1 /* 2 * Copyright 2008, Freescale Semiconductor, Inc 3 * Andy Fleming 4 * 5 * Based vaguely on the Linux code 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 */ 9 10 #include <config.h> 11 #include <common.h> 12 #include <command.h> 13 #include <mmc.h> 14 #include <part.h> 15 #include <malloc.h> 16 #include <linux/list.h> 17 #include <div64.h> 18 #include "mmc_private.h" 19 20 /* Set block count limit because of 16 bit register limit on some hardware*/ 21 #ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT 22 #define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535 23 #endif 24 25 static struct list_head mmc_devices; 26 static int cur_dev_num = -1; 27 28 int __weak board_mmc_getwp(struct mmc *mmc) 29 { 30 return -1; 31 } 32 33 int mmc_getwp(struct mmc *mmc) 34 { 35 int wp; 36 37 wp = board_mmc_getwp(mmc); 38 39 if (wp < 0) { 40 if (mmc->getwp) 41 wp = mmc->getwp(mmc); 42 else 43 wp = 0; 44 } 45 46 return wp; 47 } 48 49 int __board_mmc_getcd(struct mmc *mmc) { 50 return -1; 51 } 52 53 int board_mmc_getcd(struct mmc *mmc)__attribute__((weak, 54 alias("__board_mmc_getcd"))); 55 56 int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) 57 { 58 int ret; 59 60 #ifdef CONFIG_MMC_TRACE 61 int i; 62 u8 *ptr; 63 64 printf("CMD_SEND:%d\n", cmd->cmdidx); 65 printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg); 66 ret = mmc->send_cmd(mmc, cmd, data); 67 switch (cmd->resp_type) { 68 case MMC_RSP_NONE: 69 printf("\t\tMMC_RSP_NONE\n"); 70 break; 71 case MMC_RSP_R1: 72 printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n", 73 cmd->response[0]); 74 break; 75 case MMC_RSP_R1b: 76 printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n", 77 cmd->response[0]); 78 break; 79 case MMC_RSP_R2: 80 printf("\t\tMMC_RSP_R2\t\t 0x%08X \n", 81 cmd->response[0]); 82 printf("\t\t \t\t 0x%08X \n", 83 cmd->response[1]); 84 printf("\t\t \t\t 0x%08X \n", 85 cmd->response[2]); 86 printf("\t\t \t\t 0x%08X \n", 87 cmd->response[3]); 88 printf("\n"); 89 printf("\t\t\t\t\tDUMPING DATA\n"); 90 for (i = 0; i < 4; i++) { 91 int j; 92 printf("\t\t\t\t\t%03d - ", i*4); 93 ptr = (u8 *)&cmd->response[i]; 94 ptr += 3; 95 for (j = 0; j < 4; j++) 96 printf("%02X ", *ptr--); 97 printf("\n"); 98 } 99 break; 100 case MMC_RSP_R3: 101 printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n", 102 cmd->response[0]); 103 break; 104 default: 105 printf("\t\tERROR MMC rsp not supported\n"); 106 break; 107 } 108 #else 109 ret = mmc->send_cmd(mmc, cmd, data); 110 #endif 111 return ret; 112 } 113 114 int mmc_send_status(struct mmc *mmc, int timeout) 115 { 116 struct mmc_cmd cmd; 117 int err, retries = 5; 118 #ifdef CONFIG_MMC_TRACE 119 int status; 120 #endif 121 122 cmd.cmdidx = MMC_CMD_SEND_STATUS; 123 cmd.resp_type = MMC_RSP_R1; 124 if (!mmc_host_is_spi(mmc)) 125 cmd.cmdarg = mmc->rca << 16; 126 127 do { 128 err = mmc_send_cmd(mmc, &cmd, NULL); 129 if (!err) { 130 if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) && 131 (cmd.response[0] & MMC_STATUS_CURR_STATE) != 132 MMC_STATE_PRG) 133 break; 134 else if (cmd.response[0] & MMC_STATUS_MASK) { 135 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 136 printf("Status Error: 0x%08X\n", 137 cmd.response[0]); 138 #endif 139 return COMM_ERR; 140 } 141 } else if (--retries < 0) 142 return err; 143 144 udelay(1000); 145 146 } while (timeout--); 147 148 #ifdef CONFIG_MMC_TRACE 149 status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9; 150 printf("CURR STATE:%d\n", status); 151 #endif 152 if (timeout <= 0) { 153 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 154 printf("Timeout waiting card ready\n"); 155 #endif 156 return TIMEOUT; 157 } 158 159 return 0; 160 } 161 162 int mmc_set_blocklen(struct mmc *mmc, int len) 163 { 164 struct mmc_cmd cmd; 165 166 cmd.cmdidx = MMC_CMD_SET_BLOCKLEN; 167 cmd.resp_type = MMC_RSP_R1; 168 cmd.cmdarg = len; 169 170 return mmc_send_cmd(mmc, &cmd, NULL); 171 } 172 173 struct mmc *find_mmc_device(int dev_num) 174 { 175 struct mmc *m; 176 struct list_head *entry; 177 178 list_for_each(entry, &mmc_devices) { 179 m = list_entry(entry, struct mmc, link); 180 181 if (m->block_dev.dev == dev_num) 182 return m; 183 } 184 185 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 186 printf("MMC Device %d not found\n", dev_num); 187 #endif 188 189 return NULL; 190 } 191 192 static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start, 193 lbaint_t blkcnt) 194 { 195 struct mmc_cmd cmd; 196 struct mmc_data data; 197 198 if (blkcnt > 1) 199 cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK; 200 else 201 cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; 202 203 if (mmc->high_capacity) 204 cmd.cmdarg = start; 205 else 206 cmd.cmdarg = start * mmc->read_bl_len; 207 208 cmd.resp_type = MMC_RSP_R1; 209 210 data.dest = dst; 211 data.blocks = blkcnt; 212 data.blocksize = mmc->read_bl_len; 213 data.flags = MMC_DATA_READ; 214 215 if (mmc_send_cmd(mmc, &cmd, &data)) 216 return 0; 217 218 if (blkcnt > 1) { 219 cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; 220 cmd.cmdarg = 0; 221 cmd.resp_type = MMC_RSP_R1b; 222 if (mmc_send_cmd(mmc, &cmd, NULL)) { 223 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 224 printf("mmc fail to send stop cmd\n"); 225 #endif 226 return 0; 227 } 228 } 229 230 return blkcnt; 231 } 232 233 static ulong mmc_bread(int dev_num, lbaint_t start, lbaint_t blkcnt, void *dst) 234 { 235 lbaint_t cur, blocks_todo = blkcnt; 236 237 if (blkcnt == 0) 238 return 0; 239 240 struct mmc *mmc = find_mmc_device(dev_num); 241 if (!mmc) 242 return 0; 243 244 if ((start + blkcnt) > mmc->block_dev.lba) { 245 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 246 printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n", 247 start + blkcnt, mmc->block_dev.lba); 248 #endif 249 return 0; 250 } 251 252 if (mmc_set_blocklen(mmc, mmc->read_bl_len)) 253 return 0; 254 255 do { 256 cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo; 257 if(mmc_read_blocks(mmc, dst, start, cur) != cur) 258 return 0; 259 blocks_todo -= cur; 260 start += cur; 261 dst += cur * mmc->read_bl_len; 262 } while (blocks_todo > 0); 263 264 return blkcnt; 265 } 266 267 static int mmc_go_idle(struct mmc *mmc) 268 { 269 struct mmc_cmd cmd; 270 int err; 271 272 udelay(1000); 273 274 cmd.cmdidx = MMC_CMD_GO_IDLE_STATE; 275 cmd.cmdarg = 0; 276 cmd.resp_type = MMC_RSP_NONE; 277 278 err = mmc_send_cmd(mmc, &cmd, NULL); 279 280 if (err) 281 return err; 282 283 udelay(2000); 284 285 return 0; 286 } 287 288 static int sd_send_op_cond(struct mmc *mmc) 289 { 290 int timeout = 1000; 291 int err; 292 struct mmc_cmd cmd; 293 294 do { 295 cmd.cmdidx = MMC_CMD_APP_CMD; 296 cmd.resp_type = MMC_RSP_R1; 297 cmd.cmdarg = 0; 298 299 err = mmc_send_cmd(mmc, &cmd, NULL); 300 301 if (err) 302 return err; 303 304 cmd.cmdidx = SD_CMD_APP_SEND_OP_COND; 305 cmd.resp_type = MMC_RSP_R3; 306 307 /* 308 * Most cards do not answer if some reserved bits 309 * in the ocr are set. However, Some controller 310 * can set bit 7 (reserved for low voltages), but 311 * how to manage low voltages SD card is not yet 312 * specified. 313 */ 314 cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 : 315 (mmc->voltages & 0xff8000); 316 317 if (mmc->version == SD_VERSION_2) 318 cmd.cmdarg |= OCR_HCS; 319 320 err = mmc_send_cmd(mmc, &cmd, NULL); 321 322 if (err) 323 return err; 324 325 udelay(1000); 326 } while ((!(cmd.response[0] & OCR_BUSY)) && timeout--); 327 328 if (timeout <= 0) 329 return UNUSABLE_ERR; 330 331 if (mmc->version != SD_VERSION_2) 332 mmc->version = SD_VERSION_1_0; 333 334 if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ 335 cmd.cmdidx = MMC_CMD_SPI_READ_OCR; 336 cmd.resp_type = MMC_RSP_R3; 337 cmd.cmdarg = 0; 338 339 err = mmc_send_cmd(mmc, &cmd, NULL); 340 341 if (err) 342 return err; 343 } 344 345 mmc->ocr = cmd.response[0]; 346 347 mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); 348 mmc->rca = 0; 349 350 return 0; 351 } 352 353 /* We pass in the cmd since otherwise the init seems to fail */ 354 static int mmc_send_op_cond_iter(struct mmc *mmc, struct mmc_cmd *cmd, 355 int use_arg) 356 { 357 int err; 358 359 cmd->cmdidx = MMC_CMD_SEND_OP_COND; 360 cmd->resp_type = MMC_RSP_R3; 361 cmd->cmdarg = 0; 362 if (use_arg && !mmc_host_is_spi(mmc)) { 363 cmd->cmdarg = 364 (mmc->voltages & 365 (mmc->op_cond_response & OCR_VOLTAGE_MASK)) | 366 (mmc->op_cond_response & OCR_ACCESS_MODE); 367 368 if (mmc->host_caps & MMC_MODE_HC) 369 cmd->cmdarg |= OCR_HCS; 370 } 371 err = mmc_send_cmd(mmc, cmd, NULL); 372 if (err) 373 return err; 374 mmc->op_cond_response = cmd->response[0]; 375 return 0; 376 } 377 378 int mmc_send_op_cond(struct mmc *mmc) 379 { 380 struct mmc_cmd cmd; 381 int err, i; 382 383 /* Some cards seem to need this */ 384 mmc_go_idle(mmc); 385 386 /* Asking to the card its capabilities */ 387 mmc->op_cond_pending = 1; 388 for (i = 0; i < 2; i++) { 389 err = mmc_send_op_cond_iter(mmc, &cmd, i != 0); 390 if (err) 391 return err; 392 393 /* exit if not busy (flag seems to be inverted) */ 394 if (mmc->op_cond_response & OCR_BUSY) 395 return 0; 396 } 397 return IN_PROGRESS; 398 } 399 400 int mmc_complete_op_cond(struct mmc *mmc) 401 { 402 struct mmc_cmd cmd; 403 int timeout = 1000; 404 uint start; 405 int err; 406 407 mmc->op_cond_pending = 0; 408 start = get_timer(0); 409 do { 410 err = mmc_send_op_cond_iter(mmc, &cmd, 1); 411 if (err) 412 return err; 413 if (get_timer(start) > timeout) 414 return UNUSABLE_ERR; 415 udelay(100); 416 } while (!(mmc->op_cond_response & OCR_BUSY)); 417 418 if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ 419 cmd.cmdidx = MMC_CMD_SPI_READ_OCR; 420 cmd.resp_type = MMC_RSP_R3; 421 cmd.cmdarg = 0; 422 423 err = mmc_send_cmd(mmc, &cmd, NULL); 424 425 if (err) 426 return err; 427 } 428 429 mmc->version = MMC_VERSION_UNKNOWN; 430 mmc->ocr = cmd.response[0]; 431 432 mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); 433 mmc->rca = 1; 434 435 return 0; 436 } 437 438 439 static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd) 440 { 441 struct mmc_cmd cmd; 442 struct mmc_data data; 443 int err; 444 445 /* Get the Card Status Register */ 446 cmd.cmdidx = MMC_CMD_SEND_EXT_CSD; 447 cmd.resp_type = MMC_RSP_R1; 448 cmd.cmdarg = 0; 449 450 data.dest = (char *)ext_csd; 451 data.blocks = 1; 452 data.blocksize = MMC_MAX_BLOCK_LEN; 453 data.flags = MMC_DATA_READ; 454 455 err = mmc_send_cmd(mmc, &cmd, &data); 456 457 return err; 458 } 459 460 461 static int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value) 462 { 463 struct mmc_cmd cmd; 464 int timeout = 1000; 465 int ret; 466 467 cmd.cmdidx = MMC_CMD_SWITCH; 468 cmd.resp_type = MMC_RSP_R1b; 469 cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 470 (index << 16) | 471 (value << 8); 472 473 ret = mmc_send_cmd(mmc, &cmd, NULL); 474 475 /* Waiting for the ready status */ 476 if (!ret) 477 ret = mmc_send_status(mmc, timeout); 478 479 return ret; 480 481 } 482 483 static int mmc_change_freq(struct mmc *mmc) 484 { 485 ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); 486 char cardtype; 487 int err; 488 489 mmc->card_caps = 0; 490 491 if (mmc_host_is_spi(mmc)) 492 return 0; 493 494 /* Only version 4 supports high-speed */ 495 if (mmc->version < MMC_VERSION_4) 496 return 0; 497 498 err = mmc_send_ext_csd(mmc, ext_csd); 499 500 if (err) 501 return err; 502 503 cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf; 504 505 err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1); 506 507 if (err) 508 return err; 509 510 /* Now check to see that it worked */ 511 err = mmc_send_ext_csd(mmc, ext_csd); 512 513 if (err) 514 return err; 515 516 /* No high-speed support */ 517 if (!ext_csd[EXT_CSD_HS_TIMING]) 518 return 0; 519 520 /* High Speed is set, there are two types: 52MHz and 26MHz */ 521 if (cardtype & MMC_HS_52MHZ) 522 mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; 523 else 524 mmc->card_caps |= MMC_MODE_HS; 525 526 return 0; 527 } 528 529 static int mmc_set_capacity(struct mmc *mmc, int part_num) 530 { 531 switch (part_num) { 532 case 0: 533 mmc->capacity = mmc->capacity_user; 534 break; 535 case 1: 536 case 2: 537 mmc->capacity = mmc->capacity_boot; 538 break; 539 case 3: 540 mmc->capacity = mmc->capacity_rpmb; 541 break; 542 case 4: 543 case 5: 544 case 6: 545 case 7: 546 mmc->capacity = mmc->capacity_gp[part_num - 4]; 547 break; 548 default: 549 return -1; 550 } 551 552 mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len); 553 554 return 0; 555 } 556 557 int mmc_switch_part(int dev_num, unsigned int part_num) 558 { 559 struct mmc *mmc = find_mmc_device(dev_num); 560 int ret; 561 562 if (!mmc) 563 return -1; 564 565 ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF, 566 (mmc->part_config & ~PART_ACCESS_MASK) 567 | (part_num & PART_ACCESS_MASK)); 568 if (ret) 569 return ret; 570 571 return mmc_set_capacity(mmc, part_num); 572 } 573 574 int mmc_getcd(struct mmc *mmc) 575 { 576 int cd; 577 578 cd = board_mmc_getcd(mmc); 579 580 if (cd < 0) { 581 if (mmc->getcd) 582 cd = mmc->getcd(mmc); 583 else 584 cd = 1; 585 } 586 587 return cd; 588 } 589 590 static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp) 591 { 592 struct mmc_cmd cmd; 593 struct mmc_data data; 594 595 /* Switch the frequency */ 596 cmd.cmdidx = SD_CMD_SWITCH_FUNC; 597 cmd.resp_type = MMC_RSP_R1; 598 cmd.cmdarg = (mode << 31) | 0xffffff; 599 cmd.cmdarg &= ~(0xf << (group * 4)); 600 cmd.cmdarg |= value << (group * 4); 601 602 data.dest = (char *)resp; 603 data.blocksize = 64; 604 data.blocks = 1; 605 data.flags = MMC_DATA_READ; 606 607 return mmc_send_cmd(mmc, &cmd, &data); 608 } 609 610 611 static int sd_change_freq(struct mmc *mmc) 612 { 613 int err; 614 struct mmc_cmd cmd; 615 ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2); 616 ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16); 617 struct mmc_data data; 618 int timeout; 619 620 mmc->card_caps = 0; 621 622 if (mmc_host_is_spi(mmc)) 623 return 0; 624 625 /* Read the SCR to find out if this card supports higher speeds */ 626 cmd.cmdidx = MMC_CMD_APP_CMD; 627 cmd.resp_type = MMC_RSP_R1; 628 cmd.cmdarg = mmc->rca << 16; 629 630 err = mmc_send_cmd(mmc, &cmd, NULL); 631 632 if (err) 633 return err; 634 635 cmd.cmdidx = SD_CMD_APP_SEND_SCR; 636 cmd.resp_type = MMC_RSP_R1; 637 cmd.cmdarg = 0; 638 639 timeout = 3; 640 641 retry_scr: 642 data.dest = (char *)scr; 643 data.blocksize = 8; 644 data.blocks = 1; 645 data.flags = MMC_DATA_READ; 646 647 err = mmc_send_cmd(mmc, &cmd, &data); 648 649 if (err) { 650 if (timeout--) 651 goto retry_scr; 652 653 return err; 654 } 655 656 mmc->scr[0] = __be32_to_cpu(scr[0]); 657 mmc->scr[1] = __be32_to_cpu(scr[1]); 658 659 switch ((mmc->scr[0] >> 24) & 0xf) { 660 case 0: 661 mmc->version = SD_VERSION_1_0; 662 break; 663 case 1: 664 mmc->version = SD_VERSION_1_10; 665 break; 666 case 2: 667 mmc->version = SD_VERSION_2; 668 if ((mmc->scr[0] >> 15) & 0x1) 669 mmc->version = SD_VERSION_3; 670 break; 671 default: 672 mmc->version = SD_VERSION_1_0; 673 break; 674 } 675 676 if (mmc->scr[0] & SD_DATA_4BIT) 677 mmc->card_caps |= MMC_MODE_4BIT; 678 679 /* Version 1.0 doesn't support switching */ 680 if (mmc->version == SD_VERSION_1_0) 681 return 0; 682 683 timeout = 4; 684 while (timeout--) { 685 err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1, 686 (u8 *)switch_status); 687 688 if (err) 689 return err; 690 691 /* The high-speed function is busy. Try again */ 692 if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY)) 693 break; 694 } 695 696 /* If high-speed isn't supported, we return */ 697 if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED)) 698 return 0; 699 700 /* 701 * If the host doesn't support SD_HIGHSPEED, do not switch card to 702 * HIGHSPEED mode even if the card support SD_HIGHSPPED. 703 * This can avoid furthur problem when the card runs in different 704 * mode between the host. 705 */ 706 if (!((mmc->host_caps & MMC_MODE_HS_52MHz) && 707 (mmc->host_caps & MMC_MODE_HS))) 708 return 0; 709 710 err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status); 711 712 if (err) 713 return err; 714 715 if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000) 716 mmc->card_caps |= MMC_MODE_HS; 717 718 return 0; 719 } 720 721 /* frequency bases */ 722 /* divided by 10 to be nice to platforms without floating point */ 723 static const int fbase[] = { 724 10000, 725 100000, 726 1000000, 727 10000000, 728 }; 729 730 /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice 731 * to platforms without floating point. 732 */ 733 static const int multipliers[] = { 734 0, /* reserved */ 735 10, 736 12, 737 13, 738 15, 739 20, 740 25, 741 30, 742 35, 743 40, 744 45, 745 50, 746 55, 747 60, 748 70, 749 80, 750 }; 751 752 static void mmc_set_ios(struct mmc *mmc) 753 { 754 mmc->set_ios(mmc); 755 } 756 757 void mmc_set_clock(struct mmc *mmc, uint clock) 758 { 759 if (clock > mmc->f_max) 760 clock = mmc->f_max; 761 762 if (clock < mmc->f_min) 763 clock = mmc->f_min; 764 765 mmc->clock = clock; 766 767 mmc_set_ios(mmc); 768 } 769 770 static void mmc_set_bus_width(struct mmc *mmc, uint width) 771 { 772 mmc->bus_width = width; 773 774 mmc_set_ios(mmc); 775 } 776 777 static int mmc_startup(struct mmc *mmc) 778 { 779 int err, i; 780 uint mult, freq; 781 u64 cmult, csize, capacity; 782 struct mmc_cmd cmd; 783 ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); 784 ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN); 785 int timeout = 1000; 786 787 #ifdef CONFIG_MMC_SPI_CRC_ON 788 if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */ 789 cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF; 790 cmd.resp_type = MMC_RSP_R1; 791 cmd.cmdarg = 1; 792 err = mmc_send_cmd(mmc, &cmd, NULL); 793 794 if (err) 795 return err; 796 } 797 #endif 798 799 /* Put the Card in Identify Mode */ 800 cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID : 801 MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */ 802 cmd.resp_type = MMC_RSP_R2; 803 cmd.cmdarg = 0; 804 805 err = mmc_send_cmd(mmc, &cmd, NULL); 806 807 if (err) 808 return err; 809 810 memcpy(mmc->cid, cmd.response, 16); 811 812 /* 813 * For MMC cards, set the Relative Address. 814 * For SD cards, get the Relatvie Address. 815 * This also puts the cards into Standby State 816 */ 817 if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ 818 cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR; 819 cmd.cmdarg = mmc->rca << 16; 820 cmd.resp_type = MMC_RSP_R6; 821 822 err = mmc_send_cmd(mmc, &cmd, NULL); 823 824 if (err) 825 return err; 826 827 if (IS_SD(mmc)) 828 mmc->rca = (cmd.response[0] >> 16) & 0xffff; 829 } 830 831 /* Get the Card-Specific Data */ 832 cmd.cmdidx = MMC_CMD_SEND_CSD; 833 cmd.resp_type = MMC_RSP_R2; 834 cmd.cmdarg = mmc->rca << 16; 835 836 err = mmc_send_cmd(mmc, &cmd, NULL); 837 838 /* Waiting for the ready status */ 839 mmc_send_status(mmc, timeout); 840 841 if (err) 842 return err; 843 844 mmc->csd[0] = cmd.response[0]; 845 mmc->csd[1] = cmd.response[1]; 846 mmc->csd[2] = cmd.response[2]; 847 mmc->csd[3] = cmd.response[3]; 848 849 if (mmc->version == MMC_VERSION_UNKNOWN) { 850 int version = (cmd.response[0] >> 26) & 0xf; 851 852 switch (version) { 853 case 0: 854 mmc->version = MMC_VERSION_1_2; 855 break; 856 case 1: 857 mmc->version = MMC_VERSION_1_4; 858 break; 859 case 2: 860 mmc->version = MMC_VERSION_2_2; 861 break; 862 case 3: 863 mmc->version = MMC_VERSION_3; 864 break; 865 case 4: 866 mmc->version = MMC_VERSION_4; 867 break; 868 default: 869 mmc->version = MMC_VERSION_1_2; 870 break; 871 } 872 } 873 874 /* divide frequency by 10, since the mults are 10x bigger */ 875 freq = fbase[(cmd.response[0] & 0x7)]; 876 mult = multipliers[((cmd.response[0] >> 3) & 0xf)]; 877 878 mmc->tran_speed = freq * mult; 879 880 mmc->dsr_imp = ((cmd.response[1] >> 12) & 0x1); 881 mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf); 882 883 if (IS_SD(mmc)) 884 mmc->write_bl_len = mmc->read_bl_len; 885 else 886 mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf); 887 888 if (mmc->high_capacity) { 889 csize = (mmc->csd[1] & 0x3f) << 16 890 | (mmc->csd[2] & 0xffff0000) >> 16; 891 cmult = 8; 892 } else { 893 csize = (mmc->csd[1] & 0x3ff) << 2 894 | (mmc->csd[2] & 0xc0000000) >> 30; 895 cmult = (mmc->csd[2] & 0x00038000) >> 15; 896 } 897 898 mmc->capacity_user = (csize + 1) << (cmult + 2); 899 mmc->capacity_user *= mmc->read_bl_len; 900 mmc->capacity_boot = 0; 901 mmc->capacity_rpmb = 0; 902 for (i = 0; i < 4; i++) 903 mmc->capacity_gp[i] = 0; 904 905 if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN) 906 mmc->read_bl_len = MMC_MAX_BLOCK_LEN; 907 908 if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN) 909 mmc->write_bl_len = MMC_MAX_BLOCK_LEN; 910 911 if ((mmc->dsr_imp) && (0xffffffff != mmc->dsr)) { 912 cmd.cmdidx = MMC_CMD_SET_DSR; 913 cmd.cmdarg = (mmc->dsr & 0xffff) << 16; 914 cmd.resp_type = MMC_RSP_NONE; 915 if (mmc_send_cmd(mmc, &cmd, NULL)) 916 printf("MMC: SET_DSR failed\n"); 917 } 918 919 /* Select the card, and put it into Transfer Mode */ 920 if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ 921 cmd.cmdidx = MMC_CMD_SELECT_CARD; 922 cmd.resp_type = MMC_RSP_R1; 923 cmd.cmdarg = mmc->rca << 16; 924 err = mmc_send_cmd(mmc, &cmd, NULL); 925 926 if (err) 927 return err; 928 } 929 930 /* 931 * For SD, its erase group is always one sector 932 */ 933 mmc->erase_grp_size = 1; 934 mmc->part_config = MMCPART_NOAVAILABLE; 935 if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) { 936 /* check ext_csd version and capacity */ 937 err = mmc_send_ext_csd(mmc, ext_csd); 938 if (!err && (ext_csd[EXT_CSD_REV] >= 2)) { 939 /* 940 * According to the JEDEC Standard, the value of 941 * ext_csd's capacity is valid if the value is more 942 * than 2GB 943 */ 944 capacity = ext_csd[EXT_CSD_SEC_CNT] << 0 945 | ext_csd[EXT_CSD_SEC_CNT + 1] << 8 946 | ext_csd[EXT_CSD_SEC_CNT + 2] << 16 947 | ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 948 capacity *= MMC_MAX_BLOCK_LEN; 949 if ((capacity >> 20) > 2 * 1024) 950 mmc->capacity_user = capacity; 951 } 952 953 switch (ext_csd[EXT_CSD_REV]) { 954 case 1: 955 mmc->version = MMC_VERSION_4_1; 956 break; 957 case 2: 958 mmc->version = MMC_VERSION_4_2; 959 break; 960 case 3: 961 mmc->version = MMC_VERSION_4_3; 962 break; 963 case 5: 964 mmc->version = MMC_VERSION_4_41; 965 break; 966 case 6: 967 mmc->version = MMC_VERSION_4_5; 968 break; 969 } 970 971 /* 972 * Host needs to enable ERASE_GRP_DEF bit if device is 973 * partitioned. This bit will be lost every time after a reset 974 * or power off. This will affect erase size. 975 */ 976 if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) && 977 (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & PART_ENH_ATTRIB)) { 978 err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, 979 EXT_CSD_ERASE_GROUP_DEF, 1); 980 981 if (err) 982 return err; 983 984 /* Read out group size from ext_csd */ 985 mmc->erase_grp_size = 986 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 987 MMC_MAX_BLOCK_LEN * 1024; 988 } else { 989 /* Calculate the group size from the csd value. */ 990 int erase_gsz, erase_gmul; 991 erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10; 992 erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5; 993 mmc->erase_grp_size = (erase_gsz + 1) 994 * (erase_gmul + 1); 995 } 996 997 /* store the partition info of emmc */ 998 if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) || 999 ext_csd[EXT_CSD_BOOT_MULT]) 1000 mmc->part_config = ext_csd[EXT_CSD_PART_CONF]; 1001 1002 mmc->capacity_boot = ext_csd[EXT_CSD_BOOT_MULT] << 17; 1003 1004 mmc->capacity_rpmb = ext_csd[EXT_CSD_RPMB_MULT] << 17; 1005 1006 for (i = 0; i < 4; i++) { 1007 int idx = EXT_CSD_GP_SIZE_MULT + i * 3; 1008 mmc->capacity_gp[i] = (ext_csd[idx + 2] << 16) + 1009 (ext_csd[idx + 1] << 8) + ext_csd[idx]; 1010 mmc->capacity_gp[i] *= 1011 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 1012 mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 1013 } 1014 } 1015 1016 err = mmc_set_capacity(mmc, mmc->part_num); 1017 if (err) 1018 return err; 1019 1020 if (IS_SD(mmc)) 1021 err = sd_change_freq(mmc); 1022 else 1023 err = mmc_change_freq(mmc); 1024 1025 if (err) 1026 return err; 1027 1028 /* Restrict card's capabilities by what the host can do */ 1029 mmc->card_caps &= mmc->host_caps; 1030 1031 if (IS_SD(mmc)) { 1032 if (mmc->card_caps & MMC_MODE_4BIT) { 1033 cmd.cmdidx = MMC_CMD_APP_CMD; 1034 cmd.resp_type = MMC_RSP_R1; 1035 cmd.cmdarg = mmc->rca << 16; 1036 1037 err = mmc_send_cmd(mmc, &cmd, NULL); 1038 if (err) 1039 return err; 1040 1041 cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH; 1042 cmd.resp_type = MMC_RSP_R1; 1043 cmd.cmdarg = 2; 1044 err = mmc_send_cmd(mmc, &cmd, NULL); 1045 if (err) 1046 return err; 1047 1048 mmc_set_bus_width(mmc, 4); 1049 } 1050 1051 if (mmc->card_caps & MMC_MODE_HS) 1052 mmc->tran_speed = 50000000; 1053 else 1054 mmc->tran_speed = 25000000; 1055 } else { 1056 int idx; 1057 1058 /* An array of possible bus widths in order of preference */ 1059 static unsigned ext_csd_bits[] = { 1060 EXT_CSD_BUS_WIDTH_8, 1061 EXT_CSD_BUS_WIDTH_4, 1062 EXT_CSD_BUS_WIDTH_1, 1063 }; 1064 1065 /* An array to map CSD bus widths to host cap bits */ 1066 static unsigned ext_to_hostcaps[] = { 1067 [EXT_CSD_BUS_WIDTH_4] = MMC_MODE_4BIT, 1068 [EXT_CSD_BUS_WIDTH_8] = MMC_MODE_8BIT, 1069 }; 1070 1071 /* An array to map chosen bus width to an integer */ 1072 static unsigned widths[] = { 1073 8, 4, 1, 1074 }; 1075 1076 for (idx=0; idx < ARRAY_SIZE(ext_csd_bits); idx++) { 1077 unsigned int extw = ext_csd_bits[idx]; 1078 1079 /* 1080 * Check to make sure the controller supports 1081 * this bus width, if it's more than 1 1082 */ 1083 if (extw != EXT_CSD_BUS_WIDTH_1 && 1084 !(mmc->host_caps & ext_to_hostcaps[extw])) 1085 continue; 1086 1087 err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, 1088 EXT_CSD_BUS_WIDTH, extw); 1089 1090 if (err) 1091 continue; 1092 1093 mmc_set_bus_width(mmc, widths[idx]); 1094 1095 err = mmc_send_ext_csd(mmc, test_csd); 1096 if (!err && ext_csd[EXT_CSD_PARTITIONING_SUPPORT] \ 1097 == test_csd[EXT_CSD_PARTITIONING_SUPPORT] 1098 && ext_csd[EXT_CSD_ERASE_GROUP_DEF] \ 1099 == test_csd[EXT_CSD_ERASE_GROUP_DEF] \ 1100 && ext_csd[EXT_CSD_REV] \ 1101 == test_csd[EXT_CSD_REV] 1102 && ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] \ 1103 == test_csd[EXT_CSD_HC_ERASE_GRP_SIZE] 1104 && memcmp(&ext_csd[EXT_CSD_SEC_CNT], \ 1105 &test_csd[EXT_CSD_SEC_CNT], 4) == 0) { 1106 1107 mmc->card_caps |= ext_to_hostcaps[extw]; 1108 break; 1109 } 1110 } 1111 1112 if (mmc->card_caps & MMC_MODE_HS) { 1113 if (mmc->card_caps & MMC_MODE_HS_52MHz) 1114 mmc->tran_speed = 52000000; 1115 else 1116 mmc->tran_speed = 26000000; 1117 } 1118 } 1119 1120 mmc_set_clock(mmc, mmc->tran_speed); 1121 1122 /* fill in device description */ 1123 mmc->block_dev.lun = 0; 1124 mmc->block_dev.type = 0; 1125 mmc->block_dev.blksz = mmc->read_bl_len; 1126 mmc->block_dev.log2blksz = LOG2(mmc->block_dev.blksz); 1127 mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len); 1128 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 1129 sprintf(mmc->block_dev.vendor, "Man %06x Snr %04x%04x", 1130 mmc->cid[0] >> 24, (mmc->cid[2] & 0xffff), 1131 (mmc->cid[3] >> 16) & 0xffff); 1132 sprintf(mmc->block_dev.product, "%c%c%c%c%c%c", mmc->cid[0] & 0xff, 1133 (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff, 1134 (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff, 1135 (mmc->cid[2] >> 24) & 0xff); 1136 sprintf(mmc->block_dev.revision, "%d.%d", (mmc->cid[2] >> 20) & 0xf, 1137 (mmc->cid[2] >> 16) & 0xf); 1138 #else 1139 mmc->block_dev.vendor[0] = 0; 1140 mmc->block_dev.product[0] = 0; 1141 mmc->block_dev.revision[0] = 0; 1142 #endif 1143 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBDISK_SUPPORT) 1144 init_part(&mmc->block_dev); 1145 #endif 1146 1147 return 0; 1148 } 1149 1150 static int mmc_send_if_cond(struct mmc *mmc) 1151 { 1152 struct mmc_cmd cmd; 1153 int err; 1154 1155 cmd.cmdidx = SD_CMD_SEND_IF_COND; 1156 /* We set the bit if the host supports voltages between 2.7 and 3.6 V */ 1157 cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa; 1158 cmd.resp_type = MMC_RSP_R7; 1159 1160 err = mmc_send_cmd(mmc, &cmd, NULL); 1161 1162 if (err) 1163 return err; 1164 1165 if ((cmd.response[0] & 0xff) != 0xaa) 1166 return UNUSABLE_ERR; 1167 else 1168 mmc->version = SD_VERSION_2; 1169 1170 return 0; 1171 } 1172 1173 int mmc_register(struct mmc *mmc) 1174 { 1175 /* Setup dsr related values */ 1176 mmc->dsr_imp = 0; 1177 mmc->dsr = 0xffffffff; 1178 /* Setup the universal parts of the block interface just once */ 1179 mmc->block_dev.if_type = IF_TYPE_MMC; 1180 mmc->block_dev.dev = cur_dev_num++; 1181 mmc->block_dev.removable = 1; 1182 mmc->block_dev.block_read = mmc_bread; 1183 mmc->block_dev.block_write = mmc_bwrite; 1184 mmc->block_dev.block_erase = mmc_berase; 1185 if (!mmc->b_max) 1186 mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; 1187 1188 INIT_LIST_HEAD (&mmc->link); 1189 1190 list_add_tail (&mmc->link, &mmc_devices); 1191 1192 return 0; 1193 } 1194 1195 #ifdef CONFIG_PARTITIONS 1196 block_dev_desc_t *mmc_get_dev(int dev) 1197 { 1198 struct mmc *mmc = find_mmc_device(dev); 1199 if (!mmc || mmc_init(mmc)) 1200 return NULL; 1201 1202 return &mmc->block_dev; 1203 } 1204 #endif 1205 1206 int mmc_start_init(struct mmc *mmc) 1207 { 1208 int err; 1209 1210 if (mmc_getcd(mmc) == 0) { 1211 mmc->has_init = 0; 1212 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 1213 printf("MMC: no card present\n"); 1214 #endif 1215 return NO_CARD_ERR; 1216 } 1217 1218 if (mmc->has_init) 1219 return 0; 1220 1221 err = mmc->init(mmc); 1222 1223 if (err) 1224 return err; 1225 1226 mmc_set_bus_width(mmc, 1); 1227 mmc_set_clock(mmc, 1); 1228 1229 /* Reset the Card */ 1230 err = mmc_go_idle(mmc); 1231 1232 if (err) 1233 return err; 1234 1235 /* The internal partition reset to user partition(0) at every CMD0*/ 1236 mmc->part_num = 0; 1237 1238 /* Test for SD version 2 */ 1239 err = mmc_send_if_cond(mmc); 1240 1241 /* Now try to get the SD card's operating condition */ 1242 err = sd_send_op_cond(mmc); 1243 1244 /* If the command timed out, we check for an MMC card */ 1245 if (err == TIMEOUT) { 1246 err = mmc_send_op_cond(mmc); 1247 1248 if (err && err != IN_PROGRESS) { 1249 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 1250 printf("Card did not respond to voltage select!\n"); 1251 #endif 1252 return UNUSABLE_ERR; 1253 } 1254 } 1255 1256 if (err == IN_PROGRESS) 1257 mmc->init_in_progress = 1; 1258 1259 return err; 1260 } 1261 1262 static int mmc_complete_init(struct mmc *mmc) 1263 { 1264 int err = 0; 1265 1266 if (mmc->op_cond_pending) 1267 err = mmc_complete_op_cond(mmc); 1268 1269 if (!err) 1270 err = mmc_startup(mmc); 1271 if (err) 1272 mmc->has_init = 0; 1273 else 1274 mmc->has_init = 1; 1275 mmc->init_in_progress = 0; 1276 return err; 1277 } 1278 1279 int mmc_init(struct mmc *mmc) 1280 { 1281 int err = IN_PROGRESS; 1282 unsigned start = get_timer(0); 1283 1284 if (mmc->has_init) 1285 return 0; 1286 if (!mmc->init_in_progress) 1287 err = mmc_start_init(mmc); 1288 1289 if (!err || err == IN_PROGRESS) 1290 err = mmc_complete_init(mmc); 1291 debug("%s: %d, time %lu\n", __func__, err, get_timer(start)); 1292 return err; 1293 } 1294 1295 int mmc_set_dsr(struct mmc *mmc, u16 val) 1296 { 1297 mmc->dsr = val; 1298 return 0; 1299 } 1300 1301 /* 1302 * CPU and board-specific MMC initializations. Aliased function 1303 * signals caller to move on 1304 */ 1305 static int __def_mmc_init(bd_t *bis) 1306 { 1307 return -1; 1308 } 1309 1310 int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init"))); 1311 int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init"))); 1312 1313 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 1314 1315 void print_mmc_devices(char separator) 1316 { 1317 struct mmc *m; 1318 struct list_head *entry; 1319 1320 list_for_each(entry, &mmc_devices) { 1321 m = list_entry(entry, struct mmc, link); 1322 1323 printf("%s: %d", m->name, m->block_dev.dev); 1324 1325 if (entry->next != &mmc_devices) 1326 printf("%c ", separator); 1327 } 1328 1329 printf("\n"); 1330 } 1331 1332 #else 1333 void print_mmc_devices(char separator) { } 1334 #endif 1335 1336 int get_mmc_num(void) 1337 { 1338 return cur_dev_num; 1339 } 1340 1341 void mmc_set_preinit(struct mmc *mmc, int preinit) 1342 { 1343 mmc->preinit = preinit; 1344 } 1345 1346 static void do_preinit(void) 1347 { 1348 struct mmc *m; 1349 struct list_head *entry; 1350 1351 list_for_each(entry, &mmc_devices) { 1352 m = list_entry(entry, struct mmc, link); 1353 1354 if (m->preinit) 1355 mmc_start_init(m); 1356 } 1357 } 1358 1359 1360 int mmc_initialize(bd_t *bis) 1361 { 1362 INIT_LIST_HEAD (&mmc_devices); 1363 cur_dev_num = 0; 1364 1365 if (board_mmc_init(bis) < 0) 1366 cpu_mmc_init(bis); 1367 1368 #ifndef CONFIG_SPL_BUILD 1369 print_mmc_devices(','); 1370 #endif 1371 1372 do_preinit(); 1373 return 0; 1374 } 1375 1376 #ifdef CONFIG_SUPPORT_EMMC_BOOT 1377 /* 1378 * This function changes the size of boot partition and the size of rpmb 1379 * partition present on EMMC devices. 1380 * 1381 * Input Parameters: 1382 * struct *mmc: pointer for the mmc device strcuture 1383 * bootsize: size of boot partition 1384 * rpmbsize: size of rpmb partition 1385 * 1386 * Returns 0 on success. 1387 */ 1388 1389 int mmc_boot_partition_size_change(struct mmc *mmc, unsigned long bootsize, 1390 unsigned long rpmbsize) 1391 { 1392 int err; 1393 struct mmc_cmd cmd; 1394 1395 /* Only use this command for raw EMMC moviNAND. Enter backdoor mode */ 1396 cmd.cmdidx = MMC_CMD_RES_MAN; 1397 cmd.resp_type = MMC_RSP_R1b; 1398 cmd.cmdarg = MMC_CMD62_ARG1; 1399 1400 err = mmc_send_cmd(mmc, &cmd, NULL); 1401 if (err) { 1402 debug("mmc_boot_partition_size_change: Error1 = %d\n", err); 1403 return err; 1404 } 1405 1406 /* Boot partition changing mode */ 1407 cmd.cmdidx = MMC_CMD_RES_MAN; 1408 cmd.resp_type = MMC_RSP_R1b; 1409 cmd.cmdarg = MMC_CMD62_ARG2; 1410 1411 err = mmc_send_cmd(mmc, &cmd, NULL); 1412 if (err) { 1413 debug("mmc_boot_partition_size_change: Error2 = %d\n", err); 1414 return err; 1415 } 1416 /* boot partition size is multiple of 128KB */ 1417 bootsize = (bootsize * 1024) / 128; 1418 1419 /* Arg: boot partition size */ 1420 cmd.cmdidx = MMC_CMD_RES_MAN; 1421 cmd.resp_type = MMC_RSP_R1b; 1422 cmd.cmdarg = bootsize; 1423 1424 err = mmc_send_cmd(mmc, &cmd, NULL); 1425 if (err) { 1426 debug("mmc_boot_partition_size_change: Error3 = %d\n", err); 1427 return err; 1428 } 1429 /* RPMB partition size is multiple of 128KB */ 1430 rpmbsize = (rpmbsize * 1024) / 128; 1431 /* Arg: RPMB partition size */ 1432 cmd.cmdidx = MMC_CMD_RES_MAN; 1433 cmd.resp_type = MMC_RSP_R1b; 1434 cmd.cmdarg = rpmbsize; 1435 1436 err = mmc_send_cmd(mmc, &cmd, NULL); 1437 if (err) { 1438 debug("mmc_boot_partition_size_change: Error4 = %d\n", err); 1439 return err; 1440 } 1441 return 0; 1442 } 1443 1444 /* 1445 * Modify EXT_CSD[177] which is BOOT_BUS_WIDTH 1446 * based on the passed in values for BOOT_BUS_WIDTH, RESET_BOOT_BUS_WIDTH 1447 * and BOOT_MODE. 1448 * 1449 * Returns 0 on success. 1450 */ 1451 int mmc_set_boot_bus_width(struct mmc *mmc, u8 width, u8 reset, u8 mode) 1452 { 1453 int err; 1454 1455 err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_BUS_WIDTH, 1456 EXT_CSD_BOOT_BUS_WIDTH_MODE(mode) | 1457 EXT_CSD_BOOT_BUS_WIDTH_RESET(reset) | 1458 EXT_CSD_BOOT_BUS_WIDTH_WIDTH(width)); 1459 1460 if (err) 1461 return err; 1462 return 0; 1463 } 1464 1465 /* 1466 * Modify EXT_CSD[179] which is PARTITION_CONFIG (formerly BOOT_CONFIG) 1467 * based on the passed in values for BOOT_ACK, BOOT_PARTITION_ENABLE and 1468 * PARTITION_ACCESS. 1469 * 1470 * Returns 0 on success. 1471 */ 1472 int mmc_set_part_conf(struct mmc *mmc, u8 ack, u8 part_num, u8 access) 1473 { 1474 int err; 1475 1476 err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF, 1477 EXT_CSD_BOOT_ACK(ack) | 1478 EXT_CSD_BOOT_PART_NUM(part_num) | 1479 EXT_CSD_PARTITION_ACCESS(access)); 1480 1481 if (err) 1482 return err; 1483 return 0; 1484 } 1485 #endif 1486