xref: /openbmc/u-boot/drivers/mmc/omap_hsmmc.c (revision 872cfa20cd694fdbfa76abddd3cd00b05ad5355b)
1 /*
2  * (C) Copyright 2008
3  * Texas Instruments, <www.ti.com>
4  * Sukumar Ghorai <s-ghorai@ti.com>
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation's version 2 of
12  * the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22  * MA 02111-1307 USA
23  */
24 
25 #include <config.h>
26 #include <common.h>
27 #include <malloc.h>
28 #include <memalign.h>
29 #include <mmc.h>
30 #include <part.h>
31 #include <i2c.h>
32 #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
33 #include <palmas.h>
34 #endif
35 #include <asm/io.h>
36 #include <asm/arch/mmc_host_def.h>
37 #ifdef CONFIG_OMAP54XX
38 #include <asm/arch/mux_dra7xx.h>
39 #include <asm/arch/dra7xx_iodelay.h>
40 #endif
41 #if !defined(CONFIG_SOC_KEYSTONE)
42 #include <asm/gpio.h>
43 #include <asm/arch/sys_proto.h>
44 #endif
45 #ifdef CONFIG_MMC_OMAP36XX_PINS
46 #include <asm/arch/mux.h>
47 #endif
48 #include <dm.h>
49 #include <power/regulator.h>
50 #include <thermal.h>
51 
52 DECLARE_GLOBAL_DATA_PTR;
53 
54 /* simplify defines to OMAP_HSMMC_USE_GPIO */
55 #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
56 	(defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
57 #define OMAP_HSMMC_USE_GPIO
58 #else
59 #undef OMAP_HSMMC_USE_GPIO
60 #endif
61 
62 /* common definitions for all OMAPs */
63 #define SYSCTL_SRC	(1 << 25)
64 #define SYSCTL_SRD	(1 << 26)
65 
66 #ifdef CONFIG_IODELAY_RECALIBRATION
67 struct omap_hsmmc_pinctrl_state {
68 	struct pad_conf_entry *padconf;
69 	int npads;
70 	struct iodelay_cfg_entry *iodelay;
71 	int niodelays;
72 };
73 #endif
74 
75 struct omap_hsmmc_data {
76 	struct hsmmc *base_addr;
77 #if !CONFIG_IS_ENABLED(DM_MMC)
78 	struct mmc_config cfg;
79 #endif
80 	uint bus_width;
81 	uint clock;
82 	ushort last_cmd;
83 #ifdef OMAP_HSMMC_USE_GPIO
84 #if CONFIG_IS_ENABLED(DM_MMC)
85 	struct gpio_desc cd_gpio;	/* Change Detect GPIO */
86 	struct gpio_desc wp_gpio;	/* Write Protect GPIO */
87 #else
88 	int cd_gpio;
89 	int wp_gpio;
90 #endif
91 #endif
92 #if CONFIG_IS_ENABLED(DM_MMC)
93 	enum bus_mode mode;
94 #endif
95 	u8 controller_flags;
96 #ifdef CONFIG_MMC_OMAP_HS_ADMA
97 	struct omap_hsmmc_adma_desc *adma_desc_table;
98 	uint desc_slot;
99 #endif
100 	const char *hw_rev;
101 	struct udevice *pbias_supply;
102 	uint signal_voltage;
103 #ifdef CONFIG_IODELAY_RECALIBRATION
104 	struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
105 	struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
106 	struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
107 	struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
108 	struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
109 	struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
110 	struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
111 	struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
112 	struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
113 #endif
114 };
115 
116 struct omap_mmc_of_data {
117 	u8 controller_flags;
118 };
119 
120 #ifdef CONFIG_MMC_OMAP_HS_ADMA
121 struct omap_hsmmc_adma_desc {
122 	u8 attr;
123 	u8 reserved;
124 	u16 len;
125 	u32 addr;
126 };
127 
128 #define ADMA_MAX_LEN	63488
129 
130 /* Decriptor table defines */
131 #define ADMA_DESC_ATTR_VALID		BIT(0)
132 #define ADMA_DESC_ATTR_END		BIT(1)
133 #define ADMA_DESC_ATTR_INT		BIT(2)
134 #define ADMA_DESC_ATTR_ACT1		BIT(4)
135 #define ADMA_DESC_ATTR_ACT2		BIT(5)
136 
137 #define ADMA_DESC_TRANSFER_DATA		ADMA_DESC_ATTR_ACT2
138 #define ADMA_DESC_LINK_DESC	(ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
139 #endif
140 
141 /* If we fail after 1 second wait, something is really bad */
142 #define MAX_RETRY_MS	1000
143 #define MMC_TIMEOUT_MS	20
144 
145 /* DMA transfers can take a long time if a lot a data is transferred.
146  * The timeout must take in account the amount of data. Let's assume
147  * that the time will never exceed 333 ms per MB (in other word we assume
148  * that the bandwidth is always above 3MB/s).
149  */
150 #define DMA_TIMEOUT_PER_MB	333
151 #define OMAP_HSMMC_SUPPORTS_DUAL_VOLT		BIT(0)
152 #define OMAP_HSMMC_NO_1_8_V			BIT(1)
153 #define OMAP_HSMMC_USE_ADMA			BIT(2)
154 #define OMAP_HSMMC_REQUIRE_IODELAY		BIT(3)
155 
156 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
157 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
158 			unsigned int siz);
159 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
160 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
161 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
162 
163 static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
164 {
165 #if CONFIG_IS_ENABLED(DM_MMC)
166 	return dev_get_priv(mmc->dev);
167 #else
168 	return (struct omap_hsmmc_data *)mmc->priv;
169 #endif
170 }
171 static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
172 {
173 #if CONFIG_IS_ENABLED(DM_MMC)
174 	struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev);
175 	return &plat->cfg;
176 #else
177 	return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
178 #endif
179 }
180 
181 #if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
182 static int omap_mmc_setup_gpio_in(int gpio, const char *label)
183 {
184 	int ret;
185 
186 #ifndef CONFIG_DM_GPIO
187 	if (!gpio_is_valid(gpio))
188 		return -1;
189 #endif
190 	ret = gpio_request(gpio, label);
191 	if (ret)
192 		return ret;
193 
194 	ret = gpio_direction_input(gpio);
195 	if (ret)
196 		return ret;
197 
198 	return gpio;
199 }
200 #endif
201 
202 static unsigned char mmc_board_init(struct mmc *mmc)
203 {
204 #if defined(CONFIG_OMAP34XX)
205 	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
206 	t2_t *t2_base = (t2_t *)T2_BASE;
207 	struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
208 	u32 pbias_lite;
209 #ifdef CONFIG_MMC_OMAP36XX_PINS
210 	u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
211 #endif
212 
213 	pbias_lite = readl(&t2_base->pbias_lite);
214 	pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
215 #ifdef CONFIG_TARGET_OMAP3_CAIRO
216 	/* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
217 	pbias_lite &= ~PBIASLITEVMODE0;
218 #endif
219 #ifdef CONFIG_TARGET_OMAP3_LOGIC
220 	/* For Logic PD board, 1.8V bias to go enable gpio127 for mmc_cd */
221 	pbias_lite &= ~PBIASLITEVMODE1;
222 #endif
223 #ifdef CONFIG_MMC_OMAP36XX_PINS
224 	if (get_cpu_family() == CPU_OMAP36XX) {
225 		/* Disable extended drain IO before changing PBIAS */
226 		wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
227 		writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
228 	}
229 #endif
230 	writel(pbias_lite, &t2_base->pbias_lite);
231 
232 	writel(pbias_lite | PBIASLITEPWRDNZ1 |
233 		PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
234 		&t2_base->pbias_lite);
235 
236 #ifdef CONFIG_MMC_OMAP36XX_PINS
237 	if (get_cpu_family() == CPU_OMAP36XX)
238 		/* Enable extended drain IO after changing PBIAS */
239 		writel(wkup_ctrl |
240 				OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
241 				OMAP34XX_CTRL_WKUP_CTRL);
242 #endif
243 	writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
244 		&t2_base->devconf0);
245 
246 	writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
247 		&t2_base->devconf1);
248 
249 	/* Change from default of 52MHz to 26MHz if necessary */
250 	if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
251 		writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
252 			&t2_base->ctl_prog_io1);
253 
254 	writel(readl(&prcm_base->fclken1_core) |
255 		EN_MMC1 | EN_MMC2 | EN_MMC3,
256 		&prcm_base->fclken1_core);
257 
258 	writel(readl(&prcm_base->iclken1_core) |
259 		EN_MMC1 | EN_MMC2 | EN_MMC3,
260 		&prcm_base->iclken1_core);
261 #endif
262 
263 #if (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) &&\
264 	!CONFIG_IS_ENABLED(DM_REGULATOR)
265 	/* PBIAS config needed for MMC1 only */
266 	if (mmc_get_blk_desc(mmc)->devnum == 0)
267 		vmmc_pbias_config(LDO_VOLT_3V0);
268 #endif
269 
270 	return 0;
271 }
272 
273 void mmc_init_stream(struct hsmmc *mmc_base)
274 {
275 	ulong start;
276 
277 	writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
278 
279 	writel(MMC_CMD0, &mmc_base->cmd);
280 	start = get_timer(0);
281 	while (!(readl(&mmc_base->stat) & CC_MASK)) {
282 		if (get_timer(0) - start > MAX_RETRY_MS) {
283 			printf("%s: timedout waiting for cc!\n", __func__);
284 			return;
285 		}
286 	}
287 	writel(CC_MASK, &mmc_base->stat)
288 		;
289 	writel(MMC_CMD0, &mmc_base->cmd)
290 		;
291 	start = get_timer(0);
292 	while (!(readl(&mmc_base->stat) & CC_MASK)) {
293 		if (get_timer(0) - start > MAX_RETRY_MS) {
294 			printf("%s: timedout waiting for cc2!\n", __func__);
295 			return;
296 		}
297 	}
298 	writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
299 }
300 
301 #if CONFIG_IS_ENABLED(DM_MMC)
302 #ifdef CONFIG_IODELAY_RECALIBRATION
303 static void omap_hsmmc_io_recalibrate(struct mmc *mmc)
304 {
305 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
306 	struct omap_hsmmc_pinctrl_state *pinctrl_state;
307 
308 	switch (priv->mode) {
309 	case MMC_HS_200:
310 		pinctrl_state = priv->hs200_1_8v_pinctrl_state;
311 		break;
312 	case UHS_SDR104:
313 		pinctrl_state = priv->sdr104_pinctrl_state;
314 		break;
315 	case UHS_SDR50:
316 		pinctrl_state = priv->sdr50_pinctrl_state;
317 		break;
318 	case UHS_DDR50:
319 		pinctrl_state = priv->ddr50_pinctrl_state;
320 		break;
321 	case UHS_SDR25:
322 		pinctrl_state = priv->sdr25_pinctrl_state;
323 		break;
324 	case UHS_SDR12:
325 		pinctrl_state = priv->sdr12_pinctrl_state;
326 		break;
327 	case SD_HS:
328 	case MMC_HS:
329 	case MMC_HS_52:
330 		pinctrl_state = priv->hs_pinctrl_state;
331 		break;
332 	case MMC_DDR_52:
333 		pinctrl_state = priv->ddr_1_8v_pinctrl_state;
334 	default:
335 		pinctrl_state = priv->default_pinctrl_state;
336 		break;
337 	}
338 
339 	if (!pinctrl_state)
340 		pinctrl_state = priv->default_pinctrl_state;
341 
342 	if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
343 		if (pinctrl_state->iodelay)
344 			late_recalibrate_iodelay(pinctrl_state->padconf,
345 						 pinctrl_state->npads,
346 						 pinctrl_state->iodelay,
347 						 pinctrl_state->niodelays);
348 		else
349 			do_set_mux32((*ctrl)->control_padconf_core_base,
350 				     pinctrl_state->padconf,
351 				     pinctrl_state->npads);
352 	}
353 }
354 #endif
355 static void omap_hsmmc_set_timing(struct mmc *mmc)
356 {
357 	u32 val;
358 	struct hsmmc *mmc_base;
359 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
360 
361 	mmc_base = priv->base_addr;
362 
363 	omap_hsmmc_stop_clock(mmc_base);
364 	val = readl(&mmc_base->ac12);
365 	val &= ~AC12_UHSMC_MASK;
366 	priv->mode = mmc->selected_mode;
367 
368 	if (mmc_is_mode_ddr(priv->mode))
369 		writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
370 	else
371 		writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);
372 
373 	switch (priv->mode) {
374 	case MMC_HS_200:
375 	case UHS_SDR104:
376 		val |= AC12_UHSMC_SDR104;
377 		break;
378 	case UHS_SDR50:
379 		val |= AC12_UHSMC_SDR50;
380 		break;
381 	case MMC_DDR_52:
382 	case UHS_DDR50:
383 		val |= AC12_UHSMC_DDR50;
384 		break;
385 	case SD_HS:
386 	case MMC_HS_52:
387 	case UHS_SDR25:
388 		val |= AC12_UHSMC_SDR25;
389 		break;
390 	case MMC_LEGACY:
391 	case MMC_HS:
392 	case SD_LEGACY:
393 	case UHS_SDR12:
394 		val |= AC12_UHSMC_SDR12;
395 		break;
396 	default:
397 		val |= AC12_UHSMC_RES;
398 		break;
399 	}
400 	writel(val, &mmc_base->ac12);
401 
402 #ifdef CONFIG_IODELAY_RECALIBRATION
403 	omap_hsmmc_io_recalibrate(mmc);
404 #endif
405 	omap_hsmmc_start_clock(mmc_base);
406 }
407 
408 static void omap_hsmmc_conf_bus_power(struct mmc *mmc, uint signal_voltage)
409 {
410 	struct hsmmc *mmc_base;
411 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
412 	u32 hctl, ac12;
413 
414 	mmc_base = priv->base_addr;
415 
416 	hctl = readl(&mmc_base->hctl) & ~SDVS_MASK;
417 	ac12 = readl(&mmc_base->ac12) & ~AC12_V1V8_SIGEN;
418 
419 	switch (signal_voltage) {
420 	case MMC_SIGNAL_VOLTAGE_330:
421 		hctl |= SDVS_3V0;
422 		break;
423 	case MMC_SIGNAL_VOLTAGE_180:
424 		hctl |= SDVS_1V8;
425 		ac12 |= AC12_V1V8_SIGEN;
426 		break;
427 	}
428 
429 	writel(hctl, &mmc_base->hctl);
430 	writel(ac12, &mmc_base->ac12);
431 }
432 
433 #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
434 static int omap_hsmmc_wait_dat0(struct udevice *dev, int state, int timeout)
435 {
436 	int ret = -ETIMEDOUT;
437 	u32 con;
438 	bool dat0_high;
439 	bool target_dat0_high = !!state;
440 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
441 	struct hsmmc *mmc_base = priv->base_addr;
442 
443 	con = readl(&mmc_base->con);
444 	writel(con | CON_CLKEXTFREE | CON_PADEN, &mmc_base->con);
445 
446 	timeout = DIV_ROUND_UP(timeout, 10); /* check every 10 us. */
447 	while (timeout--)	{
448 		dat0_high = !!(readl(&mmc_base->pstate) & PSTATE_DLEV_DAT0);
449 		if (dat0_high == target_dat0_high) {
450 			ret = 0;
451 			break;
452 		}
453 		udelay(10);
454 	}
455 	writel(con, &mmc_base->con);
456 
457 	return ret;
458 }
459 #endif
460 
461 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
462 #if CONFIG_IS_ENABLED(DM_REGULATOR)
463 static int omap_hsmmc_set_io_regulator(struct mmc *mmc, int mV)
464 {
465 	int ret = 0;
466 	int uV = mV * 1000;
467 
468 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
469 
470 	if (!mmc->vqmmc_supply)
471 		return 0;
472 
473 	/* Disable PBIAS */
474 	ret = regulator_set_enable_if_allowed(priv->pbias_supply, false);
475 	if (ret)
476 		return ret;
477 
478 	/* Turn off IO voltage */
479 	ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, false);
480 	if (ret)
481 		return ret;
482 	/* Program a new IO voltage value */
483 	ret = regulator_set_value(mmc->vqmmc_supply, uV);
484 	if (ret)
485 		return ret;
486 	/* Turn on IO voltage */
487 	ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, true);
488 	if (ret)
489 		return ret;
490 
491 	/* Program PBIAS voltage*/
492 	ret = regulator_set_value(priv->pbias_supply, uV);
493 	if (ret && ret != -ENOSYS)
494 		return ret;
495 	/* Enable PBIAS */
496 	ret = regulator_set_enable_if_allowed(priv->pbias_supply, true);
497 	if (ret)
498 		return ret;
499 
500 	return 0;
501 }
502 #endif
503 
504 static int omap_hsmmc_set_signal_voltage(struct mmc *mmc)
505 {
506 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
507 	struct hsmmc *mmc_base = priv->base_addr;
508 	int mv = mmc_voltage_to_mv(mmc->signal_voltage);
509 	u32 capa_mask;
510 	__maybe_unused u8 palmas_ldo_volt;
511 	u32 val;
512 
513 	if (mv < 0)
514 		return -EINVAL;
515 
516 	if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
517 		/* Use 3.0V rather than 3.3V */
518 		mv = 3000;
519 		capa_mask = VS30_3V0SUP;
520 		palmas_ldo_volt = LDO_VOLT_3V0;
521 	} else if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
522 		capa_mask = VS18_1V8SUP;
523 		palmas_ldo_volt = LDO_VOLT_1V8;
524 	} else {
525 		return -EOPNOTSUPP;
526 	}
527 
528 	val = readl(&mmc_base->capa);
529 	if (!(val & capa_mask))
530 		return -EOPNOTSUPP;
531 
532 	priv->signal_voltage = mmc->signal_voltage;
533 
534 	omap_hsmmc_conf_bus_power(mmc, mmc->signal_voltage);
535 
536 #if CONFIG_IS_ENABLED(DM_REGULATOR)
537 	return omap_hsmmc_set_io_regulator(mmc, mv);
538 #elif (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) && \
539 	defined(CONFIG_PALMAS_POWER)
540 	if (mmc_get_blk_desc(mmc)->devnum == 0)
541 		vmmc_pbias_config(palmas_ldo_volt);
542 	return 0;
543 #else
544 	return 0;
545 #endif
546 }
547 #endif
548 
549 static uint32_t omap_hsmmc_set_capabilities(struct mmc *mmc)
550 {
551 	struct hsmmc *mmc_base;
552 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
553 	u32 val;
554 
555 	mmc_base = priv->base_addr;
556 	val = readl(&mmc_base->capa);
557 
558 	if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
559 		val |= (VS30_3V0SUP | VS18_1V8SUP);
560 	} else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
561 		val |= VS30_3V0SUP;
562 		val &= ~VS18_1V8SUP;
563 	} else {
564 		val |= VS18_1V8SUP;
565 		val &= ~VS30_3V0SUP;
566 	}
567 
568 	writel(val, &mmc_base->capa);
569 
570 	return val;
571 }
572 
573 #ifdef MMC_SUPPORTS_TUNING
574 static void omap_hsmmc_disable_tuning(struct mmc *mmc)
575 {
576 	struct hsmmc *mmc_base;
577 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
578 	u32 val;
579 
580 	mmc_base = priv->base_addr;
581 	val = readl(&mmc_base->ac12);
582 	val &= ~(AC12_SCLK_SEL);
583 	writel(val, &mmc_base->ac12);
584 
585 	val = readl(&mmc_base->dll);
586 	val &= ~(DLL_FORCE_VALUE | DLL_SWT);
587 	writel(val, &mmc_base->dll);
588 }
589 
590 static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
591 {
592 	int i;
593 	struct hsmmc *mmc_base;
594 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
595 	u32 val;
596 
597 	mmc_base = priv->base_addr;
598 	val = readl(&mmc_base->dll);
599 	val |= DLL_FORCE_VALUE;
600 	val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
601 	val |= (count << DLL_FORCE_SR_C_SHIFT);
602 	writel(val, &mmc_base->dll);
603 
604 	val |= DLL_CALIB;
605 	writel(val, &mmc_base->dll);
606 	for (i = 0; i < 1000; i++) {
607 		if (readl(&mmc_base->dll) & DLL_CALIB)
608 			break;
609 	}
610 	val &= ~DLL_CALIB;
611 	writel(val, &mmc_base->dll);
612 }
613 
614 static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode)
615 {
616 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
617 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
618 	struct mmc *mmc = upriv->mmc;
619 	struct hsmmc *mmc_base;
620 	u32 val;
621 	u8 cur_match, prev_match = 0;
622 	int ret;
623 	u32 phase_delay = 0;
624 	u32 start_window = 0, max_window = 0;
625 	u32 length = 0, max_len = 0;
626 	bool single_point_failure = false;
627 	struct udevice *thermal_dev;
628 	int temperature;
629 	int i;
630 
631 	mmc_base = priv->base_addr;
632 	val = readl(&mmc_base->capa2);
633 
634 	/* clock tuning is not needed for upto 52MHz */
635 	if (!((mmc->selected_mode == MMC_HS_200) ||
636 	      (mmc->selected_mode == UHS_SDR104) ||
637 	      ((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50))))
638 		return 0;
639 
640 	ret = uclass_first_device(UCLASS_THERMAL, &thermal_dev);
641 	if (ret) {
642 		printf("Couldn't get thermal device for tuning\n");
643 		return ret;
644 	}
645 	ret = thermal_get_temp(thermal_dev, &temperature);
646 	if (ret) {
647 		printf("Couldn't get temperature for tuning\n");
648 		return ret;
649 	}
650 	val = readl(&mmc_base->dll);
651 	val |= DLL_SWT;
652 	writel(val, &mmc_base->dll);
653 
654 	/*
655 	 * Stage 1: Search for a maximum pass window ignoring any
656 	 * any single point failures. If the tuning value ends up
657 	 * near it, move away from it in stage 2 below
658 	 */
659 	while (phase_delay <= MAX_PHASE_DELAY) {
660 		omap_hsmmc_set_dll(mmc, phase_delay);
661 
662 		cur_match = !mmc_send_tuning(mmc, opcode, NULL);
663 
664 		if (cur_match) {
665 			if (prev_match) {
666 				length++;
667 			} else if (single_point_failure) {
668 				/* ignore single point failure */
669 				length++;
670 				single_point_failure = false;
671 			} else {
672 				start_window = phase_delay;
673 				length = 1;
674 			}
675 		} else {
676 			single_point_failure = prev_match;
677 		}
678 
679 		if (length > max_len) {
680 			max_window = start_window;
681 			max_len = length;
682 		}
683 
684 		prev_match = cur_match;
685 		phase_delay += 4;
686 	}
687 
688 	if (!max_len) {
689 		ret = -EIO;
690 		goto tuning_error;
691 	}
692 
693 	val = readl(&mmc_base->ac12);
694 	if (!(val & AC12_SCLK_SEL)) {
695 		ret = -EIO;
696 		goto tuning_error;
697 	}
698 	/*
699 	 * Assign tuning value as a ratio of maximum pass window based
700 	 * on temperature
701 	 */
702 	if (temperature < -20000)
703 		phase_delay = min(max_window + 4 * max_len - 24,
704 				  max_window +
705 				  DIV_ROUND_UP(13 * max_len, 16) * 4);
706 	else if (temperature < 20000)
707 		phase_delay = max_window + DIV_ROUND_UP(9 * max_len, 16) * 4;
708 	else if (temperature < 40000)
709 		phase_delay = max_window + DIV_ROUND_UP(8 * max_len, 16) * 4;
710 	else if (temperature < 70000)
711 		phase_delay = max_window + DIV_ROUND_UP(7 * max_len, 16) * 4;
712 	else if (temperature < 90000)
713 		phase_delay = max_window + DIV_ROUND_UP(5 * max_len, 16) * 4;
714 	else if (temperature < 120000)
715 		phase_delay = max_window + DIV_ROUND_UP(4 * max_len, 16) * 4;
716 	else
717 		phase_delay = max_window + DIV_ROUND_UP(3 * max_len, 16) * 4;
718 
719 	/*
720 	 * Stage 2: Search for a single point failure near the chosen tuning
721 	 * value in two steps. First in the +3 to +10 range and then in the
722 	 * +2 to -10 range. If found, move away from it in the appropriate
723 	 * direction by the appropriate amount depending on the temperature.
724 	 */
725 	for (i = 3; i <= 10; i++) {
726 		omap_hsmmc_set_dll(mmc, phase_delay + i);
727 		if (mmc_send_tuning(mmc, opcode, NULL)) {
728 			if (temperature < 10000)
729 				phase_delay += i + 6;
730 			else if (temperature < 20000)
731 				phase_delay += i - 12;
732 			else if (temperature < 70000)
733 				phase_delay += i - 8;
734 			else if (temperature < 90000)
735 				phase_delay += i - 6;
736 			else
737 				phase_delay += i - 6;
738 
739 			goto single_failure_found;
740 		}
741 	}
742 
743 	for (i = 2; i >= -10; i--) {
744 		omap_hsmmc_set_dll(mmc, phase_delay + i);
745 		if (mmc_send_tuning(mmc, opcode, NULL)) {
746 			if (temperature < 10000)
747 				phase_delay += i + 12;
748 			else if (temperature < 20000)
749 				phase_delay += i + 8;
750 			else if (temperature < 70000)
751 				phase_delay += i + 8;
752 			else if (temperature < 90000)
753 				phase_delay += i + 10;
754 			else
755 				phase_delay += i + 12;
756 
757 			goto single_failure_found;
758 		}
759 	}
760 
761 single_failure_found:
762 
763 	omap_hsmmc_set_dll(mmc, phase_delay);
764 
765 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
766 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
767 
768 	return 0;
769 
770 tuning_error:
771 
772 	omap_hsmmc_disable_tuning(mmc);
773 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
774 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
775 
776 	return ret;
777 }
778 #endif
779 
780 static void omap_hsmmc_send_init_stream(struct udevice *dev)
781 {
782 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
783 	struct hsmmc *mmc_base = priv->base_addr;
784 
785 	mmc_init_stream(mmc_base);
786 }
787 #endif
788 
789 static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
790 {
791 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
792 	struct hsmmc *mmc_base = priv->base_addr;
793 	u32 irq_mask = INT_EN_MASK;
794 
795 	/*
796 	 * TODO: Errata i802 indicates only DCRC interrupts can occur during
797 	 * tuning procedure and DCRC should be disabled. But see occurences
798 	 * of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
799 	 * interrupts occur along with BRR, so the data is actually in the
800 	 * buffer. It has to be debugged why these interrutps occur
801 	 */
802 	if (cmd && mmc_is_tuning_cmd(cmd->cmdidx))
803 		irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);
804 
805 	writel(irq_mask, &mmc_base->ie);
806 }
807 
808 static int omap_hsmmc_init_setup(struct mmc *mmc)
809 {
810 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
811 	struct hsmmc *mmc_base;
812 	unsigned int reg_val;
813 	unsigned int dsor;
814 	ulong start;
815 
816 	mmc_base = priv->base_addr;
817 	mmc_board_init(mmc);
818 
819 	writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
820 		&mmc_base->sysconfig);
821 	start = get_timer(0);
822 	while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
823 		if (get_timer(0) - start > MAX_RETRY_MS) {
824 			printf("%s: timedout waiting for cc2!\n", __func__);
825 			return -ETIMEDOUT;
826 		}
827 	}
828 	writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
829 	start = get_timer(0);
830 	while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
831 		if (get_timer(0) - start > MAX_RETRY_MS) {
832 			printf("%s: timedout waiting for softresetall!\n",
833 				__func__);
834 			return -ETIMEDOUT;
835 		}
836 	}
837 #ifdef CONFIG_MMC_OMAP_HS_ADMA
838 	reg_val = readl(&mmc_base->hl_hwinfo);
839 	if (reg_val & MADMA_EN)
840 		priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
841 #endif
842 
843 #if CONFIG_IS_ENABLED(DM_MMC)
844 	reg_val = omap_hsmmc_set_capabilities(mmc);
845 	omap_hsmmc_conf_bus_power(mmc, (reg_val & VS30_3V0SUP) ?
846 			  MMC_SIGNAL_VOLTAGE_330 : MMC_SIGNAL_VOLTAGE_180);
847 #else
848 	writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
849 	writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
850 		&mmc_base->capa);
851 #endif
852 
853 	reg_val = readl(&mmc_base->con) & RESERVED_MASK;
854 
855 	writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
856 		MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
857 		HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
858 
859 	dsor = 240;
860 	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
861 		(ICE_STOP | DTO_15THDTO));
862 	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
863 		(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
864 	start = get_timer(0);
865 	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
866 		if (get_timer(0) - start > MAX_RETRY_MS) {
867 			printf("%s: timedout waiting for ics!\n", __func__);
868 			return -ETIMEDOUT;
869 		}
870 	}
871 	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
872 
873 	writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
874 
875 	mmc_enable_irq(mmc, NULL);
876 
877 #if !CONFIG_IS_ENABLED(DM_MMC)
878 	mmc_init_stream(mmc_base);
879 #endif
880 
881 	return 0;
882 }
883 
884 /*
885  * MMC controller internal finite state machine reset
886  *
887  * Used to reset command or data internal state machines, using respectively
888  * SRC or SRD bit of SYSCTL register
889  */
890 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
891 {
892 	ulong start;
893 
894 	mmc_reg_out(&mmc_base->sysctl, bit, bit);
895 
896 	/*
897 	 * CMD(DAT) lines reset procedures are slightly different
898 	 * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
899 	 * According to OMAP3 TRM:
900 	 * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
901 	 * returns to 0x0.
902 	 * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
903 	 * procedure steps must be as follows:
904 	 * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
905 	 *    MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
906 	 * 2. Poll the SRC(SRD) bit until it is set to 0x1.
907 	 * 3. Wait until the SRC (SRD) bit returns to 0x0
908 	 *    (reset procedure is completed).
909 	 */
910 #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
911 	defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
912 	if (!(readl(&mmc_base->sysctl) & bit)) {
913 		start = get_timer(0);
914 		while (!(readl(&mmc_base->sysctl) & bit)) {
915 			if (get_timer(0) - start > MMC_TIMEOUT_MS)
916 				return;
917 		}
918 	}
919 #endif
920 	start = get_timer(0);
921 	while ((readl(&mmc_base->sysctl) & bit) != 0) {
922 		if (get_timer(0) - start > MAX_RETRY_MS) {
923 			printf("%s: timedout waiting for sysctl %x to clear\n",
924 				__func__, bit);
925 			return;
926 		}
927 	}
928 }
929 
930 #ifdef CONFIG_MMC_OMAP_HS_ADMA
931 static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
932 {
933 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
934 	struct omap_hsmmc_adma_desc *desc;
935 	u8 attr;
936 
937 	desc = &priv->adma_desc_table[priv->desc_slot];
938 
939 	attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
940 	if (!end)
941 		priv->desc_slot++;
942 	else
943 		attr |= ADMA_DESC_ATTR_END;
944 
945 	desc->len = len;
946 	desc->addr = (u32)buf;
947 	desc->reserved = 0;
948 	desc->attr = attr;
949 }
950 
951 static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
952 					  struct mmc_data *data)
953 {
954 	uint total_len = data->blocksize * data->blocks;
955 	uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
956 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
957 	int i = desc_count;
958 	char *buf;
959 
960 	priv->desc_slot = 0;
961 	priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
962 				memalign(ARCH_DMA_MINALIGN, desc_count *
963 				sizeof(struct omap_hsmmc_adma_desc));
964 
965 	if (data->flags & MMC_DATA_READ)
966 		buf = data->dest;
967 	else
968 		buf = (char *)data->src;
969 
970 	while (--i) {
971 		omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
972 		buf += ADMA_MAX_LEN;
973 		total_len -= ADMA_MAX_LEN;
974 	}
975 
976 	omap_hsmmc_adma_desc(mmc, buf, total_len, true);
977 
978 	flush_dcache_range((long)priv->adma_desc_table,
979 			   (long)priv->adma_desc_table +
980 			   ROUND(desc_count *
981 			   sizeof(struct omap_hsmmc_adma_desc),
982 			   ARCH_DMA_MINALIGN));
983 }
984 
985 static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
986 {
987 	struct hsmmc *mmc_base;
988 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
989 	u32 val;
990 	char *buf;
991 
992 	mmc_base = priv->base_addr;
993 	omap_hsmmc_prepare_adma_table(mmc, data);
994 
995 	if (data->flags & MMC_DATA_READ)
996 		buf = data->dest;
997 	else
998 		buf = (char *)data->src;
999 
1000 	val = readl(&mmc_base->hctl);
1001 	val |= DMA_SELECT;
1002 	writel(val, &mmc_base->hctl);
1003 
1004 	val = readl(&mmc_base->con);
1005 	val |= DMA_MASTER;
1006 	writel(val, &mmc_base->con);
1007 
1008 	writel((u32)priv->adma_desc_table, &mmc_base->admasal);
1009 
1010 	flush_dcache_range((u32)buf,
1011 			   (u32)buf +
1012 			   ROUND(data->blocksize * data->blocks,
1013 				 ARCH_DMA_MINALIGN));
1014 }
1015 
1016 static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
1017 {
1018 	struct hsmmc *mmc_base;
1019 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1020 	u32 val;
1021 
1022 	mmc_base = priv->base_addr;
1023 
1024 	val = readl(&mmc_base->con);
1025 	val &= ~DMA_MASTER;
1026 	writel(val, &mmc_base->con);
1027 
1028 	val = readl(&mmc_base->hctl);
1029 	val &= ~DMA_SELECT;
1030 	writel(val, &mmc_base->hctl);
1031 
1032 	kfree(priv->adma_desc_table);
1033 }
1034 #else
1035 #define omap_hsmmc_adma_desc
1036 #define omap_hsmmc_prepare_adma_table
1037 #define omap_hsmmc_prepare_data
1038 #define omap_hsmmc_dma_cleanup
1039 #endif
1040 
1041 #if !CONFIG_IS_ENABLED(DM_MMC)
1042 static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
1043 			struct mmc_data *data)
1044 {
1045 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1046 #else
1047 static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
1048 			struct mmc_data *data)
1049 {
1050 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1051 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1052 	struct mmc *mmc = upriv->mmc;
1053 #endif
1054 	struct hsmmc *mmc_base;
1055 	unsigned int flags, mmc_stat;
1056 	ulong start;
1057 	priv->last_cmd = cmd->cmdidx;
1058 
1059 	mmc_base = priv->base_addr;
1060 
1061 	if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
1062 		return 0;
1063 
1064 	start = get_timer(0);
1065 	while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
1066 		if (get_timer(0) - start > MAX_RETRY_MS) {
1067 			printf("%s: timedout waiting on cmd inhibit to clear\n",
1068 					__func__);
1069 			return -ETIMEDOUT;
1070 		}
1071 	}
1072 	writel(0xFFFFFFFF, &mmc_base->stat);
1073 	start = get_timer(0);
1074 	while (readl(&mmc_base->stat)) {
1075 		if (get_timer(0) - start > MAX_RETRY_MS) {
1076 			printf("%s: timedout waiting for STAT (%x) to clear\n",
1077 				__func__, readl(&mmc_base->stat));
1078 			return -ETIMEDOUT;
1079 		}
1080 	}
1081 	/*
1082 	 * CMDREG
1083 	 * CMDIDX[13:8]	: Command index
1084 	 * DATAPRNT[5]	: Data Present Select
1085 	 * ENCMDIDX[4]	: Command Index Check Enable
1086 	 * ENCMDCRC[3]	: Command CRC Check Enable
1087 	 * RSPTYP[1:0]
1088 	 *	00 = No Response
1089 	 *	01 = Length 136
1090 	 *	10 = Length 48
1091 	 *	11 = Length 48 Check busy after response
1092 	 */
1093 	/* Delay added before checking the status of frq change
1094 	 * retry not supported by mmc.c(core file)
1095 	 */
1096 	if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
1097 		udelay(50000); /* wait 50 ms */
1098 
1099 	if (!(cmd->resp_type & MMC_RSP_PRESENT))
1100 		flags = 0;
1101 	else if (cmd->resp_type & MMC_RSP_136)
1102 		flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
1103 	else if (cmd->resp_type & MMC_RSP_BUSY)
1104 		flags = RSP_TYPE_LGHT48B;
1105 	else
1106 		flags = RSP_TYPE_LGHT48;
1107 
1108 	/* enable default flags */
1109 	flags =	flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
1110 			MSBS_SGLEBLK);
1111 	flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
1112 
1113 	if (cmd->resp_type & MMC_RSP_CRC)
1114 		flags |= CCCE_CHECK;
1115 	if (cmd->resp_type & MMC_RSP_OPCODE)
1116 		flags |= CICE_CHECK;
1117 
1118 	if (data) {
1119 		if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
1120 			 (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
1121 			flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
1122 			data->blocksize = 512;
1123 			writel(data->blocksize | (data->blocks << 16),
1124 							&mmc_base->blk);
1125 		} else
1126 			writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
1127 
1128 		if (data->flags & MMC_DATA_READ)
1129 			flags |= (DP_DATA | DDIR_READ);
1130 		else
1131 			flags |= (DP_DATA | DDIR_WRITE);
1132 
1133 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1134 		if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
1135 		    !mmc_is_tuning_cmd(cmd->cmdidx)) {
1136 			omap_hsmmc_prepare_data(mmc, data);
1137 			flags |= DE_ENABLE;
1138 		}
1139 #endif
1140 	}
1141 
1142 	mmc_enable_irq(mmc, cmd);
1143 
1144 	writel(cmd->cmdarg, &mmc_base->arg);
1145 	udelay(20);		/* To fix "No status update" error on eMMC */
1146 	writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
1147 
1148 	start = get_timer(0);
1149 	do {
1150 		mmc_stat = readl(&mmc_base->stat);
1151 		if (get_timer(start) > MAX_RETRY_MS) {
1152 			printf("%s : timeout: No status update\n", __func__);
1153 			return -ETIMEDOUT;
1154 		}
1155 	} while (!mmc_stat);
1156 
1157 	if ((mmc_stat & IE_CTO) != 0) {
1158 		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1159 		return -ETIMEDOUT;
1160 	} else if ((mmc_stat & ERRI_MASK) != 0)
1161 		return -1;
1162 
1163 	if (mmc_stat & CC_MASK) {
1164 		writel(CC_MASK, &mmc_base->stat);
1165 		if (cmd->resp_type & MMC_RSP_PRESENT) {
1166 			if (cmd->resp_type & MMC_RSP_136) {
1167 				/* response type 2 */
1168 				cmd->response[3] = readl(&mmc_base->rsp10);
1169 				cmd->response[2] = readl(&mmc_base->rsp32);
1170 				cmd->response[1] = readl(&mmc_base->rsp54);
1171 				cmd->response[0] = readl(&mmc_base->rsp76);
1172 			} else
1173 				/* response types 1, 1b, 3, 4, 5, 6 */
1174 				cmd->response[0] = readl(&mmc_base->rsp10);
1175 		}
1176 	}
1177 
1178 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1179 	if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
1180 	    !mmc_is_tuning_cmd(cmd->cmdidx)) {
1181 		u32 sz_mb, timeout;
1182 
1183 		if (mmc_stat & IE_ADMAE) {
1184 			omap_hsmmc_dma_cleanup(mmc);
1185 			return -EIO;
1186 		}
1187 
1188 		sz_mb = DIV_ROUND_UP(data->blocksize *  data->blocks, 1 << 20);
1189 		timeout = sz_mb * DMA_TIMEOUT_PER_MB;
1190 		if (timeout < MAX_RETRY_MS)
1191 			timeout = MAX_RETRY_MS;
1192 
1193 		start = get_timer(0);
1194 		do {
1195 			mmc_stat = readl(&mmc_base->stat);
1196 			if (mmc_stat & TC_MASK) {
1197 				writel(readl(&mmc_base->stat) | TC_MASK,
1198 				       &mmc_base->stat);
1199 				break;
1200 			}
1201 			if (get_timer(start) > timeout) {
1202 				printf("%s : DMA timeout: No status update\n",
1203 				       __func__);
1204 				return -ETIMEDOUT;
1205 			}
1206 		} while (1);
1207 
1208 		omap_hsmmc_dma_cleanup(mmc);
1209 		return 0;
1210 	}
1211 #endif
1212 
1213 	if (data && (data->flags & MMC_DATA_READ)) {
1214 		mmc_read_data(mmc_base,	data->dest,
1215 				data->blocksize * data->blocks);
1216 	} else if (data && (data->flags & MMC_DATA_WRITE)) {
1217 		mmc_write_data(mmc_base, data->src,
1218 				data->blocksize * data->blocks);
1219 	}
1220 	return 0;
1221 }
1222 
1223 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
1224 {
1225 	unsigned int *output_buf = (unsigned int *)buf;
1226 	unsigned int mmc_stat;
1227 	unsigned int count;
1228 
1229 	/*
1230 	 * Start Polled Read
1231 	 */
1232 	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1233 	count /= 4;
1234 
1235 	while (size) {
1236 		ulong start = get_timer(0);
1237 		do {
1238 			mmc_stat = readl(&mmc_base->stat);
1239 			if (get_timer(0) - start > MAX_RETRY_MS) {
1240 				printf("%s: timedout waiting for status!\n",
1241 						__func__);
1242 				return -ETIMEDOUT;
1243 			}
1244 		} while (mmc_stat == 0);
1245 
1246 		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1247 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1248 
1249 		if ((mmc_stat & ERRI_MASK) != 0)
1250 			return 1;
1251 
1252 		if (mmc_stat & BRR_MASK) {
1253 			unsigned int k;
1254 
1255 			writel(readl(&mmc_base->stat) | BRR_MASK,
1256 				&mmc_base->stat);
1257 			for (k = 0; k < count; k++) {
1258 				*output_buf = readl(&mmc_base->data);
1259 				output_buf++;
1260 			}
1261 			size -= (count*4);
1262 		}
1263 
1264 		if (mmc_stat & BWR_MASK)
1265 			writel(readl(&mmc_base->stat) | BWR_MASK,
1266 				&mmc_base->stat);
1267 
1268 		if (mmc_stat & TC_MASK) {
1269 			writel(readl(&mmc_base->stat) | TC_MASK,
1270 				&mmc_base->stat);
1271 			break;
1272 		}
1273 	}
1274 	return 0;
1275 }
1276 
1277 #if CONFIG_IS_ENABLED(MMC_WRITE)
1278 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1279 			  unsigned int size)
1280 {
1281 	unsigned int *input_buf = (unsigned int *)buf;
1282 	unsigned int mmc_stat;
1283 	unsigned int count;
1284 
1285 	/*
1286 	 * Start Polled Write
1287 	 */
1288 	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1289 	count /= 4;
1290 
1291 	while (size) {
1292 		ulong start = get_timer(0);
1293 		do {
1294 			mmc_stat = readl(&mmc_base->stat);
1295 			if (get_timer(0) - start > MAX_RETRY_MS) {
1296 				printf("%s: timedout waiting for status!\n",
1297 						__func__);
1298 				return -ETIMEDOUT;
1299 			}
1300 		} while (mmc_stat == 0);
1301 
1302 		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1303 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1304 
1305 		if ((mmc_stat & ERRI_MASK) != 0)
1306 			return 1;
1307 
1308 		if (mmc_stat & BWR_MASK) {
1309 			unsigned int k;
1310 
1311 			writel(readl(&mmc_base->stat) | BWR_MASK,
1312 					&mmc_base->stat);
1313 			for (k = 0; k < count; k++) {
1314 				writel(*input_buf, &mmc_base->data);
1315 				input_buf++;
1316 			}
1317 			size -= (count*4);
1318 		}
1319 
1320 		if (mmc_stat & BRR_MASK)
1321 			writel(readl(&mmc_base->stat) | BRR_MASK,
1322 				&mmc_base->stat);
1323 
1324 		if (mmc_stat & TC_MASK) {
1325 			writel(readl(&mmc_base->stat) | TC_MASK,
1326 				&mmc_base->stat);
1327 			break;
1328 		}
1329 	}
1330 	return 0;
1331 }
1332 #else
1333 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1334 			  unsigned int size)
1335 {
1336 	return -ENOTSUPP;
1337 }
1338 #endif
1339 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base)
1340 {
1341 	writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl);
1342 }
1343 
1344 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base)
1345 {
1346 	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
1347 }
1348 
1349 static void omap_hsmmc_set_clock(struct mmc *mmc)
1350 {
1351 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1352 	struct hsmmc *mmc_base;
1353 	unsigned int dsor = 0;
1354 	ulong start;
1355 
1356 	mmc_base = priv->base_addr;
1357 	omap_hsmmc_stop_clock(mmc_base);
1358 
1359 	/* TODO: Is setting DTO required here? */
1360 	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK),
1361 		    (ICE_STOP | DTO_15THDTO));
1362 
1363 	if (mmc->clock != 0) {
1364 		dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock);
1365 		if (dsor > CLKD_MAX)
1366 			dsor = CLKD_MAX;
1367 	} else {
1368 		dsor = CLKD_MAX;
1369 	}
1370 
1371 	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
1372 		    (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
1373 
1374 	start = get_timer(0);
1375 	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
1376 		if (get_timer(0) - start > MAX_RETRY_MS) {
1377 			printf("%s: timedout waiting for ics!\n", __func__);
1378 			return;
1379 		}
1380 	}
1381 
1382 	priv->clock = MMC_CLOCK_REFERENCE * 1000000 / dsor;
1383 	mmc->clock = priv->clock;
1384 	omap_hsmmc_start_clock(mmc_base);
1385 }
1386 
1387 static void omap_hsmmc_set_bus_width(struct mmc *mmc)
1388 {
1389 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1390 	struct hsmmc *mmc_base;
1391 
1392 	mmc_base = priv->base_addr;
1393 	/* configue bus width */
1394 	switch (mmc->bus_width) {
1395 	case 8:
1396 		writel(readl(&mmc_base->con) | DTW_8_BITMODE,
1397 			&mmc_base->con);
1398 		break;
1399 
1400 	case 4:
1401 		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1402 			&mmc_base->con);
1403 		writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
1404 			&mmc_base->hctl);
1405 		break;
1406 
1407 	case 1:
1408 	default:
1409 		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1410 			&mmc_base->con);
1411 		writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
1412 			&mmc_base->hctl);
1413 		break;
1414 	}
1415 
1416 	priv->bus_width = mmc->bus_width;
1417 }
1418 
1419 #if !CONFIG_IS_ENABLED(DM_MMC)
1420 static int omap_hsmmc_set_ios(struct mmc *mmc)
1421 {
1422 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1423 #else
1424 static int omap_hsmmc_set_ios(struct udevice *dev)
1425 {
1426 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1427 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1428 	struct mmc *mmc = upriv->mmc;
1429 #endif
1430 	struct hsmmc *mmc_base = priv->base_addr;
1431 	int ret = 0;
1432 
1433 	if (priv->bus_width != mmc->bus_width)
1434 		omap_hsmmc_set_bus_width(mmc);
1435 
1436 	if (priv->clock != mmc->clock)
1437 		omap_hsmmc_set_clock(mmc);
1438 
1439 	if (mmc->clk_disable)
1440 		omap_hsmmc_stop_clock(mmc_base);
1441 	else
1442 		omap_hsmmc_start_clock(mmc_base);
1443 
1444 #if CONFIG_IS_ENABLED(DM_MMC)
1445 	if (priv->mode != mmc->selected_mode)
1446 		omap_hsmmc_set_timing(mmc);
1447 
1448 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
1449 	if (priv->signal_voltage != mmc->signal_voltage)
1450 		ret = omap_hsmmc_set_signal_voltage(mmc);
1451 #endif
1452 #endif
1453 	return ret;
1454 }
1455 
1456 #ifdef OMAP_HSMMC_USE_GPIO
1457 #if CONFIG_IS_ENABLED(DM_MMC)
1458 static int omap_hsmmc_getcd(struct udevice *dev)
1459 {
1460 	int value = -1;
1461 #if CONFIG_IS_ENABLED(DM_GPIO)
1462 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1463 	value = dm_gpio_get_value(&priv->cd_gpio);
1464 #endif
1465 	/* if no CD return as 1 */
1466 	if (value < 0)
1467 		return 1;
1468 
1469 	return value;
1470 }
1471 
1472 static int omap_hsmmc_getwp(struct udevice *dev)
1473 {
1474 	int value = 0;
1475 #if CONFIG_IS_ENABLED(DM_GPIO)
1476 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1477 	value = dm_gpio_get_value(&priv->wp_gpio);
1478 #endif
1479 	/* if no WP return as 0 */
1480 	if (value < 0)
1481 		return 0;
1482 	return value;
1483 }
1484 #else
1485 static int omap_hsmmc_getcd(struct mmc *mmc)
1486 {
1487 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1488 	int cd_gpio;
1489 
1490 	/* if no CD return as 1 */
1491 	cd_gpio = priv->cd_gpio;
1492 	if (cd_gpio < 0)
1493 		return 1;
1494 
1495 	/* NOTE: assumes card detect signal is active-low */
1496 	return !gpio_get_value(cd_gpio);
1497 }
1498 
1499 static int omap_hsmmc_getwp(struct mmc *mmc)
1500 {
1501 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1502 	int wp_gpio;
1503 
1504 	/* if no WP return as 0 */
1505 	wp_gpio = priv->wp_gpio;
1506 	if (wp_gpio < 0)
1507 		return 0;
1508 
1509 	/* NOTE: assumes write protect signal is active-high */
1510 	return gpio_get_value(wp_gpio);
1511 }
1512 #endif
1513 #endif
1514 
1515 #if CONFIG_IS_ENABLED(DM_MMC)
1516 static const struct dm_mmc_ops omap_hsmmc_ops = {
1517 	.send_cmd	= omap_hsmmc_send_cmd,
1518 	.set_ios	= omap_hsmmc_set_ios,
1519 #ifdef OMAP_HSMMC_USE_GPIO
1520 	.get_cd		= omap_hsmmc_getcd,
1521 	.get_wp		= omap_hsmmc_getwp,
1522 #endif
1523 #ifdef MMC_SUPPORTS_TUNING
1524 	.execute_tuning = omap_hsmmc_execute_tuning,
1525 #endif
1526 	.send_init_stream	= omap_hsmmc_send_init_stream,
1527 #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
1528 	.wait_dat0	= omap_hsmmc_wait_dat0,
1529 #endif
1530 };
1531 #else
1532 static const struct mmc_ops omap_hsmmc_ops = {
1533 	.send_cmd	= omap_hsmmc_send_cmd,
1534 	.set_ios	= omap_hsmmc_set_ios,
1535 	.init		= omap_hsmmc_init_setup,
1536 #ifdef OMAP_HSMMC_USE_GPIO
1537 	.getcd		= omap_hsmmc_getcd,
1538 	.getwp		= omap_hsmmc_getwp,
1539 #endif
1540 };
1541 #endif
1542 
1543 #if !CONFIG_IS_ENABLED(DM_MMC)
1544 int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
1545 		int wp_gpio)
1546 {
1547 	struct mmc *mmc;
1548 	struct omap_hsmmc_data *priv;
1549 	struct mmc_config *cfg;
1550 	uint host_caps_val;
1551 
1552 	priv = calloc(1, sizeof(*priv));
1553 	if (priv == NULL)
1554 		return -1;
1555 
1556 	host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
1557 
1558 	switch (dev_index) {
1559 	case 0:
1560 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1561 		break;
1562 #ifdef OMAP_HSMMC2_BASE
1563 	case 1:
1564 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
1565 #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
1566 	defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
1567 	defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
1568 		defined(CONFIG_HSMMC2_8BIT)
1569 		/* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
1570 		host_caps_val |= MMC_MODE_8BIT;
1571 #endif
1572 		break;
1573 #endif
1574 #ifdef OMAP_HSMMC3_BASE
1575 	case 2:
1576 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
1577 #if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
1578 		/* Enable 8-bit interface for eMMC on DRA7XX */
1579 		host_caps_val |= MMC_MODE_8BIT;
1580 #endif
1581 		break;
1582 #endif
1583 	default:
1584 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1585 		return 1;
1586 	}
1587 #ifdef OMAP_HSMMC_USE_GPIO
1588 	/* on error gpio values are set to -1, which is what we want */
1589 	priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
1590 	priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
1591 #endif
1592 
1593 	cfg = &priv->cfg;
1594 
1595 	cfg->name = "OMAP SD/MMC";
1596 	cfg->ops = &omap_hsmmc_ops;
1597 
1598 	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1599 	cfg->host_caps = host_caps_val & ~host_caps_mask;
1600 
1601 	cfg->f_min = 400000;
1602 
1603 	if (f_max != 0)
1604 		cfg->f_max = f_max;
1605 	else {
1606 		if (cfg->host_caps & MMC_MODE_HS) {
1607 			if (cfg->host_caps & MMC_MODE_HS_52MHz)
1608 				cfg->f_max = 52000000;
1609 			else
1610 				cfg->f_max = 26000000;
1611 		} else
1612 			cfg->f_max = 20000000;
1613 	}
1614 
1615 	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1616 
1617 #if defined(CONFIG_OMAP34XX)
1618 	/*
1619 	 * Silicon revs 2.1 and older do not support multiblock transfers.
1620 	 */
1621 	if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
1622 		cfg->b_max = 1;
1623 #endif
1624 
1625 	mmc = mmc_create(cfg, priv);
1626 	if (mmc == NULL)
1627 		return -1;
1628 
1629 	return 0;
1630 }
1631 #else
1632 
1633 #ifdef CONFIG_IODELAY_RECALIBRATION
1634 static struct pad_conf_entry *
1635 omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count)
1636 {
1637 	int index = 0;
1638 	struct pad_conf_entry *padconf;
1639 
1640 	padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count);
1641 	if (!padconf) {
1642 		debug("failed to allocate memory\n");
1643 		return 0;
1644 	}
1645 
1646 	while (index < count) {
1647 		padconf[index].offset = fdt32_to_cpu(pinctrl[2 * index]);
1648 		padconf[index].val = fdt32_to_cpu(pinctrl[2 * index + 1]);
1649 		index++;
1650 	}
1651 
1652 	return padconf;
1653 }
1654 
1655 static struct iodelay_cfg_entry *
1656 omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count)
1657 {
1658 	int index = 0;
1659 	struct iodelay_cfg_entry *iodelay;
1660 
1661 	iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count);
1662 	if (!iodelay) {
1663 		debug("failed to allocate memory\n");
1664 		return 0;
1665 	}
1666 
1667 	while (index < count) {
1668 		iodelay[index].offset = fdt32_to_cpu(pinctrl[3 * index]);
1669 		iodelay[index].a_delay = fdt32_to_cpu(pinctrl[3 * index + 1]);
1670 		iodelay[index].g_delay = fdt32_to_cpu(pinctrl[3 * index + 2]);
1671 		index++;
1672 	}
1673 
1674 	return iodelay;
1675 }
1676 
1677 static const fdt32_t *omap_hsmmc_get_pinctrl_entry(u32  phandle,
1678 						   const char *name, int *len)
1679 {
1680 	const void *fdt = gd->fdt_blob;
1681 	int offset;
1682 	const fdt32_t *pinctrl;
1683 
1684 	offset = fdt_node_offset_by_phandle(fdt, phandle);
1685 	if (offset < 0) {
1686 		debug("failed to get pinctrl node %s.\n",
1687 		      fdt_strerror(offset));
1688 		return 0;
1689 	}
1690 
1691 	pinctrl = fdt_getprop(fdt, offset, name, len);
1692 	if (!pinctrl) {
1693 		debug("failed to get property %s\n", name);
1694 		return 0;
1695 	}
1696 
1697 	return pinctrl;
1698 }
1699 
1700 static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc,
1701 						char *prop_name)
1702 {
1703 	const void *fdt = gd->fdt_blob;
1704 	const __be32 *phandle;
1705 	int node = dev_of_offset(mmc->dev);
1706 
1707 	phandle = fdt_getprop(fdt, node, prop_name, NULL);
1708 	if (!phandle) {
1709 		debug("failed to get property %s\n", prop_name);
1710 		return 0;
1711 	}
1712 
1713 	return fdt32_to_cpu(*phandle);
1714 }
1715 
1716 static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc,
1717 					       char *prop_name)
1718 {
1719 	const void *fdt = gd->fdt_blob;
1720 	const __be32 *phandle;
1721 	int len;
1722 	int count;
1723 	int node = dev_of_offset(mmc->dev);
1724 
1725 	phandle = fdt_getprop(fdt, node, prop_name, &len);
1726 	if (!phandle) {
1727 		debug("failed to get property %s\n", prop_name);
1728 		return 0;
1729 	}
1730 
1731 	/* No manual mode iodelay values if count < 2 */
1732 	count = len / sizeof(*phandle);
1733 	if (count < 2)
1734 		return 0;
1735 
1736 	return fdt32_to_cpu(*(phandle + 1));
1737 }
1738 
1739 static struct pad_conf_entry *
1740 omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads)
1741 {
1742 	int len;
1743 	int count;
1744 	struct pad_conf_entry *padconf;
1745 	u32 phandle;
1746 	const fdt32_t *pinctrl;
1747 
1748 	phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name);
1749 	if (!phandle)
1750 		return ERR_PTR(-EINVAL);
1751 
1752 	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins",
1753 					       &len);
1754 	if (!pinctrl)
1755 		return ERR_PTR(-EINVAL);
1756 
1757 	count = (len / sizeof(*pinctrl)) / 2;
1758 	padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count);
1759 	if (!padconf)
1760 		return ERR_PTR(-EINVAL);
1761 
1762 	*npads = count;
1763 
1764 	return padconf;
1765 }
1766 
1767 static struct iodelay_cfg_entry *
1768 omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay)
1769 {
1770 	int len;
1771 	int count;
1772 	struct iodelay_cfg_entry *iodelay;
1773 	u32 phandle;
1774 	const fdt32_t *pinctrl;
1775 
1776 	phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name);
1777 	/* Not all modes have manual mode iodelay values. So its not fatal */
1778 	if (!phandle)
1779 		return 0;
1780 
1781 	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array",
1782 					       &len);
1783 	if (!pinctrl)
1784 		return ERR_PTR(-EINVAL);
1785 
1786 	count = (len / sizeof(*pinctrl)) / 3;
1787 	iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count);
1788 	if (!iodelay)
1789 		return ERR_PTR(-EINVAL);
1790 
1791 	*niodelay = count;
1792 
1793 	return iodelay;
1794 }
1795 
1796 static struct omap_hsmmc_pinctrl_state *
1797 omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
1798 {
1799 	int index;
1800 	int npads = 0;
1801 	int niodelays = 0;
1802 	const void *fdt = gd->fdt_blob;
1803 	int node = dev_of_offset(mmc->dev);
1804 	char prop_name[11];
1805 	struct omap_hsmmc_pinctrl_state *pinctrl_state;
1806 
1807 	pinctrl_state = (struct omap_hsmmc_pinctrl_state *)
1808 			 malloc(sizeof(*pinctrl_state));
1809 	if (!pinctrl_state) {
1810 		debug("failed to allocate memory\n");
1811 		return 0;
1812 	}
1813 
1814 	index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode);
1815 	if (index < 0) {
1816 		debug("fail to find %s mode %s\n", mode, fdt_strerror(index));
1817 		goto err_pinctrl_state;
1818 	}
1819 
1820 	sprintf(prop_name, "pinctrl-%d", index);
1821 
1822 	pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name,
1823 							 &npads);
1824 	if (IS_ERR(pinctrl_state->padconf))
1825 		goto err_pinctrl_state;
1826 	pinctrl_state->npads = npads;
1827 
1828 	pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name,
1829 							&niodelays);
1830 	if (IS_ERR(pinctrl_state->iodelay))
1831 		goto err_padconf;
1832 	pinctrl_state->niodelays = niodelays;
1833 
1834 	return pinctrl_state;
1835 
1836 err_padconf:
1837 	kfree(pinctrl_state->padconf);
1838 
1839 err_pinctrl_state:
1840 	kfree(pinctrl_state);
1841 	return 0;
1842 }
1843 
1844 #define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode, optional)		\
1845 	do {								\
1846 		struct omap_hsmmc_pinctrl_state *s = NULL;		\
1847 		char str[20];						\
1848 		if (!(cfg->host_caps & capmask))			\
1849 			break;						\
1850 									\
1851 		if (priv->hw_rev) {					\
1852 			sprintf(str, "%s-%s", #mode, priv->hw_rev);	\
1853 			s = omap_hsmmc_get_pinctrl_by_mode(mmc, str);	\
1854 		}							\
1855 									\
1856 		if (!s)							\
1857 			s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode);	\
1858 									\
1859 		if (!s && !optional) {					\
1860 			debug("%s: no pinctrl for %s\n",		\
1861 			      mmc->dev->name, #mode);			\
1862 			cfg->host_caps &= ~(capmask);			\
1863 		} else {						\
1864 			priv->mode##_pinctrl_state = s;			\
1865 		}							\
1866 	} while (0)
1867 
1868 static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc)
1869 {
1870 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1871 	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
1872 	struct omap_hsmmc_pinctrl_state *default_pinctrl;
1873 
1874 	if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY))
1875 		return 0;
1876 
1877 	default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default");
1878 	if (!default_pinctrl) {
1879 		printf("no pinctrl state for default mode\n");
1880 		return -EINVAL;
1881 	}
1882 
1883 	priv->default_pinctrl_state = default_pinctrl;
1884 
1885 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR104), sdr104, false);
1886 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR50), sdr50, false);
1887 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_DDR50), ddr50, false);
1888 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR25), sdr25, false);
1889 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR12), sdr12, false);
1890 
1891 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_HS_200), hs200_1_8v, false);
1892 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_DDR_52), ddr_1_8v, false);
1893 	OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs, true);
1894 
1895 	return 0;
1896 }
1897 #endif
1898 
1899 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1900 #ifdef CONFIG_OMAP54XX
1901 __weak const struct mmc_platform_fixups *platform_fixups_mmc(uint32_t addr)
1902 {
1903 	return NULL;
1904 }
1905 #endif
1906 
1907 static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev)
1908 {
1909 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1910 	struct omap_mmc_of_data *of_data = (void *)dev_get_driver_data(dev);
1911 
1912 	struct mmc_config *cfg = &plat->cfg;
1913 #ifdef CONFIG_OMAP54XX
1914 	const struct mmc_platform_fixups *fixups;
1915 #endif
1916 	const void *fdt = gd->fdt_blob;
1917 	int node = dev_of_offset(dev);
1918 	int ret;
1919 
1920 	plat->base_addr = map_physmem(devfdt_get_addr(dev),
1921 				      sizeof(struct hsmmc *),
1922 				      MAP_NOCACHE);
1923 
1924 	ret = mmc_of_parse(dev, cfg);
1925 	if (ret < 0)
1926 		return ret;
1927 
1928 	if (!cfg->f_max)
1929 		cfg->f_max = 52000000;
1930 	cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
1931 	cfg->f_min = 400000;
1932 	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1933 	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1934 	if (fdtdec_get_bool(fdt, node, "ti,dual-volt"))
1935 		plat->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1936 	if (fdtdec_get_bool(fdt, node, "no-1-8-v"))
1937 		plat->controller_flags |= OMAP_HSMMC_NO_1_8_V;
1938 	if (of_data)
1939 		plat->controller_flags |= of_data->controller_flags;
1940 
1941 #ifdef CONFIG_OMAP54XX
1942 	fixups = platform_fixups_mmc(devfdt_get_addr(dev));
1943 	if (fixups) {
1944 		plat->hw_rev = fixups->hw_rev;
1945 		cfg->host_caps &= ~fixups->unsupported_caps;
1946 		cfg->f_max = fixups->max_freq;
1947 	}
1948 #endif
1949 
1950 	return 0;
1951 }
1952 #endif
1953 
1954 #ifdef CONFIG_BLK
1955 
1956 static int omap_hsmmc_bind(struct udevice *dev)
1957 {
1958 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1959 	plat->mmc = calloc(1, sizeof(struct mmc));
1960 	return mmc_bind(dev, plat->mmc, &plat->cfg);
1961 }
1962 #endif
1963 static int omap_hsmmc_probe(struct udevice *dev)
1964 {
1965 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1966 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1967 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1968 	struct mmc_config *cfg = &plat->cfg;
1969 	struct mmc *mmc;
1970 #ifdef CONFIG_IODELAY_RECALIBRATION
1971 	int ret;
1972 #endif
1973 
1974 	cfg->name = "OMAP SD/MMC";
1975 	priv->base_addr = plat->base_addr;
1976 	priv->controller_flags = plat->controller_flags;
1977 	priv->hw_rev = plat->hw_rev;
1978 
1979 #ifdef CONFIG_BLK
1980 	mmc = plat->mmc;
1981 #else
1982 	mmc = mmc_create(cfg, priv);
1983 	if (mmc == NULL)
1984 		return -1;
1985 #endif
1986 #if CONFIG_IS_ENABLED(DM_REGULATOR)
1987 	device_get_supply_regulator(dev, "pbias-supply",
1988 				    &priv->pbias_supply);
1989 #endif
1990 #if defined(OMAP_HSMMC_USE_GPIO)
1991 #if CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_GPIO)
1992 	gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
1993 	gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
1994 #endif
1995 #endif
1996 
1997 	mmc->dev = dev;
1998 	upriv->mmc = mmc;
1999 
2000 #ifdef CONFIG_IODELAY_RECALIBRATION
2001 	ret = omap_hsmmc_get_pinctrl_state(mmc);
2002 	/*
2003 	 * disable high speed modes for the platforms that require IO delay
2004 	 * and for which we don't have this information
2005 	 */
2006 	if ((ret < 0) &&
2007 	    (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) {
2008 		priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY;
2009 		cfg->host_caps &= ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_DDR_52) |
2010 				    UHS_CAPS);
2011 	}
2012 #endif
2013 
2014 	return omap_hsmmc_init_setup(mmc);
2015 }
2016 
2017 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
2018 
2019 static const struct omap_mmc_of_data dra7_mmc_of_data = {
2020 	.controller_flags = OMAP_HSMMC_REQUIRE_IODELAY,
2021 };
2022 
2023 static const struct udevice_id omap_hsmmc_ids[] = {
2024 	{ .compatible = "ti,omap3-hsmmc" },
2025 	{ .compatible = "ti,omap4-hsmmc" },
2026 	{ .compatible = "ti,am33xx-hsmmc" },
2027 	{ .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data },
2028 	{ }
2029 };
2030 #endif
2031 
2032 U_BOOT_DRIVER(omap_hsmmc) = {
2033 	.name	= "omap_hsmmc",
2034 	.id	= UCLASS_MMC,
2035 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
2036 	.of_match = omap_hsmmc_ids,
2037 	.ofdata_to_platdata = omap_hsmmc_ofdata_to_platdata,
2038 	.platdata_auto_alloc_size = sizeof(struct omap_hsmmc_plat),
2039 #endif
2040 #ifdef CONFIG_BLK
2041 	.bind = omap_hsmmc_bind,
2042 #endif
2043 	.ops = &omap_hsmmc_ops,
2044 	.probe	= omap_hsmmc_probe,
2045 	.priv_auto_alloc_size = sizeof(struct omap_hsmmc_data),
2046 #if !CONFIG_IS_ENABLED(OF_CONTROL)
2047 	.flags	= DM_FLAG_PRE_RELOC,
2048 #endif
2049 };
2050 #endif
2051