xref: /openbmc/u-boot/drivers/mmc/omap_hsmmc.c (revision 9ab403d0dd3c88370612c97f8c4cb88199302833)
1 /*
2  * (C) Copyright 2008
3  * Texas Instruments, <www.ti.com>
4  * Sukumar Ghorai <s-ghorai@ti.com>
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation's version 2 of
12  * the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22  * MA 02111-1307 USA
23  */
24 
25 #include <config.h>
26 #include <common.h>
27 #include <malloc.h>
28 #include <memalign.h>
29 #include <mmc.h>
30 #include <part.h>
31 #include <i2c.h>
32 #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
33 #include <palmas.h>
34 #endif
35 #include <asm/io.h>
36 #include <asm/arch/mmc_host_def.h>
37 #ifdef CONFIG_OMAP54XX
38 #include <asm/arch/mux_dra7xx.h>
39 #include <asm/arch/dra7xx_iodelay.h>
40 #endif
41 #if !defined(CONFIG_SOC_KEYSTONE)
42 #include <asm/gpio.h>
43 #include <asm/arch/sys_proto.h>
44 #endif
45 #ifdef CONFIG_MMC_OMAP36XX_PINS
46 #include <asm/arch/mux.h>
47 #endif
48 #include <dm.h>
49 #include <power/regulator.h>
50 
51 DECLARE_GLOBAL_DATA_PTR;
52 
53 /* simplify defines to OMAP_HSMMC_USE_GPIO */
54 #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
55 	(defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
56 #define OMAP_HSMMC_USE_GPIO
57 #else
58 #undef OMAP_HSMMC_USE_GPIO
59 #endif
60 
61 /* common definitions for all OMAPs */
62 #define SYSCTL_SRC	(1 << 25)
63 #define SYSCTL_SRD	(1 << 26)
64 
65 #ifdef CONFIG_IODELAY_RECALIBRATION
66 struct omap_hsmmc_pinctrl_state {
67 	struct pad_conf_entry *padconf;
68 	int npads;
69 	struct iodelay_cfg_entry *iodelay;
70 	int niodelays;
71 };
72 #endif
73 
74 struct omap_hsmmc_data {
75 	struct hsmmc *base_addr;
76 #if !CONFIG_IS_ENABLED(DM_MMC)
77 	struct mmc_config cfg;
78 #endif
79 	uint bus_width;
80 	uint clock;
81 	ushort last_cmd;
82 #ifdef OMAP_HSMMC_USE_GPIO
83 #if CONFIG_IS_ENABLED(DM_MMC)
84 	struct gpio_desc cd_gpio;	/* Change Detect GPIO */
85 	struct gpio_desc wp_gpio;	/* Write Protect GPIO */
86 #else
87 	int cd_gpio;
88 	int wp_gpio;
89 #endif
90 #endif
91 #if CONFIG_IS_ENABLED(DM_MMC)
92 	enum bus_mode mode;
93 #endif
94 	u8 controller_flags;
95 #ifdef CONFIG_MMC_OMAP_HS_ADMA
96 	struct omap_hsmmc_adma_desc *adma_desc_table;
97 	uint desc_slot;
98 #endif
99 	const char *hw_rev;
100 	struct udevice *pbias_supply;
101 	uint signal_voltage;
102 #ifdef CONFIG_IODELAY_RECALIBRATION
103 	struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
104 	struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
105 	struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
106 	struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
107 	struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
108 	struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
109 	struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
110 	struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
111 	struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
112 #endif
113 };
114 
115 struct omap_mmc_of_data {
116 	u8 controller_flags;
117 };
118 
119 #ifdef CONFIG_MMC_OMAP_HS_ADMA
120 struct omap_hsmmc_adma_desc {
121 	u8 attr;
122 	u8 reserved;
123 	u16 len;
124 	u32 addr;
125 };
126 
127 #define ADMA_MAX_LEN	63488
128 
129 /* Decriptor table defines */
130 #define ADMA_DESC_ATTR_VALID		BIT(0)
131 #define ADMA_DESC_ATTR_END		BIT(1)
132 #define ADMA_DESC_ATTR_INT		BIT(2)
133 #define ADMA_DESC_ATTR_ACT1		BIT(4)
134 #define ADMA_DESC_ATTR_ACT2		BIT(5)
135 
136 #define ADMA_DESC_TRANSFER_DATA		ADMA_DESC_ATTR_ACT2
137 #define ADMA_DESC_LINK_DESC	(ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
138 #endif
139 
140 /* If we fail after 1 second wait, something is really bad */
141 #define MAX_RETRY_MS	1000
142 #define MMC_TIMEOUT_MS	20
143 
144 /* DMA transfers can take a long time if a lot a data is transferred.
145  * The timeout must take in account the amount of data. Let's assume
146  * that the time will never exceed 333 ms per MB (in other word we assume
147  * that the bandwidth is always above 3MB/s).
148  */
149 #define DMA_TIMEOUT_PER_MB	333
150 #define OMAP_HSMMC_SUPPORTS_DUAL_VOLT		BIT(0)
151 #define OMAP_HSMMC_NO_1_8_V			BIT(1)
152 #define OMAP_HSMMC_USE_ADMA			BIT(2)
153 #define OMAP_HSMMC_REQUIRE_IODELAY		BIT(3)
154 
155 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
156 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
157 			unsigned int siz);
158 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
159 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
160 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
161 
162 static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
163 {
164 #if CONFIG_IS_ENABLED(DM_MMC)
165 	return dev_get_priv(mmc->dev);
166 #else
167 	return (struct omap_hsmmc_data *)mmc->priv;
168 #endif
169 }
170 static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
171 {
172 #if CONFIG_IS_ENABLED(DM_MMC)
173 	struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev);
174 	return &plat->cfg;
175 #else
176 	return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
177 #endif
178 }
179 
180 #if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
181 static int omap_mmc_setup_gpio_in(int gpio, const char *label)
182 {
183 	int ret;
184 
185 #ifndef CONFIG_DM_GPIO
186 	if (!gpio_is_valid(gpio))
187 		return -1;
188 #endif
189 	ret = gpio_request(gpio, label);
190 	if (ret)
191 		return ret;
192 
193 	ret = gpio_direction_input(gpio);
194 	if (ret)
195 		return ret;
196 
197 	return gpio;
198 }
199 #endif
200 
201 static unsigned char mmc_board_init(struct mmc *mmc)
202 {
203 #if defined(CONFIG_OMAP34XX)
204 	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
205 	t2_t *t2_base = (t2_t *)T2_BASE;
206 	struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
207 	u32 pbias_lite;
208 #ifdef CONFIG_MMC_OMAP36XX_PINS
209 	u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
210 #endif
211 
212 	pbias_lite = readl(&t2_base->pbias_lite);
213 	pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
214 #ifdef CONFIG_TARGET_OMAP3_CAIRO
215 	/* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
216 	pbias_lite &= ~PBIASLITEVMODE0;
217 #endif
218 #ifdef CONFIG_TARGET_OMAP3_LOGIC
219 	/* For Logic PD board, 1.8V bias to go enable gpio127 for mmc_cd */
220 	pbias_lite &= ~PBIASLITEVMODE1;
221 #endif
222 #ifdef CONFIG_MMC_OMAP36XX_PINS
223 	if (get_cpu_family() == CPU_OMAP36XX) {
224 		/* Disable extended drain IO before changing PBIAS */
225 		wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
226 		writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
227 	}
228 #endif
229 	writel(pbias_lite, &t2_base->pbias_lite);
230 
231 	writel(pbias_lite | PBIASLITEPWRDNZ1 |
232 		PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
233 		&t2_base->pbias_lite);
234 
235 #ifdef CONFIG_MMC_OMAP36XX_PINS
236 	if (get_cpu_family() == CPU_OMAP36XX)
237 		/* Enable extended drain IO after changing PBIAS */
238 		writel(wkup_ctrl |
239 				OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
240 				OMAP34XX_CTRL_WKUP_CTRL);
241 #endif
242 	writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
243 		&t2_base->devconf0);
244 
245 	writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
246 		&t2_base->devconf1);
247 
248 	/* Change from default of 52MHz to 26MHz if necessary */
249 	if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
250 		writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
251 			&t2_base->ctl_prog_io1);
252 
253 	writel(readl(&prcm_base->fclken1_core) |
254 		EN_MMC1 | EN_MMC2 | EN_MMC3,
255 		&prcm_base->fclken1_core);
256 
257 	writel(readl(&prcm_base->iclken1_core) |
258 		EN_MMC1 | EN_MMC2 | EN_MMC3,
259 		&prcm_base->iclken1_core);
260 #endif
261 
262 #if (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) &&\
263 	!CONFIG_IS_ENABLED(DM_REGULATOR)
264 	/* PBIAS config needed for MMC1 only */
265 	if (mmc_get_blk_desc(mmc)->devnum == 0)
266 		vmmc_pbias_config(LDO_VOLT_3V0);
267 #endif
268 
269 	return 0;
270 }
271 
272 void mmc_init_stream(struct hsmmc *mmc_base)
273 {
274 	ulong start;
275 
276 	writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
277 
278 	writel(MMC_CMD0, &mmc_base->cmd);
279 	start = get_timer(0);
280 	while (!(readl(&mmc_base->stat) & CC_MASK)) {
281 		if (get_timer(0) - start > MAX_RETRY_MS) {
282 			printf("%s: timedout waiting for cc!\n", __func__);
283 			return;
284 		}
285 	}
286 	writel(CC_MASK, &mmc_base->stat)
287 		;
288 	writel(MMC_CMD0, &mmc_base->cmd)
289 		;
290 	start = get_timer(0);
291 	while (!(readl(&mmc_base->stat) & CC_MASK)) {
292 		if (get_timer(0) - start > MAX_RETRY_MS) {
293 			printf("%s: timedout waiting for cc2!\n", __func__);
294 			return;
295 		}
296 	}
297 	writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
298 }
299 
300 #if CONFIG_IS_ENABLED(DM_MMC)
301 #ifdef CONFIG_IODELAY_RECALIBRATION
302 static void omap_hsmmc_io_recalibrate(struct mmc *mmc)
303 {
304 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
305 	struct omap_hsmmc_pinctrl_state *pinctrl_state;
306 
307 	switch (priv->mode) {
308 	case MMC_HS_200:
309 		pinctrl_state = priv->hs200_1_8v_pinctrl_state;
310 		break;
311 	case UHS_SDR104:
312 		pinctrl_state = priv->sdr104_pinctrl_state;
313 		break;
314 	case UHS_SDR50:
315 		pinctrl_state = priv->sdr50_pinctrl_state;
316 		break;
317 	case UHS_DDR50:
318 		pinctrl_state = priv->ddr50_pinctrl_state;
319 		break;
320 	case UHS_SDR25:
321 		pinctrl_state = priv->sdr25_pinctrl_state;
322 		break;
323 	case UHS_SDR12:
324 		pinctrl_state = priv->sdr12_pinctrl_state;
325 		break;
326 	case SD_HS:
327 	case MMC_HS:
328 	case MMC_HS_52:
329 		pinctrl_state = priv->hs_pinctrl_state;
330 		break;
331 	case MMC_DDR_52:
332 		pinctrl_state = priv->ddr_1_8v_pinctrl_state;
333 	default:
334 		pinctrl_state = priv->default_pinctrl_state;
335 		break;
336 	}
337 
338 	if (!pinctrl_state)
339 		pinctrl_state = priv->default_pinctrl_state;
340 
341 	if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
342 		if (pinctrl_state->iodelay)
343 			late_recalibrate_iodelay(pinctrl_state->padconf,
344 						 pinctrl_state->npads,
345 						 pinctrl_state->iodelay,
346 						 pinctrl_state->niodelays);
347 		else
348 			do_set_mux32((*ctrl)->control_padconf_core_base,
349 				     pinctrl_state->padconf,
350 				     pinctrl_state->npads);
351 	}
352 }
353 #endif
354 static void omap_hsmmc_set_timing(struct mmc *mmc)
355 {
356 	u32 val;
357 	struct hsmmc *mmc_base;
358 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
359 
360 	mmc_base = priv->base_addr;
361 
362 	omap_hsmmc_stop_clock(mmc_base);
363 	val = readl(&mmc_base->ac12);
364 	val &= ~AC12_UHSMC_MASK;
365 	priv->mode = mmc->selected_mode;
366 
367 	if (mmc_is_mode_ddr(priv->mode))
368 		writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
369 	else
370 		writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);
371 
372 	switch (priv->mode) {
373 	case MMC_HS_200:
374 	case UHS_SDR104:
375 		val |= AC12_UHSMC_SDR104;
376 		break;
377 	case UHS_SDR50:
378 		val |= AC12_UHSMC_SDR50;
379 		break;
380 	case MMC_DDR_52:
381 	case UHS_DDR50:
382 		val |= AC12_UHSMC_DDR50;
383 		break;
384 	case SD_HS:
385 	case MMC_HS_52:
386 	case UHS_SDR25:
387 		val |= AC12_UHSMC_SDR25;
388 		break;
389 	case MMC_LEGACY:
390 	case MMC_HS:
391 	case SD_LEGACY:
392 	case UHS_SDR12:
393 		val |= AC12_UHSMC_SDR12;
394 		break;
395 	default:
396 		val |= AC12_UHSMC_RES;
397 		break;
398 	}
399 	writel(val, &mmc_base->ac12);
400 
401 #ifdef CONFIG_IODELAY_RECALIBRATION
402 	omap_hsmmc_io_recalibrate(mmc);
403 #endif
404 	omap_hsmmc_start_clock(mmc_base);
405 }
406 
407 static void omap_hsmmc_conf_bus_power(struct mmc *mmc, uint signal_voltage)
408 {
409 	struct hsmmc *mmc_base;
410 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
411 	u32 hctl, ac12;
412 
413 	mmc_base = priv->base_addr;
414 
415 	hctl = readl(&mmc_base->hctl) & ~SDVS_MASK;
416 	ac12 = readl(&mmc_base->ac12) & ~AC12_V1V8_SIGEN;
417 
418 	switch (signal_voltage) {
419 	case MMC_SIGNAL_VOLTAGE_330:
420 		hctl |= SDVS_3V0;
421 		break;
422 	case MMC_SIGNAL_VOLTAGE_180:
423 		hctl |= SDVS_1V8;
424 		ac12 |= AC12_V1V8_SIGEN;
425 		break;
426 	}
427 
428 	writel(hctl, &mmc_base->hctl);
429 	writel(ac12, &mmc_base->ac12);
430 }
431 
432 #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
433 static int omap_hsmmc_wait_dat0(struct udevice *dev, int state, int timeout)
434 {
435 	int ret = -ETIMEDOUT;
436 	u32 con;
437 	bool dat0_high;
438 	bool target_dat0_high = !!state;
439 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
440 	struct hsmmc *mmc_base = priv->base_addr;
441 
442 	con = readl(&mmc_base->con);
443 	writel(con | CON_CLKEXTFREE | CON_PADEN, &mmc_base->con);
444 
445 	timeout = DIV_ROUND_UP(timeout, 10); /* check every 10 us. */
446 	while (timeout--)	{
447 		dat0_high = !!(readl(&mmc_base->pstate) & PSTATE_DLEV_DAT0);
448 		if (dat0_high == target_dat0_high) {
449 			ret = 0;
450 			break;
451 		}
452 		udelay(10);
453 	}
454 	writel(con, &mmc_base->con);
455 
456 	return ret;
457 }
458 #endif
459 
460 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
461 #if CONFIG_IS_ENABLED(DM_REGULATOR)
462 static int omap_hsmmc_set_io_regulator(struct mmc *mmc, int mV)
463 {
464 	int ret = 0;
465 	int uV = mV * 1000;
466 
467 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
468 
469 	if (!mmc->vqmmc_supply)
470 		return 0;
471 
472 	/* Disable PBIAS */
473 	ret = regulator_set_enable(priv->pbias_supply, false);
474 	if (ret && ret != -ENOSYS)
475 		return ret;
476 
477 	/* Turn off IO voltage */
478 	ret = regulator_set_enable(mmc->vqmmc_supply, false);
479 	if (ret && ret != -ENOSYS)
480 		return ret;
481 	/* Program a new IO voltage value */
482 	ret = regulator_set_value(mmc->vqmmc_supply, uV);
483 	if (ret)
484 		return ret;
485 	/* Turn on IO voltage */
486 	ret = regulator_set_enable(mmc->vqmmc_supply, true);
487 	if (ret && ret != -ENOSYS)
488 		return ret;
489 
490 	/* Program PBIAS voltage*/
491 	ret = regulator_set_value(priv->pbias_supply, uV);
492 	if (ret && ret != -ENOSYS)
493 		return ret;
494 	/* Enable PBIAS */
495 	ret = regulator_set_enable(priv->pbias_supply, true);
496 	if (ret && ret != -ENOSYS)
497 		return ret;
498 
499 	return 0;
500 }
501 #endif
502 
503 static int omap_hsmmc_set_signal_voltage(struct mmc *mmc)
504 {
505 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
506 	struct hsmmc *mmc_base = priv->base_addr;
507 	int mv = mmc_voltage_to_mv(mmc->signal_voltage);
508 	u32 capa_mask;
509 	__maybe_unused u8 palmas_ldo_volt;
510 	u32 val;
511 
512 	if (mv < 0)
513 		return -EINVAL;
514 
515 	if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
516 		/* Use 3.0V rather than 3.3V */
517 		mv = 3000;
518 		capa_mask = VS30_3V0SUP;
519 		palmas_ldo_volt = LDO_VOLT_3V0;
520 	} else if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
521 		capa_mask = VS18_1V8SUP;
522 		palmas_ldo_volt = LDO_VOLT_1V8;
523 	} else {
524 		return -EOPNOTSUPP;
525 	}
526 
527 	val = readl(&mmc_base->capa);
528 	if (!(val & capa_mask))
529 		return -EOPNOTSUPP;
530 
531 	priv->signal_voltage = mmc->signal_voltage;
532 
533 	omap_hsmmc_conf_bus_power(mmc, mmc->signal_voltage);
534 
535 #if CONFIG_IS_ENABLED(DM_REGULATOR)
536 	return omap_hsmmc_set_io_regulator(mmc, mv);
537 #elif (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) && \
538 	defined(CONFIG_PALMAS_POWER)
539 	if (mmc_get_blk_desc(mmc)->devnum == 0)
540 		vmmc_pbias_config(palmas_ldo_volt);
541 	return 0;
542 #else
543 	return 0;
544 #endif
545 }
546 #endif
547 
548 static uint32_t omap_hsmmc_set_capabilities(struct mmc *mmc)
549 {
550 	struct hsmmc *mmc_base;
551 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
552 	u32 val;
553 
554 	mmc_base = priv->base_addr;
555 	val = readl(&mmc_base->capa);
556 
557 	if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
558 		val |= (VS30_3V0SUP | VS18_1V8SUP);
559 	} else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
560 		val |= VS30_3V0SUP;
561 		val &= ~VS18_1V8SUP;
562 	} else {
563 		val |= VS18_1V8SUP;
564 		val &= ~VS30_3V0SUP;
565 	}
566 
567 	writel(val, &mmc_base->capa);
568 
569 	return val;
570 }
571 
572 #ifdef MMC_SUPPORTS_TUNING
573 static void omap_hsmmc_disable_tuning(struct mmc *mmc)
574 {
575 	struct hsmmc *mmc_base;
576 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
577 	u32 val;
578 
579 	mmc_base = priv->base_addr;
580 	val = readl(&mmc_base->ac12);
581 	val &= ~(AC12_SCLK_SEL);
582 	writel(val, &mmc_base->ac12);
583 
584 	val = readl(&mmc_base->dll);
585 	val &= ~(DLL_FORCE_VALUE | DLL_SWT);
586 	writel(val, &mmc_base->dll);
587 }
588 
589 static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
590 {
591 	int i;
592 	struct hsmmc *mmc_base;
593 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
594 	u32 val;
595 
596 	mmc_base = priv->base_addr;
597 	val = readl(&mmc_base->dll);
598 	val |= DLL_FORCE_VALUE;
599 	val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
600 	val |= (count << DLL_FORCE_SR_C_SHIFT);
601 	writel(val, &mmc_base->dll);
602 
603 	val |= DLL_CALIB;
604 	writel(val, &mmc_base->dll);
605 	for (i = 0; i < 1000; i++) {
606 		if (readl(&mmc_base->dll) & DLL_CALIB)
607 			break;
608 	}
609 	val &= ~DLL_CALIB;
610 	writel(val, &mmc_base->dll);
611 }
612 
613 static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode)
614 {
615 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
616 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
617 	struct mmc *mmc = upriv->mmc;
618 	struct hsmmc *mmc_base;
619 	u32 val;
620 	u8 cur_match, prev_match = 0;
621 	int ret;
622 	u32 phase_delay = 0;
623 	u32 start_window = 0, max_window = 0;
624 	u32 length = 0, max_len = 0;
625 
626 	mmc_base = priv->base_addr;
627 	val = readl(&mmc_base->capa2);
628 
629 	/* clock tuning is not needed for upto 52MHz */
630 	if (!((mmc->selected_mode == MMC_HS_200) ||
631 	      (mmc->selected_mode == UHS_SDR104) ||
632 	      ((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50))))
633 		return 0;
634 
635 	val = readl(&mmc_base->dll);
636 	val |= DLL_SWT;
637 	writel(val, &mmc_base->dll);
638 	while (phase_delay <= MAX_PHASE_DELAY) {
639 		omap_hsmmc_set_dll(mmc, phase_delay);
640 
641 		cur_match = !mmc_send_tuning(mmc, opcode, NULL);
642 
643 		if (cur_match) {
644 			if (prev_match) {
645 				length++;
646 			} else {
647 				start_window = phase_delay;
648 				length = 1;
649 			}
650 		}
651 
652 		if (length > max_len) {
653 			max_window = start_window;
654 			max_len = length;
655 		}
656 
657 		prev_match = cur_match;
658 		phase_delay += 4;
659 	}
660 
661 	if (!max_len) {
662 		ret = -EIO;
663 		goto tuning_error;
664 	}
665 
666 	val = readl(&mmc_base->ac12);
667 	if (!(val & AC12_SCLK_SEL)) {
668 		ret = -EIO;
669 		goto tuning_error;
670 	}
671 
672 	phase_delay = max_window + 4 * ((3 * max_len) >> 2);
673 	omap_hsmmc_set_dll(mmc, phase_delay);
674 
675 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
676 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
677 
678 	return 0;
679 
680 tuning_error:
681 
682 	omap_hsmmc_disable_tuning(mmc);
683 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
684 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
685 
686 	return ret;
687 }
688 #endif
689 
690 static void omap_hsmmc_send_init_stream(struct udevice *dev)
691 {
692 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
693 	struct hsmmc *mmc_base = priv->base_addr;
694 
695 	mmc_init_stream(mmc_base);
696 }
697 #endif
698 
699 static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
700 {
701 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
702 	struct hsmmc *mmc_base = priv->base_addr;
703 	u32 irq_mask = INT_EN_MASK;
704 
705 	/*
706 	 * TODO: Errata i802 indicates only DCRC interrupts can occur during
707 	 * tuning procedure and DCRC should be disabled. But see occurences
708 	 * of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
709 	 * interrupts occur along with BRR, so the data is actually in the
710 	 * buffer. It has to be debugged why these interrutps occur
711 	 */
712 	if (cmd && mmc_is_tuning_cmd(cmd->cmdidx))
713 		irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);
714 
715 	writel(irq_mask, &mmc_base->ie);
716 }
717 
718 static int omap_hsmmc_init_setup(struct mmc *mmc)
719 {
720 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
721 	struct hsmmc *mmc_base;
722 	unsigned int reg_val;
723 	unsigned int dsor;
724 	ulong start;
725 
726 	mmc_base = priv->base_addr;
727 	mmc_board_init(mmc);
728 
729 	writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
730 		&mmc_base->sysconfig);
731 	start = get_timer(0);
732 	while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
733 		if (get_timer(0) - start > MAX_RETRY_MS) {
734 			printf("%s: timedout waiting for cc2!\n", __func__);
735 			return -ETIMEDOUT;
736 		}
737 	}
738 	writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
739 	start = get_timer(0);
740 	while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
741 		if (get_timer(0) - start > MAX_RETRY_MS) {
742 			printf("%s: timedout waiting for softresetall!\n",
743 				__func__);
744 			return -ETIMEDOUT;
745 		}
746 	}
747 #ifdef CONFIG_MMC_OMAP_HS_ADMA
748 	reg_val = readl(&mmc_base->hl_hwinfo);
749 	if (reg_val & MADMA_EN)
750 		priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
751 #endif
752 
753 #if CONFIG_IS_ENABLED(DM_MMC)
754 	reg_val = omap_hsmmc_set_capabilities(mmc);
755 	omap_hsmmc_conf_bus_power(mmc, (reg_val & VS30_3V0SUP) ?
756 			  MMC_SIGNAL_VOLTAGE_330 : MMC_SIGNAL_VOLTAGE_180);
757 #else
758 	writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
759 	writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
760 		&mmc_base->capa);
761 #endif
762 
763 	reg_val = readl(&mmc_base->con) & RESERVED_MASK;
764 
765 	writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
766 		MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
767 		HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
768 
769 	dsor = 240;
770 	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
771 		(ICE_STOP | DTO_15THDTO));
772 	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
773 		(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
774 	start = get_timer(0);
775 	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
776 		if (get_timer(0) - start > MAX_RETRY_MS) {
777 			printf("%s: timedout waiting for ics!\n", __func__);
778 			return -ETIMEDOUT;
779 		}
780 	}
781 	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
782 
783 	writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
784 
785 	mmc_enable_irq(mmc, NULL);
786 
787 #if !CONFIG_IS_ENABLED(DM_MMC)
788 	mmc_init_stream(mmc_base);
789 #endif
790 
791 	return 0;
792 }
793 
794 /*
795  * MMC controller internal finite state machine reset
796  *
797  * Used to reset command or data internal state machines, using respectively
798  * SRC or SRD bit of SYSCTL register
799  */
800 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
801 {
802 	ulong start;
803 
804 	mmc_reg_out(&mmc_base->sysctl, bit, bit);
805 
806 	/*
807 	 * CMD(DAT) lines reset procedures are slightly different
808 	 * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
809 	 * According to OMAP3 TRM:
810 	 * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
811 	 * returns to 0x0.
812 	 * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
813 	 * procedure steps must be as follows:
814 	 * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
815 	 *    MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
816 	 * 2. Poll the SRC(SRD) bit until it is set to 0x1.
817 	 * 3. Wait until the SRC (SRD) bit returns to 0x0
818 	 *    (reset procedure is completed).
819 	 */
820 #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
821 	defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
822 	if (!(readl(&mmc_base->sysctl) & bit)) {
823 		start = get_timer(0);
824 		while (!(readl(&mmc_base->sysctl) & bit)) {
825 			if (get_timer(0) - start > MMC_TIMEOUT_MS)
826 				return;
827 		}
828 	}
829 #endif
830 	start = get_timer(0);
831 	while ((readl(&mmc_base->sysctl) & bit) != 0) {
832 		if (get_timer(0) - start > MAX_RETRY_MS) {
833 			printf("%s: timedout waiting for sysctl %x to clear\n",
834 				__func__, bit);
835 			return;
836 		}
837 	}
838 }
839 
840 #ifdef CONFIG_MMC_OMAP_HS_ADMA
841 static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
842 {
843 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
844 	struct omap_hsmmc_adma_desc *desc;
845 	u8 attr;
846 
847 	desc = &priv->adma_desc_table[priv->desc_slot];
848 
849 	attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
850 	if (!end)
851 		priv->desc_slot++;
852 	else
853 		attr |= ADMA_DESC_ATTR_END;
854 
855 	desc->len = len;
856 	desc->addr = (u32)buf;
857 	desc->reserved = 0;
858 	desc->attr = attr;
859 }
860 
861 static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
862 					  struct mmc_data *data)
863 {
864 	uint total_len = data->blocksize * data->blocks;
865 	uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
866 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
867 	int i = desc_count;
868 	char *buf;
869 
870 	priv->desc_slot = 0;
871 	priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
872 				memalign(ARCH_DMA_MINALIGN, desc_count *
873 				sizeof(struct omap_hsmmc_adma_desc));
874 
875 	if (data->flags & MMC_DATA_READ)
876 		buf = data->dest;
877 	else
878 		buf = (char *)data->src;
879 
880 	while (--i) {
881 		omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
882 		buf += ADMA_MAX_LEN;
883 		total_len -= ADMA_MAX_LEN;
884 	}
885 
886 	omap_hsmmc_adma_desc(mmc, buf, total_len, true);
887 
888 	flush_dcache_range((long)priv->adma_desc_table,
889 			   (long)priv->adma_desc_table +
890 			   ROUND(desc_count *
891 			   sizeof(struct omap_hsmmc_adma_desc),
892 			   ARCH_DMA_MINALIGN));
893 }
894 
895 static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
896 {
897 	struct hsmmc *mmc_base;
898 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
899 	u32 val;
900 	char *buf;
901 
902 	mmc_base = priv->base_addr;
903 	omap_hsmmc_prepare_adma_table(mmc, data);
904 
905 	if (data->flags & MMC_DATA_READ)
906 		buf = data->dest;
907 	else
908 		buf = (char *)data->src;
909 
910 	val = readl(&mmc_base->hctl);
911 	val |= DMA_SELECT;
912 	writel(val, &mmc_base->hctl);
913 
914 	val = readl(&mmc_base->con);
915 	val |= DMA_MASTER;
916 	writel(val, &mmc_base->con);
917 
918 	writel((u32)priv->adma_desc_table, &mmc_base->admasal);
919 
920 	flush_dcache_range((u32)buf,
921 			   (u32)buf +
922 			   ROUND(data->blocksize * data->blocks,
923 				 ARCH_DMA_MINALIGN));
924 }
925 
926 static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
927 {
928 	struct hsmmc *mmc_base;
929 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
930 	u32 val;
931 
932 	mmc_base = priv->base_addr;
933 
934 	val = readl(&mmc_base->con);
935 	val &= ~DMA_MASTER;
936 	writel(val, &mmc_base->con);
937 
938 	val = readl(&mmc_base->hctl);
939 	val &= ~DMA_SELECT;
940 	writel(val, &mmc_base->hctl);
941 
942 	kfree(priv->adma_desc_table);
943 }
944 #else
945 #define omap_hsmmc_adma_desc
946 #define omap_hsmmc_prepare_adma_table
947 #define omap_hsmmc_prepare_data
948 #define omap_hsmmc_dma_cleanup
949 #endif
950 
951 #if !CONFIG_IS_ENABLED(DM_MMC)
952 static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
953 			struct mmc_data *data)
954 {
955 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
956 #else
957 static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
958 			struct mmc_data *data)
959 {
960 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
961 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
962 	struct mmc *mmc = upriv->mmc;
963 #endif
964 	struct hsmmc *mmc_base;
965 	unsigned int flags, mmc_stat;
966 	ulong start;
967 	priv->last_cmd = cmd->cmdidx;
968 
969 	mmc_base = priv->base_addr;
970 
971 	if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
972 		return 0;
973 
974 	start = get_timer(0);
975 	while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
976 		if (get_timer(0) - start > MAX_RETRY_MS) {
977 			printf("%s: timedout waiting on cmd inhibit to clear\n",
978 					__func__);
979 			return -ETIMEDOUT;
980 		}
981 	}
982 	writel(0xFFFFFFFF, &mmc_base->stat);
983 	start = get_timer(0);
984 	while (readl(&mmc_base->stat)) {
985 		if (get_timer(0) - start > MAX_RETRY_MS) {
986 			printf("%s: timedout waiting for STAT (%x) to clear\n",
987 				__func__, readl(&mmc_base->stat));
988 			return -ETIMEDOUT;
989 		}
990 	}
991 	/*
992 	 * CMDREG
993 	 * CMDIDX[13:8]	: Command index
994 	 * DATAPRNT[5]	: Data Present Select
995 	 * ENCMDIDX[4]	: Command Index Check Enable
996 	 * ENCMDCRC[3]	: Command CRC Check Enable
997 	 * RSPTYP[1:0]
998 	 *	00 = No Response
999 	 *	01 = Length 136
1000 	 *	10 = Length 48
1001 	 *	11 = Length 48 Check busy after response
1002 	 */
1003 	/* Delay added before checking the status of frq change
1004 	 * retry not supported by mmc.c(core file)
1005 	 */
1006 	if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
1007 		udelay(50000); /* wait 50 ms */
1008 
1009 	if (!(cmd->resp_type & MMC_RSP_PRESENT))
1010 		flags = 0;
1011 	else if (cmd->resp_type & MMC_RSP_136)
1012 		flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
1013 	else if (cmd->resp_type & MMC_RSP_BUSY)
1014 		flags = RSP_TYPE_LGHT48B;
1015 	else
1016 		flags = RSP_TYPE_LGHT48;
1017 
1018 	/* enable default flags */
1019 	flags =	flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
1020 			MSBS_SGLEBLK);
1021 	flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
1022 
1023 	if (cmd->resp_type & MMC_RSP_CRC)
1024 		flags |= CCCE_CHECK;
1025 	if (cmd->resp_type & MMC_RSP_OPCODE)
1026 		flags |= CICE_CHECK;
1027 
1028 	if (data) {
1029 		if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
1030 			 (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
1031 			flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
1032 			data->blocksize = 512;
1033 			writel(data->blocksize | (data->blocks << 16),
1034 							&mmc_base->blk);
1035 		} else
1036 			writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
1037 
1038 		if (data->flags & MMC_DATA_READ)
1039 			flags |= (DP_DATA | DDIR_READ);
1040 		else
1041 			flags |= (DP_DATA | DDIR_WRITE);
1042 
1043 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1044 		if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
1045 		    !mmc_is_tuning_cmd(cmd->cmdidx)) {
1046 			omap_hsmmc_prepare_data(mmc, data);
1047 			flags |= DE_ENABLE;
1048 		}
1049 #endif
1050 	}
1051 
1052 	mmc_enable_irq(mmc, cmd);
1053 
1054 	writel(cmd->cmdarg, &mmc_base->arg);
1055 	udelay(20);		/* To fix "No status update" error on eMMC */
1056 	writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
1057 
1058 	start = get_timer(0);
1059 	do {
1060 		mmc_stat = readl(&mmc_base->stat);
1061 		if (get_timer(start) > MAX_RETRY_MS) {
1062 			printf("%s : timeout: No status update\n", __func__);
1063 			return -ETIMEDOUT;
1064 		}
1065 	} while (!mmc_stat);
1066 
1067 	if ((mmc_stat & IE_CTO) != 0) {
1068 		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1069 		return -ETIMEDOUT;
1070 	} else if ((mmc_stat & ERRI_MASK) != 0)
1071 		return -1;
1072 
1073 	if (mmc_stat & CC_MASK) {
1074 		writel(CC_MASK, &mmc_base->stat);
1075 		if (cmd->resp_type & MMC_RSP_PRESENT) {
1076 			if (cmd->resp_type & MMC_RSP_136) {
1077 				/* response type 2 */
1078 				cmd->response[3] = readl(&mmc_base->rsp10);
1079 				cmd->response[2] = readl(&mmc_base->rsp32);
1080 				cmd->response[1] = readl(&mmc_base->rsp54);
1081 				cmd->response[0] = readl(&mmc_base->rsp76);
1082 			} else
1083 				/* response types 1, 1b, 3, 4, 5, 6 */
1084 				cmd->response[0] = readl(&mmc_base->rsp10);
1085 		}
1086 	}
1087 
1088 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1089 	if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
1090 	    !mmc_is_tuning_cmd(cmd->cmdidx)) {
1091 		u32 sz_mb, timeout;
1092 
1093 		if (mmc_stat & IE_ADMAE) {
1094 			omap_hsmmc_dma_cleanup(mmc);
1095 			return -EIO;
1096 		}
1097 
1098 		sz_mb = DIV_ROUND_UP(data->blocksize *  data->blocks, 1 << 20);
1099 		timeout = sz_mb * DMA_TIMEOUT_PER_MB;
1100 		if (timeout < MAX_RETRY_MS)
1101 			timeout = MAX_RETRY_MS;
1102 
1103 		start = get_timer(0);
1104 		do {
1105 			mmc_stat = readl(&mmc_base->stat);
1106 			if (mmc_stat & TC_MASK) {
1107 				writel(readl(&mmc_base->stat) | TC_MASK,
1108 				       &mmc_base->stat);
1109 				break;
1110 			}
1111 			if (get_timer(start) > timeout) {
1112 				printf("%s : DMA timeout: No status update\n",
1113 				       __func__);
1114 				return -ETIMEDOUT;
1115 			}
1116 		} while (1);
1117 
1118 		omap_hsmmc_dma_cleanup(mmc);
1119 		return 0;
1120 	}
1121 #endif
1122 
1123 	if (data && (data->flags & MMC_DATA_READ)) {
1124 		mmc_read_data(mmc_base,	data->dest,
1125 				data->blocksize * data->blocks);
1126 	} else if (data && (data->flags & MMC_DATA_WRITE)) {
1127 		mmc_write_data(mmc_base, data->src,
1128 				data->blocksize * data->blocks);
1129 	}
1130 	return 0;
1131 }
1132 
1133 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
1134 {
1135 	unsigned int *output_buf = (unsigned int *)buf;
1136 	unsigned int mmc_stat;
1137 	unsigned int count;
1138 
1139 	/*
1140 	 * Start Polled Read
1141 	 */
1142 	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1143 	count /= 4;
1144 
1145 	while (size) {
1146 		ulong start = get_timer(0);
1147 		do {
1148 			mmc_stat = readl(&mmc_base->stat);
1149 			if (get_timer(0) - start > MAX_RETRY_MS) {
1150 				printf("%s: timedout waiting for status!\n",
1151 						__func__);
1152 				return -ETIMEDOUT;
1153 			}
1154 		} while (mmc_stat == 0);
1155 
1156 		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1157 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1158 
1159 		if ((mmc_stat & ERRI_MASK) != 0)
1160 			return 1;
1161 
1162 		if (mmc_stat & BRR_MASK) {
1163 			unsigned int k;
1164 
1165 			writel(readl(&mmc_base->stat) | BRR_MASK,
1166 				&mmc_base->stat);
1167 			for (k = 0; k < count; k++) {
1168 				*output_buf = readl(&mmc_base->data);
1169 				output_buf++;
1170 			}
1171 			size -= (count*4);
1172 		}
1173 
1174 		if (mmc_stat & BWR_MASK)
1175 			writel(readl(&mmc_base->stat) | BWR_MASK,
1176 				&mmc_base->stat);
1177 
1178 		if (mmc_stat & TC_MASK) {
1179 			writel(readl(&mmc_base->stat) | TC_MASK,
1180 				&mmc_base->stat);
1181 			break;
1182 		}
1183 	}
1184 	return 0;
1185 }
1186 
1187 #if CONFIG_IS_ENABLED(MMC_WRITE)
1188 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1189 			  unsigned int size)
1190 {
1191 	unsigned int *input_buf = (unsigned int *)buf;
1192 	unsigned int mmc_stat;
1193 	unsigned int count;
1194 
1195 	/*
1196 	 * Start Polled Write
1197 	 */
1198 	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1199 	count /= 4;
1200 
1201 	while (size) {
1202 		ulong start = get_timer(0);
1203 		do {
1204 			mmc_stat = readl(&mmc_base->stat);
1205 			if (get_timer(0) - start > MAX_RETRY_MS) {
1206 				printf("%s: timedout waiting for status!\n",
1207 						__func__);
1208 				return -ETIMEDOUT;
1209 			}
1210 		} while (mmc_stat == 0);
1211 
1212 		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1213 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1214 
1215 		if ((mmc_stat & ERRI_MASK) != 0)
1216 			return 1;
1217 
1218 		if (mmc_stat & BWR_MASK) {
1219 			unsigned int k;
1220 
1221 			writel(readl(&mmc_base->stat) | BWR_MASK,
1222 					&mmc_base->stat);
1223 			for (k = 0; k < count; k++) {
1224 				writel(*input_buf, &mmc_base->data);
1225 				input_buf++;
1226 			}
1227 			size -= (count*4);
1228 		}
1229 
1230 		if (mmc_stat & BRR_MASK)
1231 			writel(readl(&mmc_base->stat) | BRR_MASK,
1232 				&mmc_base->stat);
1233 
1234 		if (mmc_stat & TC_MASK) {
1235 			writel(readl(&mmc_base->stat) | TC_MASK,
1236 				&mmc_base->stat);
1237 			break;
1238 		}
1239 	}
1240 	return 0;
1241 }
1242 #else
1243 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1244 			  unsigned int size)
1245 {
1246 	return -ENOTSUPP;
1247 }
1248 #endif
1249 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base)
1250 {
1251 	writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl);
1252 }
1253 
1254 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base)
1255 {
1256 	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
1257 }
1258 
1259 static void omap_hsmmc_set_clock(struct mmc *mmc)
1260 {
1261 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1262 	struct hsmmc *mmc_base;
1263 	unsigned int dsor = 0;
1264 	ulong start;
1265 
1266 	mmc_base = priv->base_addr;
1267 	omap_hsmmc_stop_clock(mmc_base);
1268 
1269 	/* TODO: Is setting DTO required here? */
1270 	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK),
1271 		    (ICE_STOP | DTO_15THDTO));
1272 
1273 	if (mmc->clock != 0) {
1274 		dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock);
1275 		if (dsor > CLKD_MAX)
1276 			dsor = CLKD_MAX;
1277 	} else {
1278 		dsor = CLKD_MAX;
1279 	}
1280 
1281 	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
1282 		    (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
1283 
1284 	start = get_timer(0);
1285 	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
1286 		if (get_timer(0) - start > MAX_RETRY_MS) {
1287 			printf("%s: timedout waiting for ics!\n", __func__);
1288 			return;
1289 		}
1290 	}
1291 
1292 	priv->clock = MMC_CLOCK_REFERENCE * 1000000 / dsor;
1293 	mmc->clock = priv->clock;
1294 	omap_hsmmc_start_clock(mmc_base);
1295 }
1296 
1297 static void omap_hsmmc_set_bus_width(struct mmc *mmc)
1298 {
1299 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1300 	struct hsmmc *mmc_base;
1301 
1302 	mmc_base = priv->base_addr;
1303 	/* configue bus width */
1304 	switch (mmc->bus_width) {
1305 	case 8:
1306 		writel(readl(&mmc_base->con) | DTW_8_BITMODE,
1307 			&mmc_base->con);
1308 		break;
1309 
1310 	case 4:
1311 		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1312 			&mmc_base->con);
1313 		writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
1314 			&mmc_base->hctl);
1315 		break;
1316 
1317 	case 1:
1318 	default:
1319 		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1320 			&mmc_base->con);
1321 		writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
1322 			&mmc_base->hctl);
1323 		break;
1324 	}
1325 
1326 	priv->bus_width = mmc->bus_width;
1327 }
1328 
1329 #if !CONFIG_IS_ENABLED(DM_MMC)
1330 static int omap_hsmmc_set_ios(struct mmc *mmc)
1331 {
1332 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1333 #else
1334 static int omap_hsmmc_set_ios(struct udevice *dev)
1335 {
1336 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1337 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1338 	struct mmc *mmc = upriv->mmc;
1339 #endif
1340 	struct hsmmc *mmc_base = priv->base_addr;
1341 	int ret = 0;
1342 
1343 	if (priv->bus_width != mmc->bus_width)
1344 		omap_hsmmc_set_bus_width(mmc);
1345 
1346 	if (priv->clock != mmc->clock)
1347 		omap_hsmmc_set_clock(mmc);
1348 
1349 	if (mmc->clk_disable)
1350 		omap_hsmmc_stop_clock(mmc_base);
1351 	else
1352 		omap_hsmmc_start_clock(mmc_base);
1353 
1354 #if CONFIG_IS_ENABLED(DM_MMC)
1355 	if (priv->mode != mmc->selected_mode)
1356 		omap_hsmmc_set_timing(mmc);
1357 
1358 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
1359 	if (priv->signal_voltage != mmc->signal_voltage)
1360 		ret = omap_hsmmc_set_signal_voltage(mmc);
1361 #endif
1362 #endif
1363 	return ret;
1364 }
1365 
1366 #ifdef OMAP_HSMMC_USE_GPIO
1367 #if CONFIG_IS_ENABLED(DM_MMC)
1368 static int omap_hsmmc_getcd(struct udevice *dev)
1369 {
1370 	int value = -1;
1371 #if CONFIG_IS_ENABLED(DM_GPIO)
1372 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1373 	value = dm_gpio_get_value(&priv->cd_gpio);
1374 #endif
1375 	/* if no CD return as 1 */
1376 	if (value < 0)
1377 		return 1;
1378 
1379 	return value;
1380 }
1381 
1382 static int omap_hsmmc_getwp(struct udevice *dev)
1383 {
1384 	int value = 0;
1385 #if CONFIG_IS_ENABLED(DM_GPIO)
1386 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1387 	value = dm_gpio_get_value(&priv->wp_gpio);
1388 #endif
1389 	/* if no WP return as 0 */
1390 	if (value < 0)
1391 		return 0;
1392 	return value;
1393 }
1394 #else
1395 static int omap_hsmmc_getcd(struct mmc *mmc)
1396 {
1397 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1398 	int cd_gpio;
1399 
1400 	/* if no CD return as 1 */
1401 	cd_gpio = priv->cd_gpio;
1402 	if (cd_gpio < 0)
1403 		return 1;
1404 
1405 	/* NOTE: assumes card detect signal is active-low */
1406 	return !gpio_get_value(cd_gpio);
1407 }
1408 
1409 static int omap_hsmmc_getwp(struct mmc *mmc)
1410 {
1411 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1412 	int wp_gpio;
1413 
1414 	/* if no WP return as 0 */
1415 	wp_gpio = priv->wp_gpio;
1416 	if (wp_gpio < 0)
1417 		return 0;
1418 
1419 	/* NOTE: assumes write protect signal is active-high */
1420 	return gpio_get_value(wp_gpio);
1421 }
1422 #endif
1423 #endif
1424 
1425 #if CONFIG_IS_ENABLED(DM_MMC)
1426 static const struct dm_mmc_ops omap_hsmmc_ops = {
1427 	.send_cmd	= omap_hsmmc_send_cmd,
1428 	.set_ios	= omap_hsmmc_set_ios,
1429 #ifdef OMAP_HSMMC_USE_GPIO
1430 	.get_cd		= omap_hsmmc_getcd,
1431 	.get_wp		= omap_hsmmc_getwp,
1432 #endif
1433 #ifdef MMC_SUPPORTS_TUNING
1434 	.execute_tuning = omap_hsmmc_execute_tuning,
1435 #endif
1436 	.send_init_stream	= omap_hsmmc_send_init_stream,
1437 #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
1438 	.wait_dat0	= omap_hsmmc_wait_dat0,
1439 #endif
1440 };
1441 #else
1442 static const struct mmc_ops omap_hsmmc_ops = {
1443 	.send_cmd	= omap_hsmmc_send_cmd,
1444 	.set_ios	= omap_hsmmc_set_ios,
1445 	.init		= omap_hsmmc_init_setup,
1446 #ifdef OMAP_HSMMC_USE_GPIO
1447 	.getcd		= omap_hsmmc_getcd,
1448 	.getwp		= omap_hsmmc_getwp,
1449 #endif
1450 };
1451 #endif
1452 
1453 #if !CONFIG_IS_ENABLED(DM_MMC)
1454 int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
1455 		int wp_gpio)
1456 {
1457 	struct mmc *mmc;
1458 	struct omap_hsmmc_data *priv;
1459 	struct mmc_config *cfg;
1460 	uint host_caps_val;
1461 
1462 	priv = calloc(1, sizeof(*priv));
1463 	if (priv == NULL)
1464 		return -1;
1465 
1466 	host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
1467 
1468 	switch (dev_index) {
1469 	case 0:
1470 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1471 		break;
1472 #ifdef OMAP_HSMMC2_BASE
1473 	case 1:
1474 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
1475 #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
1476 	defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
1477 	defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
1478 		defined(CONFIG_HSMMC2_8BIT)
1479 		/* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
1480 		host_caps_val |= MMC_MODE_8BIT;
1481 #endif
1482 		break;
1483 #endif
1484 #ifdef OMAP_HSMMC3_BASE
1485 	case 2:
1486 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
1487 #if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
1488 		/* Enable 8-bit interface for eMMC on DRA7XX */
1489 		host_caps_val |= MMC_MODE_8BIT;
1490 #endif
1491 		break;
1492 #endif
1493 	default:
1494 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1495 		return 1;
1496 	}
1497 #ifdef OMAP_HSMMC_USE_GPIO
1498 	/* on error gpio values are set to -1, which is what we want */
1499 	priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
1500 	priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
1501 #endif
1502 
1503 	cfg = &priv->cfg;
1504 
1505 	cfg->name = "OMAP SD/MMC";
1506 	cfg->ops = &omap_hsmmc_ops;
1507 
1508 	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1509 	cfg->host_caps = host_caps_val & ~host_caps_mask;
1510 
1511 	cfg->f_min = 400000;
1512 
1513 	if (f_max != 0)
1514 		cfg->f_max = f_max;
1515 	else {
1516 		if (cfg->host_caps & MMC_MODE_HS) {
1517 			if (cfg->host_caps & MMC_MODE_HS_52MHz)
1518 				cfg->f_max = 52000000;
1519 			else
1520 				cfg->f_max = 26000000;
1521 		} else
1522 			cfg->f_max = 20000000;
1523 	}
1524 
1525 	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1526 
1527 #if defined(CONFIG_OMAP34XX)
1528 	/*
1529 	 * Silicon revs 2.1 and older do not support multiblock transfers.
1530 	 */
1531 	if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
1532 		cfg->b_max = 1;
1533 #endif
1534 
1535 	mmc = mmc_create(cfg, priv);
1536 	if (mmc == NULL)
1537 		return -1;
1538 
1539 	return 0;
1540 }
1541 #else
1542 
1543 #ifdef CONFIG_IODELAY_RECALIBRATION
1544 static struct pad_conf_entry *
1545 omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count)
1546 {
1547 	int index = 0;
1548 	struct pad_conf_entry *padconf;
1549 
1550 	padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count);
1551 	if (!padconf) {
1552 		debug("failed to allocate memory\n");
1553 		return 0;
1554 	}
1555 
1556 	while (index < count) {
1557 		padconf[index].offset = fdt32_to_cpu(pinctrl[2 * index]);
1558 		padconf[index].val = fdt32_to_cpu(pinctrl[2 * index + 1]);
1559 		index++;
1560 	}
1561 
1562 	return padconf;
1563 }
1564 
1565 static struct iodelay_cfg_entry *
1566 omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count)
1567 {
1568 	int index = 0;
1569 	struct iodelay_cfg_entry *iodelay;
1570 
1571 	iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count);
1572 	if (!iodelay) {
1573 		debug("failed to allocate memory\n");
1574 		return 0;
1575 	}
1576 
1577 	while (index < count) {
1578 		iodelay[index].offset = fdt32_to_cpu(pinctrl[3 * index]);
1579 		iodelay[index].a_delay = fdt32_to_cpu(pinctrl[3 * index + 1]);
1580 		iodelay[index].g_delay = fdt32_to_cpu(pinctrl[3 * index + 2]);
1581 		index++;
1582 	}
1583 
1584 	return iodelay;
1585 }
1586 
1587 static const fdt32_t *omap_hsmmc_get_pinctrl_entry(u32  phandle,
1588 						   const char *name, int *len)
1589 {
1590 	const void *fdt = gd->fdt_blob;
1591 	int offset;
1592 	const fdt32_t *pinctrl;
1593 
1594 	offset = fdt_node_offset_by_phandle(fdt, phandle);
1595 	if (offset < 0) {
1596 		debug("failed to get pinctrl node %s.\n",
1597 		      fdt_strerror(offset));
1598 		return 0;
1599 	}
1600 
1601 	pinctrl = fdt_getprop(fdt, offset, name, len);
1602 	if (!pinctrl) {
1603 		debug("failed to get property %s\n", name);
1604 		return 0;
1605 	}
1606 
1607 	return pinctrl;
1608 }
1609 
1610 static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc,
1611 						char *prop_name)
1612 {
1613 	const void *fdt = gd->fdt_blob;
1614 	const __be32 *phandle;
1615 	int node = dev_of_offset(mmc->dev);
1616 
1617 	phandle = fdt_getprop(fdt, node, prop_name, NULL);
1618 	if (!phandle) {
1619 		debug("failed to get property %s\n", prop_name);
1620 		return 0;
1621 	}
1622 
1623 	return fdt32_to_cpu(*phandle);
1624 }
1625 
1626 static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc,
1627 					       char *prop_name)
1628 {
1629 	const void *fdt = gd->fdt_blob;
1630 	const __be32 *phandle;
1631 	int len;
1632 	int count;
1633 	int node = dev_of_offset(mmc->dev);
1634 
1635 	phandle = fdt_getprop(fdt, node, prop_name, &len);
1636 	if (!phandle) {
1637 		debug("failed to get property %s\n", prop_name);
1638 		return 0;
1639 	}
1640 
1641 	/* No manual mode iodelay values if count < 2 */
1642 	count = len / sizeof(*phandle);
1643 	if (count < 2)
1644 		return 0;
1645 
1646 	return fdt32_to_cpu(*(phandle + 1));
1647 }
1648 
1649 static struct pad_conf_entry *
1650 omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads)
1651 {
1652 	int len;
1653 	int count;
1654 	struct pad_conf_entry *padconf;
1655 	u32 phandle;
1656 	const fdt32_t *pinctrl;
1657 
1658 	phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name);
1659 	if (!phandle)
1660 		return ERR_PTR(-EINVAL);
1661 
1662 	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins",
1663 					       &len);
1664 	if (!pinctrl)
1665 		return ERR_PTR(-EINVAL);
1666 
1667 	count = (len / sizeof(*pinctrl)) / 2;
1668 	padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count);
1669 	if (!padconf)
1670 		return ERR_PTR(-EINVAL);
1671 
1672 	*npads = count;
1673 
1674 	return padconf;
1675 }
1676 
1677 static struct iodelay_cfg_entry *
1678 omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay)
1679 {
1680 	int len;
1681 	int count;
1682 	struct iodelay_cfg_entry *iodelay;
1683 	u32 phandle;
1684 	const fdt32_t *pinctrl;
1685 
1686 	phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name);
1687 	/* Not all modes have manual mode iodelay values. So its not fatal */
1688 	if (!phandle)
1689 		return 0;
1690 
1691 	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array",
1692 					       &len);
1693 	if (!pinctrl)
1694 		return ERR_PTR(-EINVAL);
1695 
1696 	count = (len / sizeof(*pinctrl)) / 3;
1697 	iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count);
1698 	if (!iodelay)
1699 		return ERR_PTR(-EINVAL);
1700 
1701 	*niodelay = count;
1702 
1703 	return iodelay;
1704 }
1705 
1706 static struct omap_hsmmc_pinctrl_state *
1707 omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
1708 {
1709 	int index;
1710 	int npads = 0;
1711 	int niodelays = 0;
1712 	const void *fdt = gd->fdt_blob;
1713 	int node = dev_of_offset(mmc->dev);
1714 	char prop_name[11];
1715 	struct omap_hsmmc_pinctrl_state *pinctrl_state;
1716 
1717 	pinctrl_state = (struct omap_hsmmc_pinctrl_state *)
1718 			 malloc(sizeof(*pinctrl_state));
1719 	if (!pinctrl_state) {
1720 		debug("failed to allocate memory\n");
1721 		return 0;
1722 	}
1723 
1724 	index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode);
1725 	if (index < 0) {
1726 		debug("fail to find %s mode %s\n", mode, fdt_strerror(index));
1727 		goto err_pinctrl_state;
1728 	}
1729 
1730 	sprintf(prop_name, "pinctrl-%d", index);
1731 
1732 	pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name,
1733 							 &npads);
1734 	if (IS_ERR(pinctrl_state->padconf))
1735 		goto err_pinctrl_state;
1736 	pinctrl_state->npads = npads;
1737 
1738 	pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name,
1739 							&niodelays);
1740 	if (IS_ERR(pinctrl_state->iodelay))
1741 		goto err_padconf;
1742 	pinctrl_state->niodelays = niodelays;
1743 
1744 	return pinctrl_state;
1745 
1746 err_padconf:
1747 	kfree(pinctrl_state->padconf);
1748 
1749 err_pinctrl_state:
1750 	kfree(pinctrl_state);
1751 	return 0;
1752 }
1753 
1754 #define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode, optional)		\
1755 	do {								\
1756 		struct omap_hsmmc_pinctrl_state *s = NULL;		\
1757 		char str[20];						\
1758 		if (!(cfg->host_caps & capmask))			\
1759 			break;						\
1760 									\
1761 		if (priv->hw_rev) {					\
1762 			sprintf(str, "%s-%s", #mode, priv->hw_rev);	\
1763 			s = omap_hsmmc_get_pinctrl_by_mode(mmc, str);	\
1764 		}							\
1765 									\
1766 		if (!s)							\
1767 			s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode);	\
1768 									\
1769 		if (!s && !optional) {					\
1770 			debug("%s: no pinctrl for %s\n",		\
1771 			      mmc->dev->name, #mode);			\
1772 			cfg->host_caps &= ~(capmask);			\
1773 		} else {						\
1774 			priv->mode##_pinctrl_state = s;			\
1775 		}							\
1776 	} while (0)
1777 
1778 static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc)
1779 {
1780 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1781 	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
1782 	struct omap_hsmmc_pinctrl_state *default_pinctrl;
1783 
1784 	if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY))
1785 		return 0;
1786 
1787 	default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default");
1788 	if (!default_pinctrl) {
1789 		printf("no pinctrl state for default mode\n");
1790 		return -EINVAL;
1791 	}
1792 
1793 	priv->default_pinctrl_state = default_pinctrl;
1794 
1795 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR104), sdr104, false);
1796 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR50), sdr50, false);
1797 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_DDR50), ddr50, false);
1798 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR25), sdr25, false);
1799 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR12), sdr12, false);
1800 
1801 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_HS_200), hs200_1_8v, false);
1802 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_DDR_52), ddr_1_8v, false);
1803 	OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs, true);
1804 
1805 	return 0;
1806 }
1807 #endif
1808 
1809 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1810 #ifdef CONFIG_OMAP54XX
1811 __weak const struct mmc_platform_fixups *platform_fixups_mmc(uint32_t addr)
1812 {
1813 	return NULL;
1814 }
1815 #endif
1816 
1817 static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev)
1818 {
1819 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1820 	struct omap_mmc_of_data *of_data = (void *)dev_get_driver_data(dev);
1821 
1822 	struct mmc_config *cfg = &plat->cfg;
1823 #ifdef CONFIG_OMAP54XX
1824 	const struct mmc_platform_fixups *fixups;
1825 #endif
1826 	const void *fdt = gd->fdt_blob;
1827 	int node = dev_of_offset(dev);
1828 	int ret;
1829 
1830 	plat->base_addr = map_physmem(devfdt_get_addr(dev),
1831 				      sizeof(struct hsmmc *),
1832 				      MAP_NOCACHE);
1833 
1834 	ret = mmc_of_parse(dev, cfg);
1835 	if (ret < 0)
1836 		return ret;
1837 
1838 	if (!cfg->f_max)
1839 		cfg->f_max = 52000000;
1840 	cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
1841 	cfg->f_min = 400000;
1842 	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1843 	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1844 	if (fdtdec_get_bool(fdt, node, "ti,dual-volt"))
1845 		plat->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1846 	if (fdtdec_get_bool(fdt, node, "no-1-8-v"))
1847 		plat->controller_flags |= OMAP_HSMMC_NO_1_8_V;
1848 	if (of_data)
1849 		plat->controller_flags |= of_data->controller_flags;
1850 
1851 #ifdef CONFIG_OMAP54XX
1852 	fixups = platform_fixups_mmc(devfdt_get_addr(dev));
1853 	if (fixups) {
1854 		plat->hw_rev = fixups->hw_rev;
1855 		cfg->host_caps &= ~fixups->unsupported_caps;
1856 		cfg->f_max = fixups->max_freq;
1857 	}
1858 #endif
1859 
1860 	return 0;
1861 }
1862 #endif
1863 
1864 #ifdef CONFIG_BLK
1865 
1866 static int omap_hsmmc_bind(struct udevice *dev)
1867 {
1868 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1869 	plat->mmc = calloc(1, sizeof(struct mmc));
1870 	return mmc_bind(dev, plat->mmc, &plat->cfg);
1871 }
1872 #endif
1873 static int omap_hsmmc_probe(struct udevice *dev)
1874 {
1875 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1876 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1877 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1878 	struct mmc_config *cfg = &plat->cfg;
1879 	struct mmc *mmc;
1880 #ifdef CONFIG_IODELAY_RECALIBRATION
1881 	int ret;
1882 #endif
1883 
1884 	cfg->name = "OMAP SD/MMC";
1885 	priv->base_addr = plat->base_addr;
1886 	priv->controller_flags = plat->controller_flags;
1887 	priv->hw_rev = plat->hw_rev;
1888 
1889 #ifdef CONFIG_BLK
1890 	mmc = plat->mmc;
1891 #else
1892 	mmc = mmc_create(cfg, priv);
1893 	if (mmc == NULL)
1894 		return -1;
1895 #endif
1896 #if CONFIG_IS_ENABLED(DM_REGULATOR)
1897 	device_get_supply_regulator(dev, "pbias-supply",
1898 				    &priv->pbias_supply);
1899 #endif
1900 #if defined(OMAP_HSMMC_USE_GPIO)
1901 #if CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_GPIO)
1902 	gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
1903 	gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
1904 #endif
1905 #endif
1906 
1907 	mmc->dev = dev;
1908 	upriv->mmc = mmc;
1909 
1910 #ifdef CONFIG_IODELAY_RECALIBRATION
1911 	ret = omap_hsmmc_get_pinctrl_state(mmc);
1912 	/*
1913 	 * disable high speed modes for the platforms that require IO delay
1914 	 * and for which we don't have this information
1915 	 */
1916 	if ((ret < 0) &&
1917 	    (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) {
1918 		priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY;
1919 		cfg->host_caps &= ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_DDR_52) |
1920 				    UHS_CAPS);
1921 	}
1922 #endif
1923 
1924 	return omap_hsmmc_init_setup(mmc);
1925 }
1926 
1927 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1928 
1929 static const struct omap_mmc_of_data dra7_mmc_of_data = {
1930 	.controller_flags = OMAP_HSMMC_REQUIRE_IODELAY,
1931 };
1932 
1933 static const struct udevice_id omap_hsmmc_ids[] = {
1934 	{ .compatible = "ti,omap3-hsmmc" },
1935 	{ .compatible = "ti,omap4-hsmmc" },
1936 	{ .compatible = "ti,am33xx-hsmmc" },
1937 	{ .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data },
1938 	{ }
1939 };
1940 #endif
1941 
1942 U_BOOT_DRIVER(omap_hsmmc) = {
1943 	.name	= "omap_hsmmc",
1944 	.id	= UCLASS_MMC,
1945 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1946 	.of_match = omap_hsmmc_ids,
1947 	.ofdata_to_platdata = omap_hsmmc_ofdata_to_platdata,
1948 	.platdata_auto_alloc_size = sizeof(struct omap_hsmmc_plat),
1949 #endif
1950 #ifdef CONFIG_BLK
1951 	.bind = omap_hsmmc_bind,
1952 #endif
1953 	.ops = &omap_hsmmc_ops,
1954 	.probe	= omap_hsmmc_probe,
1955 	.priv_auto_alloc_size = sizeof(struct omap_hsmmc_data),
1956 #if !CONFIG_IS_ENABLED(OF_CONTROL)
1957 	.flags	= DM_FLAG_PRE_RELOC,
1958 #endif
1959 };
1960 #endif
1961