1 /* 2 * MTD device concatenation layer 3 * 4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de> 5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org> 6 * 7 * NAND support by Christian Gan <cgan@iders.ca> 8 * 9 * SPDX-License-Identifier: GPL-2.0+ 10 * 11 */ 12 13 #ifndef __UBOOT__ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/types.h> 19 #include <linux/backing-dev.h> 20 #include <asm/div64.h> 21 #else 22 #include <div64.h> 23 #include <linux/compat.h> 24 #endif 25 26 #include <linux/mtd/mtd.h> 27 #include <linux/mtd/concat.h> 28 29 #include <ubi_uboot.h> 30 31 /* 32 * Our storage structure: 33 * Subdev points to an array of pointers to struct mtd_info objects 34 * which is allocated along with this structure 35 * 36 */ 37 struct mtd_concat { 38 struct mtd_info mtd; 39 int num_subdev; 40 struct mtd_info **subdev; 41 }; 42 43 /* 44 * how to calculate the size required for the above structure, 45 * including the pointer array subdev points to: 46 */ 47 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \ 48 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) 49 50 /* 51 * Given a pointer to the MTD object in the mtd_concat structure, 52 * we can retrieve the pointer to that structure with this macro. 53 */ 54 #define CONCAT(x) ((struct mtd_concat *)(x)) 55 56 /* 57 * MTD methods which look up the relevant subdevice, translate the 58 * effective address and pass through to the subdevice. 59 */ 60 61 static int 62 concat_read(struct mtd_info *mtd, loff_t from, size_t len, 63 size_t * retlen, u_char * buf) 64 { 65 struct mtd_concat *concat = CONCAT(mtd); 66 int ret = 0, err; 67 int i; 68 69 #ifdef __UBOOT__ 70 *retlen = 0; 71 #endif 72 73 for (i = 0; i < concat->num_subdev; i++) { 74 struct mtd_info *subdev = concat->subdev[i]; 75 size_t size, retsize; 76 77 if (from >= subdev->size) { 78 /* Not destined for this subdev */ 79 size = 0; 80 from -= subdev->size; 81 continue; 82 } 83 if (from + len > subdev->size) 84 /* First part goes into this subdev */ 85 size = subdev->size - from; 86 else 87 /* Entire transaction goes into this subdev */ 88 size = len; 89 90 err = mtd_read(subdev, from, size, &retsize, buf); 91 92 /* Save information about bitflips! */ 93 if (unlikely(err)) { 94 if (mtd_is_eccerr(err)) { 95 mtd->ecc_stats.failed++; 96 ret = err; 97 } else if (mtd_is_bitflip(err)) { 98 mtd->ecc_stats.corrected++; 99 /* Do not overwrite -EBADMSG !! */ 100 if (!ret) 101 ret = err; 102 } else 103 return err; 104 } 105 106 *retlen += retsize; 107 len -= size; 108 if (len == 0) 109 return ret; 110 111 buf += size; 112 from = 0; 113 } 114 return -EINVAL; 115 } 116 117 static int 118 concat_write(struct mtd_info *mtd, loff_t to, size_t len, 119 size_t * retlen, const u_char * buf) 120 { 121 struct mtd_concat *concat = CONCAT(mtd); 122 int err = -EINVAL; 123 int i; 124 125 #ifdef __UBOOT__ 126 *retlen = 0; 127 #endif 128 129 for (i = 0; i < concat->num_subdev; i++) { 130 struct mtd_info *subdev = concat->subdev[i]; 131 size_t size, retsize; 132 133 if (to >= subdev->size) { 134 size = 0; 135 to -= subdev->size; 136 continue; 137 } 138 if (to + len > subdev->size) 139 size = subdev->size - to; 140 else 141 size = len; 142 143 err = mtd_write(subdev, to, size, &retsize, buf); 144 if (err) 145 break; 146 147 *retlen += retsize; 148 len -= size; 149 if (len == 0) 150 break; 151 152 err = -EINVAL; 153 buf += size; 154 to = 0; 155 } 156 return err; 157 } 158 159 #ifndef __UBOOT__ 160 static int 161 concat_writev(struct mtd_info *mtd, const struct kvec *vecs, 162 unsigned long count, loff_t to, size_t * retlen) 163 { 164 struct mtd_concat *concat = CONCAT(mtd); 165 struct kvec *vecs_copy; 166 unsigned long entry_low, entry_high; 167 size_t total_len = 0; 168 int i; 169 int err = -EINVAL; 170 171 /* Calculate total length of data */ 172 for (i = 0; i < count; i++) 173 total_len += vecs[i].iov_len; 174 175 /* Check alignment */ 176 if (mtd->writesize > 1) { 177 uint64_t __to = to; 178 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) 179 return -EINVAL; 180 } 181 182 /* make a copy of vecs */ 183 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL); 184 if (!vecs_copy) 185 return -ENOMEM; 186 187 entry_low = 0; 188 for (i = 0; i < concat->num_subdev; i++) { 189 struct mtd_info *subdev = concat->subdev[i]; 190 size_t size, wsize, retsize, old_iov_len; 191 192 if (to >= subdev->size) { 193 to -= subdev->size; 194 continue; 195 } 196 197 size = min_t(uint64_t, total_len, subdev->size - to); 198 wsize = size; /* store for future use */ 199 200 entry_high = entry_low; 201 while (entry_high < count) { 202 if (size <= vecs_copy[entry_high].iov_len) 203 break; 204 size -= vecs_copy[entry_high++].iov_len; 205 } 206 207 old_iov_len = vecs_copy[entry_high].iov_len; 208 vecs_copy[entry_high].iov_len = size; 209 210 err = mtd_writev(subdev, &vecs_copy[entry_low], 211 entry_high - entry_low + 1, to, &retsize); 212 213 vecs_copy[entry_high].iov_len = old_iov_len - size; 214 vecs_copy[entry_high].iov_base += size; 215 216 entry_low = entry_high; 217 218 if (err) 219 break; 220 221 *retlen += retsize; 222 total_len -= wsize; 223 224 if (total_len == 0) 225 break; 226 227 err = -EINVAL; 228 to = 0; 229 } 230 231 kfree(vecs_copy); 232 return err; 233 } 234 #endif 235 236 static int 237 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 238 { 239 struct mtd_concat *concat = CONCAT(mtd); 240 struct mtd_oob_ops devops = *ops; 241 int i, err, ret = 0; 242 243 ops->retlen = ops->oobretlen = 0; 244 245 for (i = 0; i < concat->num_subdev; i++) { 246 struct mtd_info *subdev = concat->subdev[i]; 247 248 if (from >= subdev->size) { 249 from -= subdev->size; 250 continue; 251 } 252 253 /* partial read ? */ 254 if (from + devops.len > subdev->size) 255 devops.len = subdev->size - from; 256 257 err = mtd_read_oob(subdev, from, &devops); 258 ops->retlen += devops.retlen; 259 ops->oobretlen += devops.oobretlen; 260 261 /* Save information about bitflips! */ 262 if (unlikely(err)) { 263 if (mtd_is_eccerr(err)) { 264 mtd->ecc_stats.failed++; 265 ret = err; 266 } else if (mtd_is_bitflip(err)) { 267 mtd->ecc_stats.corrected++; 268 /* Do not overwrite -EBADMSG !! */ 269 if (!ret) 270 ret = err; 271 } else 272 return err; 273 } 274 275 if (devops.datbuf) { 276 devops.len = ops->len - ops->retlen; 277 if (!devops.len) 278 return ret; 279 devops.datbuf += devops.retlen; 280 } 281 if (devops.oobbuf) { 282 devops.ooblen = ops->ooblen - ops->oobretlen; 283 if (!devops.ooblen) 284 return ret; 285 devops.oobbuf += ops->oobretlen; 286 } 287 288 from = 0; 289 } 290 return -EINVAL; 291 } 292 293 static int 294 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) 295 { 296 struct mtd_concat *concat = CONCAT(mtd); 297 struct mtd_oob_ops devops = *ops; 298 int i, err; 299 300 if (!(mtd->flags & MTD_WRITEABLE)) 301 return -EROFS; 302 303 ops->retlen = ops->oobretlen = 0; 304 305 for (i = 0; i < concat->num_subdev; i++) { 306 struct mtd_info *subdev = concat->subdev[i]; 307 308 if (to >= subdev->size) { 309 to -= subdev->size; 310 continue; 311 } 312 313 /* partial write ? */ 314 if (to + devops.len > subdev->size) 315 devops.len = subdev->size - to; 316 317 err = mtd_write_oob(subdev, to, &devops); 318 ops->retlen += devops.oobretlen; 319 if (err) 320 return err; 321 322 if (devops.datbuf) { 323 devops.len = ops->len - ops->retlen; 324 if (!devops.len) 325 return 0; 326 devops.datbuf += devops.retlen; 327 } 328 if (devops.oobbuf) { 329 devops.ooblen = ops->ooblen - ops->oobretlen; 330 if (!devops.ooblen) 331 return 0; 332 devops.oobbuf += devops.oobretlen; 333 } 334 to = 0; 335 } 336 return -EINVAL; 337 } 338 339 static void concat_erase_callback(struct erase_info *instr) 340 { 341 /* Nothing to do here in U-Boot */ 342 #ifndef __UBOOT__ 343 wake_up((wait_queue_head_t *) instr->priv); 344 #endif 345 } 346 347 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase) 348 { 349 int err; 350 wait_queue_head_t waitq; 351 DECLARE_WAITQUEUE(wait, current); 352 353 /* 354 * This code was stol^H^H^H^Hinspired by mtdchar.c 355 */ 356 init_waitqueue_head(&waitq); 357 358 erase->mtd = mtd; 359 erase->callback = concat_erase_callback; 360 erase->priv = (unsigned long) &waitq; 361 362 /* 363 * FIXME: Allow INTERRUPTIBLE. Which means 364 * not having the wait_queue head on the stack. 365 */ 366 err = mtd_erase(mtd, erase); 367 if (!err) { 368 set_current_state(TASK_UNINTERRUPTIBLE); 369 add_wait_queue(&waitq, &wait); 370 if (erase->state != MTD_ERASE_DONE 371 && erase->state != MTD_ERASE_FAILED) 372 schedule(); 373 remove_wait_queue(&waitq, &wait); 374 set_current_state(TASK_RUNNING); 375 376 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0; 377 } 378 return err; 379 } 380 381 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) 382 { 383 struct mtd_concat *concat = CONCAT(mtd); 384 struct mtd_info *subdev; 385 int i, err; 386 uint64_t length, offset = 0; 387 struct erase_info *erase; 388 389 /* 390 * Check for proper erase block alignment of the to-be-erased area. 391 * It is easier to do this based on the super device's erase 392 * region info rather than looking at each particular sub-device 393 * in turn. 394 */ 395 if (!concat->mtd.numeraseregions) { 396 /* the easy case: device has uniform erase block size */ 397 if (instr->addr & (concat->mtd.erasesize - 1)) 398 return -EINVAL; 399 if (instr->len & (concat->mtd.erasesize - 1)) 400 return -EINVAL; 401 } else { 402 /* device has variable erase size */ 403 struct mtd_erase_region_info *erase_regions = 404 concat->mtd.eraseregions; 405 406 /* 407 * Find the erase region where the to-be-erased area begins: 408 */ 409 for (i = 0; i < concat->mtd.numeraseregions && 410 instr->addr >= erase_regions[i].offset; i++) ; 411 --i; 412 413 /* 414 * Now erase_regions[i] is the region in which the 415 * to-be-erased area begins. Verify that the starting 416 * offset is aligned to this region's erase size: 417 */ 418 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1)) 419 return -EINVAL; 420 421 /* 422 * now find the erase region where the to-be-erased area ends: 423 */ 424 for (; i < concat->mtd.numeraseregions && 425 (instr->addr + instr->len) >= erase_regions[i].offset; 426 ++i) ; 427 --i; 428 /* 429 * check if the ending offset is aligned to this region's erase size 430 */ 431 if (i < 0 || ((instr->addr + instr->len) & 432 (erase_regions[i].erasesize - 1))) 433 return -EINVAL; 434 } 435 436 /* make a local copy of instr to avoid modifying the caller's struct */ 437 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); 438 439 if (!erase) 440 return -ENOMEM; 441 442 *erase = *instr; 443 length = instr->len; 444 445 /* 446 * find the subdevice where the to-be-erased area begins, adjust 447 * starting offset to be relative to the subdevice start 448 */ 449 for (i = 0; i < concat->num_subdev; i++) { 450 subdev = concat->subdev[i]; 451 if (subdev->size <= erase->addr) { 452 erase->addr -= subdev->size; 453 offset += subdev->size; 454 } else { 455 break; 456 } 457 } 458 459 /* must never happen since size limit has been verified above */ 460 BUG_ON(i >= concat->num_subdev); 461 462 /* now do the erase: */ 463 err = 0; 464 for (; length > 0; i++) { 465 /* loop for all subdevices affected by this request */ 466 subdev = concat->subdev[i]; /* get current subdevice */ 467 468 /* limit length to subdevice's size: */ 469 if (erase->addr + length > subdev->size) 470 erase->len = subdev->size - erase->addr; 471 else 472 erase->len = length; 473 474 length -= erase->len; 475 if ((err = concat_dev_erase(subdev, erase))) { 476 /* sanity check: should never happen since 477 * block alignment has been checked above */ 478 BUG_ON(err == -EINVAL); 479 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 480 instr->fail_addr = erase->fail_addr + offset; 481 break; 482 } 483 /* 484 * erase->addr specifies the offset of the area to be 485 * erased *within the current subdevice*. It can be 486 * non-zero only the first time through this loop, i.e. 487 * for the first subdevice where blocks need to be erased. 488 * All the following erases must begin at the start of the 489 * current subdevice, i.e. at offset zero. 490 */ 491 erase->addr = 0; 492 offset += subdev->size; 493 } 494 instr->state = erase->state; 495 kfree(erase); 496 if (err) 497 return err; 498 499 if (instr->callback) 500 instr->callback(instr); 501 return 0; 502 } 503 504 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 505 { 506 struct mtd_concat *concat = CONCAT(mtd); 507 int i, err = -EINVAL; 508 509 for (i = 0; i < concat->num_subdev; i++) { 510 struct mtd_info *subdev = concat->subdev[i]; 511 uint64_t size; 512 513 if (ofs >= subdev->size) { 514 size = 0; 515 ofs -= subdev->size; 516 continue; 517 } 518 if (ofs + len > subdev->size) 519 size = subdev->size - ofs; 520 else 521 size = len; 522 523 err = mtd_lock(subdev, ofs, size); 524 if (err) 525 break; 526 527 len -= size; 528 if (len == 0) 529 break; 530 531 err = -EINVAL; 532 ofs = 0; 533 } 534 535 return err; 536 } 537 538 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 539 { 540 struct mtd_concat *concat = CONCAT(mtd); 541 int i, err = 0; 542 543 for (i = 0; i < concat->num_subdev; i++) { 544 struct mtd_info *subdev = concat->subdev[i]; 545 uint64_t size; 546 547 if (ofs >= subdev->size) { 548 size = 0; 549 ofs -= subdev->size; 550 continue; 551 } 552 if (ofs + len > subdev->size) 553 size = subdev->size - ofs; 554 else 555 size = len; 556 557 err = mtd_unlock(subdev, ofs, size); 558 if (err) 559 break; 560 561 len -= size; 562 if (len == 0) 563 break; 564 565 err = -EINVAL; 566 ofs = 0; 567 } 568 569 return err; 570 } 571 572 static void concat_sync(struct mtd_info *mtd) 573 { 574 struct mtd_concat *concat = CONCAT(mtd); 575 int i; 576 577 for (i = 0; i < concat->num_subdev; i++) { 578 struct mtd_info *subdev = concat->subdev[i]; 579 mtd_sync(subdev); 580 } 581 } 582 583 #ifndef __UBOOT__ 584 static int concat_suspend(struct mtd_info *mtd) 585 { 586 struct mtd_concat *concat = CONCAT(mtd); 587 int i, rc = 0; 588 589 for (i = 0; i < concat->num_subdev; i++) { 590 struct mtd_info *subdev = concat->subdev[i]; 591 if ((rc = mtd_suspend(subdev)) < 0) 592 return rc; 593 } 594 return rc; 595 } 596 597 static void concat_resume(struct mtd_info *mtd) 598 { 599 struct mtd_concat *concat = CONCAT(mtd); 600 int i; 601 602 for (i = 0; i < concat->num_subdev; i++) { 603 struct mtd_info *subdev = concat->subdev[i]; 604 mtd_resume(subdev); 605 } 606 } 607 #endif 608 609 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) 610 { 611 struct mtd_concat *concat = CONCAT(mtd); 612 int i, res = 0; 613 614 if (!mtd_can_have_bb(concat->subdev[0])) 615 return res; 616 617 for (i = 0; i < concat->num_subdev; i++) { 618 struct mtd_info *subdev = concat->subdev[i]; 619 620 if (ofs >= subdev->size) { 621 ofs -= subdev->size; 622 continue; 623 } 624 625 res = mtd_block_isbad(subdev, ofs); 626 break; 627 } 628 629 return res; 630 } 631 632 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) 633 { 634 struct mtd_concat *concat = CONCAT(mtd); 635 int i, err = -EINVAL; 636 637 for (i = 0; i < concat->num_subdev; i++) { 638 struct mtd_info *subdev = concat->subdev[i]; 639 640 if (ofs >= subdev->size) { 641 ofs -= subdev->size; 642 continue; 643 } 644 645 err = mtd_block_markbad(subdev, ofs); 646 if (!err) 647 mtd->ecc_stats.badblocks++; 648 break; 649 } 650 651 return err; 652 } 653 654 /* 655 * try to support NOMMU mmaps on concatenated devices 656 * - we don't support subdev spanning as we can't guarantee it'll work 657 */ 658 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd, 659 unsigned long len, 660 unsigned long offset, 661 unsigned long flags) 662 { 663 struct mtd_concat *concat = CONCAT(mtd); 664 int i; 665 666 for (i = 0; i < concat->num_subdev; i++) { 667 struct mtd_info *subdev = concat->subdev[i]; 668 669 if (offset >= subdev->size) { 670 offset -= subdev->size; 671 continue; 672 } 673 674 return mtd_get_unmapped_area(subdev, len, offset, flags); 675 } 676 677 return (unsigned long) -ENOSYS; 678 } 679 680 /* 681 * This function constructs a virtual MTD device by concatenating 682 * num_devs MTD devices. A pointer to the new device object is 683 * stored to *new_dev upon success. This function does _not_ 684 * register any devices: this is the caller's responsibility. 685 */ 686 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */ 687 int num_devs, /* number of subdevices */ 688 #ifndef __UBOOT__ 689 const char *name) 690 #else 691 char *name) 692 #endif 693 { /* name for the new device */ 694 int i; 695 size_t size; 696 struct mtd_concat *concat; 697 uint32_t max_erasesize, curr_erasesize; 698 int num_erase_region; 699 int max_writebufsize = 0; 700 701 debug("Concatenating MTD devices:\n"); 702 for (i = 0; i < num_devs; i++) 703 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); 704 debug("into device \"%s\"\n", name); 705 706 /* allocate the device structure */ 707 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); 708 concat = kzalloc(size, GFP_KERNEL); 709 if (!concat) { 710 printk 711 ("memory allocation error while creating concatenated device \"%s\"\n", 712 name); 713 return NULL; 714 } 715 concat->subdev = (struct mtd_info **) (concat + 1); 716 717 /* 718 * Set up the new "super" device's MTD object structure, check for 719 * incompatibilities between the subdevices. 720 */ 721 concat->mtd.type = subdev[0]->type; 722 concat->mtd.flags = subdev[0]->flags; 723 concat->mtd.size = subdev[0]->size; 724 concat->mtd.erasesize = subdev[0]->erasesize; 725 concat->mtd.writesize = subdev[0]->writesize; 726 727 for (i = 0; i < num_devs; i++) 728 if (max_writebufsize < subdev[i]->writebufsize) 729 max_writebufsize = subdev[i]->writebufsize; 730 concat->mtd.writebufsize = max_writebufsize; 731 732 concat->mtd.subpage_sft = subdev[0]->subpage_sft; 733 concat->mtd.oobsize = subdev[0]->oobsize; 734 concat->mtd.oobavail = subdev[0]->oobavail; 735 #ifndef __UBOOT__ 736 if (subdev[0]->_writev) 737 concat->mtd._writev = concat_writev; 738 #endif 739 if (subdev[0]->_read_oob) 740 concat->mtd._read_oob = concat_read_oob; 741 if (subdev[0]->_write_oob) 742 concat->mtd._write_oob = concat_write_oob; 743 if (subdev[0]->_block_isbad) 744 concat->mtd._block_isbad = concat_block_isbad; 745 if (subdev[0]->_block_markbad) 746 concat->mtd._block_markbad = concat_block_markbad; 747 748 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; 749 750 #ifndef __UBOOT__ 751 concat->mtd.backing_dev_info = subdev[0]->backing_dev_info; 752 #endif 753 754 concat->subdev[0] = subdev[0]; 755 756 for (i = 1; i < num_devs; i++) { 757 if (concat->mtd.type != subdev[i]->type) { 758 kfree(concat); 759 printk("Incompatible device type on \"%s\"\n", 760 subdev[i]->name); 761 return NULL; 762 } 763 if (concat->mtd.flags != subdev[i]->flags) { 764 /* 765 * Expect all flags except MTD_WRITEABLE to be 766 * equal on all subdevices. 767 */ 768 if ((concat->mtd.flags ^ subdev[i]-> 769 flags) & ~MTD_WRITEABLE) { 770 kfree(concat); 771 printk("Incompatible device flags on \"%s\"\n", 772 subdev[i]->name); 773 return NULL; 774 } else 775 /* if writeable attribute differs, 776 make super device writeable */ 777 concat->mtd.flags |= 778 subdev[i]->flags & MTD_WRITEABLE; 779 } 780 781 #ifndef __UBOOT__ 782 /* only permit direct mapping if the BDIs are all the same 783 * - copy-mapping is still permitted 784 */ 785 if (concat->mtd.backing_dev_info != 786 subdev[i]->backing_dev_info) 787 concat->mtd.backing_dev_info = 788 &default_backing_dev_info; 789 #endif 790 791 concat->mtd.size += subdev[i]->size; 792 concat->mtd.ecc_stats.badblocks += 793 subdev[i]->ecc_stats.badblocks; 794 if (concat->mtd.writesize != subdev[i]->writesize || 795 concat->mtd.subpage_sft != subdev[i]->subpage_sft || 796 concat->mtd.oobsize != subdev[i]->oobsize || 797 !concat->mtd._read_oob != !subdev[i]->_read_oob || 798 !concat->mtd._write_oob != !subdev[i]->_write_oob) { 799 kfree(concat); 800 printk("Incompatible OOB or ECC data on \"%s\"\n", 801 subdev[i]->name); 802 return NULL; 803 } 804 concat->subdev[i] = subdev[i]; 805 806 } 807 808 concat->mtd.ecclayout = subdev[0]->ecclayout; 809 810 concat->num_subdev = num_devs; 811 concat->mtd.name = name; 812 813 concat->mtd._erase = concat_erase; 814 concat->mtd._read = concat_read; 815 concat->mtd._write = concat_write; 816 concat->mtd._sync = concat_sync; 817 concat->mtd._lock = concat_lock; 818 concat->mtd._unlock = concat_unlock; 819 #ifndef __UBOOT__ 820 concat->mtd._suspend = concat_suspend; 821 concat->mtd._resume = concat_resume; 822 #endif 823 concat->mtd._get_unmapped_area = concat_get_unmapped_area; 824 825 /* 826 * Combine the erase block size info of the subdevices: 827 * 828 * first, walk the map of the new device and see how 829 * many changes in erase size we have 830 */ 831 max_erasesize = curr_erasesize = subdev[0]->erasesize; 832 num_erase_region = 1; 833 for (i = 0; i < num_devs; i++) { 834 if (subdev[i]->numeraseregions == 0) { 835 /* current subdevice has uniform erase size */ 836 if (subdev[i]->erasesize != curr_erasesize) { 837 /* if it differs from the last subdevice's erase size, count it */ 838 ++num_erase_region; 839 curr_erasesize = subdev[i]->erasesize; 840 if (curr_erasesize > max_erasesize) 841 max_erasesize = curr_erasesize; 842 } 843 } else { 844 /* current subdevice has variable erase size */ 845 int j; 846 for (j = 0; j < subdev[i]->numeraseregions; j++) { 847 848 /* walk the list of erase regions, count any changes */ 849 if (subdev[i]->eraseregions[j].erasesize != 850 curr_erasesize) { 851 ++num_erase_region; 852 curr_erasesize = 853 subdev[i]->eraseregions[j]. 854 erasesize; 855 if (curr_erasesize > max_erasesize) 856 max_erasesize = curr_erasesize; 857 } 858 } 859 } 860 } 861 862 if (num_erase_region == 1) { 863 /* 864 * All subdevices have the same uniform erase size. 865 * This is easy: 866 */ 867 concat->mtd.erasesize = curr_erasesize; 868 concat->mtd.numeraseregions = 0; 869 } else { 870 uint64_t tmp64; 871 872 /* 873 * erase block size varies across the subdevices: allocate 874 * space to store the data describing the variable erase regions 875 */ 876 struct mtd_erase_region_info *erase_region_p; 877 uint64_t begin, position; 878 879 concat->mtd.erasesize = max_erasesize; 880 concat->mtd.numeraseregions = num_erase_region; 881 concat->mtd.eraseregions = erase_region_p = 882 kmalloc(num_erase_region * 883 sizeof (struct mtd_erase_region_info), GFP_KERNEL); 884 if (!erase_region_p) { 885 kfree(concat); 886 printk 887 ("memory allocation error while creating erase region list" 888 " for device \"%s\"\n", name); 889 return NULL; 890 } 891 892 /* 893 * walk the map of the new device once more and fill in 894 * in erase region info: 895 */ 896 curr_erasesize = subdev[0]->erasesize; 897 begin = position = 0; 898 for (i = 0; i < num_devs; i++) { 899 if (subdev[i]->numeraseregions == 0) { 900 /* current subdevice has uniform erase size */ 901 if (subdev[i]->erasesize != curr_erasesize) { 902 /* 903 * fill in an mtd_erase_region_info structure for the area 904 * we have walked so far: 905 */ 906 erase_region_p->offset = begin; 907 erase_region_p->erasesize = 908 curr_erasesize; 909 tmp64 = position - begin; 910 do_div(tmp64, curr_erasesize); 911 erase_region_p->numblocks = tmp64; 912 begin = position; 913 914 curr_erasesize = subdev[i]->erasesize; 915 ++erase_region_p; 916 } 917 position += subdev[i]->size; 918 } else { 919 /* current subdevice has variable erase size */ 920 int j; 921 for (j = 0; j < subdev[i]->numeraseregions; j++) { 922 /* walk the list of erase regions, count any changes */ 923 if (subdev[i]->eraseregions[j]. 924 erasesize != curr_erasesize) { 925 erase_region_p->offset = begin; 926 erase_region_p->erasesize = 927 curr_erasesize; 928 tmp64 = position - begin; 929 do_div(tmp64, curr_erasesize); 930 erase_region_p->numblocks = tmp64; 931 begin = position; 932 933 curr_erasesize = 934 subdev[i]->eraseregions[j]. 935 erasesize; 936 ++erase_region_p; 937 } 938 position += 939 subdev[i]->eraseregions[j]. 940 numblocks * (uint64_t)curr_erasesize; 941 } 942 } 943 } 944 /* Now write the final entry */ 945 erase_region_p->offset = begin; 946 erase_region_p->erasesize = curr_erasesize; 947 tmp64 = position - begin; 948 do_div(tmp64, curr_erasesize); 949 erase_region_p->numblocks = tmp64; 950 } 951 952 return &concat->mtd; 953 } 954 955 /* 956 * This function destroys an MTD object obtained from concat_mtd_devs() 957 */ 958 959 void mtd_concat_destroy(struct mtd_info *mtd) 960 { 961 struct mtd_concat *concat = CONCAT(mtd); 962 if (concat->mtd.numeraseregions) 963 kfree(concat->mtd.eraseregions); 964 kfree(concat); 965 } 966 967 EXPORT_SYMBOL(mtd_concat_create); 968 EXPORT_SYMBOL(mtd_concat_destroy); 969 970 MODULE_LICENSE("GPL"); 971 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); 972 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); 973