xref: /openbmc/u-boot/drivers/mtd/mtdconcat.c (revision 0a98b28b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * MTD device concatenation layer
4  *
5  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
6  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * NAND support by Christian Gan <cgan@iders.ca>
9  *
10  */
11 
12 #ifndef __UBOOT__
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
18 #include <linux/backing-dev.h>
19 #include <asm/div64.h>
20 #else
21 #include <div64.h>
22 #include <linux/compat.h>
23 #endif
24 
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/concat.h>
27 
28 #include <ubi_uboot.h>
29 
30 /*
31  * Our storage structure:
32  * Subdev points to an array of pointers to struct mtd_info objects
33  * which is allocated along with this structure
34  *
35  */
36 struct mtd_concat {
37 	struct mtd_info mtd;
38 	int num_subdev;
39 	struct mtd_info **subdev;
40 };
41 
42 /*
43  * how to calculate the size required for the above structure,
44  * including the pointer array subdev points to:
45  */
46 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
47 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
48 
49 /*
50  * Given a pointer to the MTD object in the mtd_concat structure,
51  * we can retrieve the pointer to that structure with this macro.
52  */
53 #define CONCAT(x)  ((struct mtd_concat *)(x))
54 
55 /*
56  * MTD methods which look up the relevant subdevice, translate the
57  * effective address and pass through to the subdevice.
58  */
59 
60 static int
61 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
62 	    size_t * retlen, u_char * buf)
63 {
64 	struct mtd_concat *concat = CONCAT(mtd);
65 	int ret = 0, err;
66 	int i;
67 
68 #ifdef __UBOOT__
69 	*retlen = 0;
70 #endif
71 
72 	for (i = 0; i < concat->num_subdev; i++) {
73 		struct mtd_info *subdev = concat->subdev[i];
74 		size_t size, retsize;
75 
76 		if (from >= subdev->size) {
77 			/* Not destined for this subdev */
78 			size = 0;
79 			from -= subdev->size;
80 			continue;
81 		}
82 		if (from + len > subdev->size)
83 			/* First part goes into this subdev */
84 			size = subdev->size - from;
85 		else
86 			/* Entire transaction goes into this subdev */
87 			size = len;
88 
89 		err = mtd_read(subdev, from, size, &retsize, buf);
90 
91 		/* Save information about bitflips! */
92 		if (unlikely(err)) {
93 			if (mtd_is_eccerr(err)) {
94 				mtd->ecc_stats.failed++;
95 				ret = err;
96 			} else if (mtd_is_bitflip(err)) {
97 				mtd->ecc_stats.corrected++;
98 				/* Do not overwrite -EBADMSG !! */
99 				if (!ret)
100 					ret = err;
101 			} else
102 				return err;
103 		}
104 
105 		*retlen += retsize;
106 		len -= size;
107 		if (len == 0)
108 			return ret;
109 
110 		buf += size;
111 		from = 0;
112 	}
113 	return -EINVAL;
114 }
115 
116 static int
117 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
118 	     size_t * retlen, const u_char * buf)
119 {
120 	struct mtd_concat *concat = CONCAT(mtd);
121 	int err = -EINVAL;
122 	int i;
123 
124 #ifdef __UBOOT__
125 	*retlen = 0;
126 #endif
127 
128 	for (i = 0; i < concat->num_subdev; i++) {
129 		struct mtd_info *subdev = concat->subdev[i];
130 		size_t size, retsize;
131 
132 		if (to >= subdev->size) {
133 			size = 0;
134 			to -= subdev->size;
135 			continue;
136 		}
137 		if (to + len > subdev->size)
138 			size = subdev->size - to;
139 		else
140 			size = len;
141 
142 		err = mtd_write(subdev, to, size, &retsize, buf);
143 		if (err)
144 			break;
145 
146 		*retlen += retsize;
147 		len -= size;
148 		if (len == 0)
149 			break;
150 
151 		err = -EINVAL;
152 		buf += size;
153 		to = 0;
154 	}
155 	return err;
156 }
157 
158 #ifndef __UBOOT__
159 static int
160 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
161 		unsigned long count, loff_t to, size_t * retlen)
162 {
163 	struct mtd_concat *concat = CONCAT(mtd);
164 	struct kvec *vecs_copy;
165 	unsigned long entry_low, entry_high;
166 	size_t total_len = 0;
167 	int i;
168 	int err = -EINVAL;
169 
170 	/* Calculate total length of data */
171 	for (i = 0; i < count; i++)
172 		total_len += vecs[i].iov_len;
173 
174 	/* Check alignment */
175 	if (mtd->writesize > 1) {
176 		uint64_t __to = to;
177 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
178 			return -EINVAL;
179 	}
180 
181 	/* make a copy of vecs */
182 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
183 	if (!vecs_copy)
184 		return -ENOMEM;
185 
186 	entry_low = 0;
187 	for (i = 0; i < concat->num_subdev; i++) {
188 		struct mtd_info *subdev = concat->subdev[i];
189 		size_t size, wsize, retsize, old_iov_len;
190 
191 		if (to >= subdev->size) {
192 			to -= subdev->size;
193 			continue;
194 		}
195 
196 		size = min_t(uint64_t, total_len, subdev->size - to);
197 		wsize = size; /* store for future use */
198 
199 		entry_high = entry_low;
200 		while (entry_high < count) {
201 			if (size <= vecs_copy[entry_high].iov_len)
202 				break;
203 			size -= vecs_copy[entry_high++].iov_len;
204 		}
205 
206 		old_iov_len = vecs_copy[entry_high].iov_len;
207 		vecs_copy[entry_high].iov_len = size;
208 
209 		err = mtd_writev(subdev, &vecs_copy[entry_low],
210 				 entry_high - entry_low + 1, to, &retsize);
211 
212 		vecs_copy[entry_high].iov_len = old_iov_len - size;
213 		vecs_copy[entry_high].iov_base += size;
214 
215 		entry_low = entry_high;
216 
217 		if (err)
218 			break;
219 
220 		*retlen += retsize;
221 		total_len -= wsize;
222 
223 		if (total_len == 0)
224 			break;
225 
226 		err = -EINVAL;
227 		to = 0;
228 	}
229 
230 	kfree(vecs_copy);
231 	return err;
232 }
233 #endif
234 
235 static int
236 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
237 {
238 	struct mtd_concat *concat = CONCAT(mtd);
239 	struct mtd_oob_ops devops = *ops;
240 	int i, err, ret = 0;
241 
242 	ops->retlen = ops->oobretlen = 0;
243 
244 	for (i = 0; i < concat->num_subdev; i++) {
245 		struct mtd_info *subdev = concat->subdev[i];
246 
247 		if (from >= subdev->size) {
248 			from -= subdev->size;
249 			continue;
250 		}
251 
252 		/* partial read ? */
253 		if (from + devops.len > subdev->size)
254 			devops.len = subdev->size - from;
255 
256 		err = mtd_read_oob(subdev, from, &devops);
257 		ops->retlen += devops.retlen;
258 		ops->oobretlen += devops.oobretlen;
259 
260 		/* Save information about bitflips! */
261 		if (unlikely(err)) {
262 			if (mtd_is_eccerr(err)) {
263 				mtd->ecc_stats.failed++;
264 				ret = err;
265 			} else if (mtd_is_bitflip(err)) {
266 				mtd->ecc_stats.corrected++;
267 				/* Do not overwrite -EBADMSG !! */
268 				if (!ret)
269 					ret = err;
270 			} else
271 				return err;
272 		}
273 
274 		if (devops.datbuf) {
275 			devops.len = ops->len - ops->retlen;
276 			if (!devops.len)
277 				return ret;
278 			devops.datbuf += devops.retlen;
279 		}
280 		if (devops.oobbuf) {
281 			devops.ooblen = ops->ooblen - ops->oobretlen;
282 			if (!devops.ooblen)
283 				return ret;
284 			devops.oobbuf += ops->oobretlen;
285 		}
286 
287 		from = 0;
288 	}
289 	return -EINVAL;
290 }
291 
292 static int
293 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
294 {
295 	struct mtd_concat *concat = CONCAT(mtd);
296 	struct mtd_oob_ops devops = *ops;
297 	int i, err;
298 
299 	if (!(mtd->flags & MTD_WRITEABLE))
300 		return -EROFS;
301 
302 	ops->retlen = ops->oobretlen = 0;
303 
304 	for (i = 0; i < concat->num_subdev; i++) {
305 		struct mtd_info *subdev = concat->subdev[i];
306 
307 		if (to >= subdev->size) {
308 			to -= subdev->size;
309 			continue;
310 		}
311 
312 		/* partial write ? */
313 		if (to + devops.len > subdev->size)
314 			devops.len = subdev->size - to;
315 
316 		err = mtd_write_oob(subdev, to, &devops);
317 		ops->retlen += devops.oobretlen;
318 		if (err)
319 			return err;
320 
321 		if (devops.datbuf) {
322 			devops.len = ops->len - ops->retlen;
323 			if (!devops.len)
324 				return 0;
325 			devops.datbuf += devops.retlen;
326 		}
327 		if (devops.oobbuf) {
328 			devops.ooblen = ops->ooblen - ops->oobretlen;
329 			if (!devops.ooblen)
330 				return 0;
331 			devops.oobbuf += devops.oobretlen;
332 		}
333 		to = 0;
334 	}
335 	return -EINVAL;
336 }
337 
338 static void concat_erase_callback(struct erase_info *instr)
339 {
340 	/* Nothing to do here in U-Boot */
341 #ifndef __UBOOT__
342 	wake_up((wait_queue_head_t *) instr->priv);
343 #endif
344 }
345 
346 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
347 {
348 	int err;
349 	wait_queue_head_t waitq;
350 	DECLARE_WAITQUEUE(wait, current);
351 
352 	/*
353 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
354 	 */
355 	init_waitqueue_head(&waitq);
356 
357 	erase->mtd = mtd;
358 	erase->callback = concat_erase_callback;
359 	erase->priv = (unsigned long) &waitq;
360 
361 	/*
362 	 * FIXME: Allow INTERRUPTIBLE. Which means
363 	 * not having the wait_queue head on the stack.
364 	 */
365 	err = mtd_erase(mtd, erase);
366 	if (!err) {
367 		set_current_state(TASK_UNINTERRUPTIBLE);
368 		add_wait_queue(&waitq, &wait);
369 		if (erase->state != MTD_ERASE_DONE
370 		    && erase->state != MTD_ERASE_FAILED)
371 			schedule();
372 		remove_wait_queue(&waitq, &wait);
373 		set_current_state(TASK_RUNNING);
374 
375 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
376 	}
377 	return err;
378 }
379 
380 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
381 {
382 	struct mtd_concat *concat = CONCAT(mtd);
383 	struct mtd_info *subdev;
384 	int i, err;
385 	uint64_t length, offset = 0;
386 	struct erase_info *erase;
387 
388 	/*
389 	 * Check for proper erase block alignment of the to-be-erased area.
390 	 * It is easier to do this based on the super device's erase
391 	 * region info rather than looking at each particular sub-device
392 	 * in turn.
393 	 */
394 	if (!concat->mtd.numeraseregions) {
395 		/* the easy case: device has uniform erase block size */
396 		if (instr->addr & (concat->mtd.erasesize - 1))
397 			return -EINVAL;
398 		if (instr->len & (concat->mtd.erasesize - 1))
399 			return -EINVAL;
400 	} else {
401 		/* device has variable erase size */
402 		struct mtd_erase_region_info *erase_regions =
403 		    concat->mtd.eraseregions;
404 
405 		/*
406 		 * Find the erase region where the to-be-erased area begins:
407 		 */
408 		for (i = 0; i < concat->mtd.numeraseregions &&
409 		     instr->addr >= erase_regions[i].offset; i++) ;
410 		--i;
411 
412 		/*
413 		 * Now erase_regions[i] is the region in which the
414 		 * to-be-erased area begins. Verify that the starting
415 		 * offset is aligned to this region's erase size:
416 		 */
417 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
418 			return -EINVAL;
419 
420 		/*
421 		 * now find the erase region where the to-be-erased area ends:
422 		 */
423 		for (; i < concat->mtd.numeraseregions &&
424 		     (instr->addr + instr->len) >= erase_regions[i].offset;
425 		     ++i) ;
426 		--i;
427 		/*
428 		 * check if the ending offset is aligned to this region's erase size
429 		 */
430 		if (i < 0 || ((instr->addr + instr->len) &
431 					(erase_regions[i].erasesize - 1)))
432 			return -EINVAL;
433 	}
434 
435 	/* make a local copy of instr to avoid modifying the caller's struct */
436 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
437 
438 	if (!erase)
439 		return -ENOMEM;
440 
441 	*erase = *instr;
442 	length = instr->len;
443 
444 	/*
445 	 * find the subdevice where the to-be-erased area begins, adjust
446 	 * starting offset to be relative to the subdevice start
447 	 */
448 	for (i = 0; i < concat->num_subdev; i++) {
449 		subdev = concat->subdev[i];
450 		if (subdev->size <= erase->addr) {
451 			erase->addr -= subdev->size;
452 			offset += subdev->size;
453 		} else {
454 			break;
455 		}
456 	}
457 
458 	/* must never happen since size limit has been verified above */
459 	BUG_ON(i >= concat->num_subdev);
460 
461 	/* now do the erase: */
462 	err = 0;
463 	for (; length > 0; i++) {
464 		/* loop for all subdevices affected by this request */
465 		subdev = concat->subdev[i];	/* get current subdevice */
466 
467 		/* limit length to subdevice's size: */
468 		if (erase->addr + length > subdev->size)
469 			erase->len = subdev->size - erase->addr;
470 		else
471 			erase->len = length;
472 
473 		length -= erase->len;
474 		if ((err = concat_dev_erase(subdev, erase))) {
475 			/* sanity check: should never happen since
476 			 * block alignment has been checked above */
477 			BUG_ON(err == -EINVAL);
478 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
479 				instr->fail_addr = erase->fail_addr + offset;
480 			break;
481 		}
482 		/*
483 		 * erase->addr specifies the offset of the area to be
484 		 * erased *within the current subdevice*. It can be
485 		 * non-zero only the first time through this loop, i.e.
486 		 * for the first subdevice where blocks need to be erased.
487 		 * All the following erases must begin at the start of the
488 		 * current subdevice, i.e. at offset zero.
489 		 */
490 		erase->addr = 0;
491 		offset += subdev->size;
492 	}
493 	instr->state = erase->state;
494 	kfree(erase);
495 	if (err)
496 		return err;
497 
498 	if (instr->callback)
499 		instr->callback(instr);
500 	return 0;
501 }
502 
503 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
504 {
505 	struct mtd_concat *concat = CONCAT(mtd);
506 	int i, err = -EINVAL;
507 
508 	for (i = 0; i < concat->num_subdev; i++) {
509 		struct mtd_info *subdev = concat->subdev[i];
510 		uint64_t size;
511 
512 		if (ofs >= subdev->size) {
513 			size = 0;
514 			ofs -= subdev->size;
515 			continue;
516 		}
517 		if (ofs + len > subdev->size)
518 			size = subdev->size - ofs;
519 		else
520 			size = len;
521 
522 		err = mtd_lock(subdev, ofs, size);
523 		if (err)
524 			break;
525 
526 		len -= size;
527 		if (len == 0)
528 			break;
529 
530 		err = -EINVAL;
531 		ofs = 0;
532 	}
533 
534 	return err;
535 }
536 
537 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
538 {
539 	struct mtd_concat *concat = CONCAT(mtd);
540 	int i, err = 0;
541 
542 	for (i = 0; i < concat->num_subdev; i++) {
543 		struct mtd_info *subdev = concat->subdev[i];
544 		uint64_t size;
545 
546 		if (ofs >= subdev->size) {
547 			size = 0;
548 			ofs -= subdev->size;
549 			continue;
550 		}
551 		if (ofs + len > subdev->size)
552 			size = subdev->size - ofs;
553 		else
554 			size = len;
555 
556 		err = mtd_unlock(subdev, ofs, size);
557 		if (err)
558 			break;
559 
560 		len -= size;
561 		if (len == 0)
562 			break;
563 
564 		err = -EINVAL;
565 		ofs = 0;
566 	}
567 
568 	return err;
569 }
570 
571 static void concat_sync(struct mtd_info *mtd)
572 {
573 	struct mtd_concat *concat = CONCAT(mtd);
574 	int i;
575 
576 	for (i = 0; i < concat->num_subdev; i++) {
577 		struct mtd_info *subdev = concat->subdev[i];
578 		mtd_sync(subdev);
579 	}
580 }
581 
582 #ifndef __UBOOT__
583 static int concat_suspend(struct mtd_info *mtd)
584 {
585 	struct mtd_concat *concat = CONCAT(mtd);
586 	int i, rc = 0;
587 
588 	for (i = 0; i < concat->num_subdev; i++) {
589 		struct mtd_info *subdev = concat->subdev[i];
590 		if ((rc = mtd_suspend(subdev)) < 0)
591 			return rc;
592 	}
593 	return rc;
594 }
595 
596 static void concat_resume(struct mtd_info *mtd)
597 {
598 	struct mtd_concat *concat = CONCAT(mtd);
599 	int i;
600 
601 	for (i = 0; i < concat->num_subdev; i++) {
602 		struct mtd_info *subdev = concat->subdev[i];
603 		mtd_resume(subdev);
604 	}
605 }
606 #endif
607 
608 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
609 {
610 	struct mtd_concat *concat = CONCAT(mtd);
611 	int i, res = 0;
612 
613 	if (!mtd_can_have_bb(concat->subdev[0]))
614 		return res;
615 
616 	for (i = 0; i < concat->num_subdev; i++) {
617 		struct mtd_info *subdev = concat->subdev[i];
618 
619 		if (ofs >= subdev->size) {
620 			ofs -= subdev->size;
621 			continue;
622 		}
623 
624 		res = mtd_block_isbad(subdev, ofs);
625 		break;
626 	}
627 
628 	return res;
629 }
630 
631 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
632 {
633 	struct mtd_concat *concat = CONCAT(mtd);
634 	int i, err = -EINVAL;
635 
636 	for (i = 0; i < concat->num_subdev; i++) {
637 		struct mtd_info *subdev = concat->subdev[i];
638 
639 		if (ofs >= subdev->size) {
640 			ofs -= subdev->size;
641 			continue;
642 		}
643 
644 		err = mtd_block_markbad(subdev, ofs);
645 		if (!err)
646 			mtd->ecc_stats.badblocks++;
647 		break;
648 	}
649 
650 	return err;
651 }
652 
653 /*
654  * try to support NOMMU mmaps on concatenated devices
655  * - we don't support subdev spanning as we can't guarantee it'll work
656  */
657 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
658 					      unsigned long len,
659 					      unsigned long offset,
660 					      unsigned long flags)
661 {
662 	struct mtd_concat *concat = CONCAT(mtd);
663 	int i;
664 
665 	for (i = 0; i < concat->num_subdev; i++) {
666 		struct mtd_info *subdev = concat->subdev[i];
667 
668 		if (offset >= subdev->size) {
669 			offset -= subdev->size;
670 			continue;
671 		}
672 
673 		return mtd_get_unmapped_area(subdev, len, offset, flags);
674 	}
675 
676 	return (unsigned long) -ENOSYS;
677 }
678 
679 /*
680  * This function constructs a virtual MTD device by concatenating
681  * num_devs MTD devices. A pointer to the new device object is
682  * stored to *new_dev upon success. This function does _not_
683  * register any devices: this is the caller's responsibility.
684  */
685 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
686 				   int num_devs,	/* number of subdevices      */
687 #ifndef __UBOOT__
688 				   const char *name)
689 #else
690 				   char *name)
691 #endif
692 {				/* name for the new device   */
693 	int i;
694 	size_t size;
695 	struct mtd_concat *concat;
696 	uint32_t max_erasesize, curr_erasesize;
697 	int num_erase_region;
698 	int max_writebufsize = 0;
699 
700 	debug("Concatenating MTD devices:\n");
701 	for (i = 0; i < num_devs; i++)
702 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
703 	debug("into device \"%s\"\n", name);
704 
705 	/* allocate the device structure */
706 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
707 	concat = kzalloc(size, GFP_KERNEL);
708 	if (!concat) {
709 		printk
710 		    ("memory allocation error while creating concatenated device \"%s\"\n",
711 		     name);
712 		return NULL;
713 	}
714 	concat->subdev = (struct mtd_info **) (concat + 1);
715 
716 	/*
717 	 * Set up the new "super" device's MTD object structure, check for
718 	 * incompatibilities between the subdevices.
719 	 */
720 	concat->mtd.type = subdev[0]->type;
721 	concat->mtd.flags = subdev[0]->flags;
722 	concat->mtd.size = subdev[0]->size;
723 	concat->mtd.erasesize = subdev[0]->erasesize;
724 	concat->mtd.writesize = subdev[0]->writesize;
725 
726 	for (i = 0; i < num_devs; i++)
727 		if (max_writebufsize < subdev[i]->writebufsize)
728 			max_writebufsize = subdev[i]->writebufsize;
729 	concat->mtd.writebufsize = max_writebufsize;
730 
731 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
732 	concat->mtd.oobsize = subdev[0]->oobsize;
733 	concat->mtd.oobavail = subdev[0]->oobavail;
734 #ifndef __UBOOT__
735 	if (subdev[0]->_writev)
736 		concat->mtd._writev = concat_writev;
737 #endif
738 	if (subdev[0]->_read_oob)
739 		concat->mtd._read_oob = concat_read_oob;
740 	if (subdev[0]->_write_oob)
741 		concat->mtd._write_oob = concat_write_oob;
742 	if (subdev[0]->_block_isbad)
743 		concat->mtd._block_isbad = concat_block_isbad;
744 	if (subdev[0]->_block_markbad)
745 		concat->mtd._block_markbad = concat_block_markbad;
746 
747 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
748 
749 #ifndef __UBOOT__
750 	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
751 #endif
752 
753 	concat->subdev[0] = subdev[0];
754 
755 	for (i = 1; i < num_devs; i++) {
756 		if (concat->mtd.type != subdev[i]->type) {
757 			kfree(concat);
758 			printk("Incompatible device type on \"%s\"\n",
759 			       subdev[i]->name);
760 			return NULL;
761 		}
762 		if (concat->mtd.flags != subdev[i]->flags) {
763 			/*
764 			 * Expect all flags except MTD_WRITEABLE to be
765 			 * equal on all subdevices.
766 			 */
767 			if ((concat->mtd.flags ^ subdev[i]->
768 			     flags) & ~MTD_WRITEABLE) {
769 				kfree(concat);
770 				printk("Incompatible device flags on \"%s\"\n",
771 				       subdev[i]->name);
772 				return NULL;
773 			} else
774 				/* if writeable attribute differs,
775 				   make super device writeable */
776 				concat->mtd.flags |=
777 				    subdev[i]->flags & MTD_WRITEABLE;
778 		}
779 
780 #ifndef __UBOOT__
781 		/* only permit direct mapping if the BDIs are all the same
782 		 * - copy-mapping is still permitted
783 		 */
784 		if (concat->mtd.backing_dev_info !=
785 		    subdev[i]->backing_dev_info)
786 			concat->mtd.backing_dev_info =
787 				&default_backing_dev_info;
788 #endif
789 
790 		concat->mtd.size += subdev[i]->size;
791 		concat->mtd.ecc_stats.badblocks +=
792 			subdev[i]->ecc_stats.badblocks;
793 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
794 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
795 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
796 		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
797 		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
798 			kfree(concat);
799 			printk("Incompatible OOB or ECC data on \"%s\"\n",
800 			       subdev[i]->name);
801 			return NULL;
802 		}
803 		concat->subdev[i] = subdev[i];
804 
805 	}
806 
807 	concat->mtd.ecclayout = subdev[0]->ecclayout;
808 
809 	concat->num_subdev = num_devs;
810 	concat->mtd.name = name;
811 
812 	concat->mtd._erase = concat_erase;
813 	concat->mtd._read = concat_read;
814 	concat->mtd._write = concat_write;
815 	concat->mtd._sync = concat_sync;
816 	concat->mtd._lock = concat_lock;
817 	concat->mtd._unlock = concat_unlock;
818 #ifndef __UBOOT__
819 	concat->mtd._suspend = concat_suspend;
820 	concat->mtd._resume = concat_resume;
821 #endif
822 	concat->mtd._get_unmapped_area = concat_get_unmapped_area;
823 
824 	/*
825 	 * Combine the erase block size info of the subdevices:
826 	 *
827 	 * first, walk the map of the new device and see how
828 	 * many changes in erase size we have
829 	 */
830 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
831 	num_erase_region = 1;
832 	for (i = 0; i < num_devs; i++) {
833 		if (subdev[i]->numeraseregions == 0) {
834 			/* current subdevice has uniform erase size */
835 			if (subdev[i]->erasesize != curr_erasesize) {
836 				/* if it differs from the last subdevice's erase size, count it */
837 				++num_erase_region;
838 				curr_erasesize = subdev[i]->erasesize;
839 				if (curr_erasesize > max_erasesize)
840 					max_erasesize = curr_erasesize;
841 			}
842 		} else {
843 			/* current subdevice has variable erase size */
844 			int j;
845 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
846 
847 				/* walk the list of erase regions, count any changes */
848 				if (subdev[i]->eraseregions[j].erasesize !=
849 				    curr_erasesize) {
850 					++num_erase_region;
851 					curr_erasesize =
852 					    subdev[i]->eraseregions[j].
853 					    erasesize;
854 					if (curr_erasesize > max_erasesize)
855 						max_erasesize = curr_erasesize;
856 				}
857 			}
858 		}
859 	}
860 
861 	if (num_erase_region == 1) {
862 		/*
863 		 * All subdevices have the same uniform erase size.
864 		 * This is easy:
865 		 */
866 		concat->mtd.erasesize = curr_erasesize;
867 		concat->mtd.numeraseregions = 0;
868 	} else {
869 		uint64_t tmp64;
870 
871 		/*
872 		 * erase block size varies across the subdevices: allocate
873 		 * space to store the data describing the variable erase regions
874 		 */
875 		struct mtd_erase_region_info *erase_region_p;
876 		uint64_t begin, position;
877 
878 		concat->mtd.erasesize = max_erasesize;
879 		concat->mtd.numeraseregions = num_erase_region;
880 		concat->mtd.eraseregions = erase_region_p =
881 		    kmalloc(num_erase_region *
882 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
883 		if (!erase_region_p) {
884 			kfree(concat);
885 			printk
886 			    ("memory allocation error while creating erase region list"
887 			     " for device \"%s\"\n", name);
888 			return NULL;
889 		}
890 
891 		/*
892 		 * walk the map of the new device once more and fill in
893 		 * in erase region info:
894 		 */
895 		curr_erasesize = subdev[0]->erasesize;
896 		begin = position = 0;
897 		for (i = 0; i < num_devs; i++) {
898 			if (subdev[i]->numeraseregions == 0) {
899 				/* current subdevice has uniform erase size */
900 				if (subdev[i]->erasesize != curr_erasesize) {
901 					/*
902 					 *  fill in an mtd_erase_region_info structure for the area
903 					 *  we have walked so far:
904 					 */
905 					erase_region_p->offset = begin;
906 					erase_region_p->erasesize =
907 					    curr_erasesize;
908 					tmp64 = position - begin;
909 					do_div(tmp64, curr_erasesize);
910 					erase_region_p->numblocks = tmp64;
911 					begin = position;
912 
913 					curr_erasesize = subdev[i]->erasesize;
914 					++erase_region_p;
915 				}
916 				position += subdev[i]->size;
917 			} else {
918 				/* current subdevice has variable erase size */
919 				int j;
920 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
921 					/* walk the list of erase regions, count any changes */
922 					if (subdev[i]->eraseregions[j].
923 					    erasesize != curr_erasesize) {
924 						erase_region_p->offset = begin;
925 						erase_region_p->erasesize =
926 						    curr_erasesize;
927 						tmp64 = position - begin;
928 						do_div(tmp64, curr_erasesize);
929 						erase_region_p->numblocks = tmp64;
930 						begin = position;
931 
932 						curr_erasesize =
933 						    subdev[i]->eraseregions[j].
934 						    erasesize;
935 						++erase_region_p;
936 					}
937 					position +=
938 					    subdev[i]->eraseregions[j].
939 					    numblocks * (uint64_t)curr_erasesize;
940 				}
941 			}
942 		}
943 		/* Now write the final entry */
944 		erase_region_p->offset = begin;
945 		erase_region_p->erasesize = curr_erasesize;
946 		tmp64 = position - begin;
947 		do_div(tmp64, curr_erasesize);
948 		erase_region_p->numblocks = tmp64;
949 	}
950 
951 	return &concat->mtd;
952 }
953 
954 /*
955  * This function destroys an MTD object obtained from concat_mtd_devs()
956  */
957 
958 void mtd_concat_destroy(struct mtd_info *mtd)
959 {
960 	struct mtd_concat *concat = CONCAT(mtd);
961 	if (concat->mtd.numeraseregions)
962 		kfree(concat->mtd.eraseregions);
963 	kfree(concat);
964 }
965 
966 EXPORT_SYMBOL(mtd_concat_create);
967 EXPORT_SYMBOL(mtd_concat_destroy);
968 
969 MODULE_LICENSE("GPL");
970 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
971 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
972