/* name for the new device   */
694 	int i;
695 	size_t size;
696 	struct mtd_concat *concat;
697 	uint32_t max_erasesize, curr_erasesize;
698 	int num_erase_region;
699 	int max_writebufsize = 0;
700 
701 	debug("Concatenating MTD devices:\n");
702 	for (i = 0; i < num_devs; i++)
703 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
704 	debug("into device \"%s\"\n", name);
705 
706 	/* allocate the device structure */
707 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
708 	concat = kzalloc(size, GFP_KERNEL);
709 	if (!concat) {
710 		printk
711 		    ("memory allocation error while creating concatenated device \"%s\"\n",
712 		     name);
713 		return NULL;
714 	}
715 	concat->subdev = (struct mtd_info **) (concat + 1);
716 
717 	/*
718 	 * Set up the new "super" device's MTD object structure, check for
719 	 * incompatibilities between the subdevices.
720 	 */
721 	concat->mtd.type = subdev[0]->type;
722 	concat->mtd.flags = subdev[0]->flags;
723 	concat->mtd.size = subdev[0]->size;
724 	concat->mtd.erasesize = subdev[0]->erasesize;
725 	concat->mtd.writesize = subdev[0]->writesize;
726 
727 	for (i = 0; i < num_devs; i++)
728 		if (max_writebufsize < subdev[i]->writebufsize)
729 			max_writebufsize = subdev[i]->writebufsize;
730 	concat->mtd.writebufsize = max_writebufsize;
731 
732 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
733 	concat->mtd.oobsize = subdev[0]->oobsize;
734 	concat->mtd.oobavail = subdev[0]->oobavail;
735 #ifndef __UBOOT__
736 	if (subdev[0]->_writev)
737 		concat->mtd._writev = concat_writev;
738 #endif
739 	if (subdev[0]->_read_oob)
740 		concat->mtd._read_oob = concat_read_oob;
741 	if (subdev[0]->_write_oob)
742 		concat->mtd._write_oob = concat_write_oob;
743 	if (subdev[0]->_block_isbad)
744 		concat->mtd._block_isbad = concat_block_isbad;
745 	if (subdev[0]->_block_markbad)
746 		concat->mtd._block_markbad = concat_block_markbad;
747 
748 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
749 
750 #ifndef __UBOOT__
751 	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
752 #endif
753 
754 	concat->subdev[0] = subdev[0];
755 
756 	for (i = 1; i < num_devs; i++) {
757 		if (concat->mtd.type != subdev[i]->type) {
758 			kfree(concat);
759 			printk("Incompatible device type on \"%s\"\n",
760 			       subdev[i]->name);
761 			return NULL;
762 		}
763 		if (concat->mtd.flags != subdev[i]->flags) {
764 			/*
765 			 * Expect all flags except MTD_WRITEABLE to be
766 			 * equal on all subdevices.
767 			 */
768 			if ((concat->mtd.flags ^ subdev[i]->
769 			     flags) & ~MTD_WRITEABLE) {
770 				kfree(concat);
771 				printk("Incompatible device flags on \"%s\"\n",
772 				       subdev[i]->name);
773 				return NULL;
774 			} else
775 				/* if writeable attribute differs,
776 				   make super device writeable */
777 				concat->mtd.flags |=
778 				    subdev[i]->flags & MTD_WRITEABLE;
779 		}
780 
781 #ifndef __UBOOT__
782 		/* only permit direct mapping if the BDIs are all the same
783 		 * - copy-mapping is still permitted
784 		 */
785 		if (concat->mtd.backing_dev_info !=
786 		    subdev[i]->backing_dev_info)
787 			concat->mtd.backing_dev_info =
788 				&default_backing_dev_info;
789 #endif
790 
791 		concat->mtd.size += subdev[i]->size;
792 		concat->mtd.ecc_stats.badblocks +=
793 			subdev[i]->ecc_stats.badblocks;
794 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
795 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
796 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
797 		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
798 		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
799 			kfree(concat);
800 			printk("Incompatible OOB or ECC data on \"%s\"\n",
801 			       subdev[i]->name);
802 			return NULL;
803 		}
804 		concat->subdev[i] = subdev[i];
805 
806 	}
807 
808 	concat->mtd.ecclayout = subdev[0]->ecclayout;
809 
810 	concat->num_subdev = num_devs;
811 	concat->mtd.name = name;
812 
813 	concat->mtd._erase = concat_erase;
814 	concat->mtd._read = concat_read;
815 	concat->mtd._write = concat_write;
816 	concat->mtd._sync = concat_sync;
817 	concat->mtd._lock = concat_lock;
818 	concat->mtd._unlock = concat_unlock;
819 #ifndef __UBOOT__
820 	concat->mtd._suspend = concat_suspend;
821 	concat->mtd._resume = concat_resume;
822 #endif
823 	concat->mtd._get_unmapped_area = concat_get_unmapped_area;
824 
825 	/*
826 	 * Combine the erase block size info of the subdevices:
827 	 *
828 	 * first, walk the map of the new device and see how
829 	 * many changes in erase size we have
830 	 */
831 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
832 	num_erase_region = 1;
833 	for (i = 0; i < num_devs; i++) {
834 		if (subdev[i]->numeraseregions == 0) {
835 			/* current subdevice has uniform erase size */
836 			if (subdev[i]->erasesize != curr_erasesize) {
837 				/* if it differs from the last subdevice's erase size, count it */
838 				++num_erase_region;
839 				curr_erasesize = subdev[i]->erasesize;
840 				if (curr_erasesize > max_erasesize)
841 					max_erasesize = curr_erasesize;
842 			}
843 		} else {
844 			/* current subdevice has variable erase size */
845 			int j;
846 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
847 
848 				/* walk the list of erase regions, count any changes */
849 				if (subdev[i]->eraseregions[j].erasesize !=
850 				    curr_erasesize) {
851 					++num_erase_region;
852 					curr_erasesize =
853 					    subdev[i]->eraseregions[j].
854 					    erasesize;
855 					if (curr_erasesize > max_erasesize)
856 						max_erasesize = curr_erasesize;
857 				}
858 			}
859 		}
860 	}
861 
862 	if (num_erase_region == 1) {
863 		/*
864 		 * All subdevices have the same uniform erase size.
865 		 * This is easy:
866 		 */
867 		concat->mtd.erasesize = curr_erasesize;
868 		concat->mtd.numeraseregions = 0;
869 	} else {
870 		uint64_t tmp64;
871 
872 		/*
873 		 * erase block size varies across the subdevices: allocate
874 		 * space to store the data describing the variable erase regions
875 		 */
876 		struct mtd_erase_region_info *erase_region_p;
877 		uint64_t begin, position;
878 
879 		concat->mtd.erasesize = max_erasesize;
880 		concat->mtd.numeraseregions = num_erase_region;
881 		concat->mtd.eraseregions = erase_region_p =
882 		    kmalloc(num_erase_region *
883 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
884 		if (!erase_region_p) {
885 			kfree(concat);
886 			printk
887 			    ("memory allocation error while creating erase region list"
888 			     " for device \"%s\"\n", name);
889 			return NULL;
890 		}
891 
892 		/*
893 		 * walk the map of the new device once more and fill in
894 		 * in erase region info:
895 		 */
896 		curr_erasesize = subdev[0]->erasesize;
897 		begin = position = 0;
898 		for (i = 0; i < num_devs; i++) {
899 			if (subdev[i]->numeraseregions == 0) {
900 				/* current subdevice has uniform erase size */
901 				if (subdev[i]->erasesize != curr_erasesize) {
902 					/*
903 					 *  fill in an mtd_erase_region_info structure for the area
904 					 *  we have walked so far:
905 					 */
906 					erase_region_p->offset = begin;
907 					erase_region_p->erasesize =
908 					    curr_erasesize;
909 					tmp64 = position - begin;
910 					do_div(tmp64, curr_erasesize);
911 					erase_region_p->numblocks = tmp64;
912 					begin = position;
913 
914 					curr_erasesize = subdev[i]->erasesize;
915 					++erase_region_p;
916 				}
917 				position += subdev[i]->size;
918 			} else {
919 				/* current subdevice has variable erase size */
920 				int j;
921 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
922 					/* walk the list of erase regions, count any changes */
923 					if (subdev[i]->eraseregions[j].
924 					    erasesize != curr_erasesize) {
925 						erase_region_p->offset = begin;
926 						erase_region_p->erasesize =
927 						    curr_erasesize;
928 						tmp64 = position - begin;
929 						do_div(tmp64, curr_erasesize);
930 						erase_region_p->numblocks = tmp64;
931 						begin = position;
932 
933 						curr_erasesize =
934 						    subdev[i]->eraseregions[j].
935 						    erasesize;
936 						++erase_region_p;
937 					}
938 					position +=
939 					    subdev[i]->eraseregions[j].
940 					    numblocks * (uint64_t)curr_erasesize;
941 				}
942 			}
943 		}
944 		/* Now write the final entry */
945 		erase_region_p->offset = begin;
946 		erase_region_p->erasesize = curr_erasesize;
947 		tmp64 = position - begin;
948 		do_div(tmp64, curr_erasesize);
949 		erase_region_p->numblocks = tmp64;
950 	}
951 
952 	return &concat->mtd;
953 }
954 
955 /*
956  * This function destroys an MTD object obtained from concat_mtd_devs()
957  */
958 
959 void mtd_concat_destroy(struct mtd_info *mtd)
960 {
961 	struct mtd_concat *concat = CONCAT(mtd);
962 	if (concat->mtd.numeraseregions)
963 		kfree(concat->mtd.eraseregions);
964 	kfree(concat);
965 }
966 
967 EXPORT_SYMBOL(mtd_concat_create);
968 EXPORT_SYMBOL(mtd_concat_destroy);
969 
970 MODULE_LICENSE("GPL");
971 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
972 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
973