1 /* 2 * Copyright 2008, Freescale Semiconductor, Inc 3 * Andy Fleming 4 * 5 * Based vaguely on the Linux code 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 */ 9 10 #include <config.h> 11 #include <common.h> 12 #include <command.h> 13 #include <mmc.h> 14 #include <part.h> 15 #include <malloc.h> 16 #include <linux/list.h> 17 #include <div64.h> 18 #include "mmc_private.h" 19 20 /* Set block count limit because of 16 bit register limit on some hardware*/ 21 #ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT 22 #define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535 23 #endif 24 25 static struct list_head mmc_devices; 26 static int cur_dev_num = -1; 27 28 int __weak board_mmc_getwp(struct mmc *mmc) 29 { 30 return -1; 31 } 32 33 int mmc_getwp(struct mmc *mmc) 34 { 35 int wp; 36 37 wp = board_mmc_getwp(mmc); 38 39 if (wp < 0) { 40 if (mmc->getwp) 41 wp = mmc->getwp(mmc); 42 else 43 wp = 0; 44 } 45 46 return wp; 47 } 48 49 int __board_mmc_getcd(struct mmc *mmc) { 50 return -1; 51 } 52 53 int board_mmc_getcd(struct mmc *mmc)__attribute__((weak, 54 alias("__board_mmc_getcd"))); 55 56 int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) 57 { 58 int ret; 59 60 #ifdef CONFIG_MMC_TRACE 61 int i; 62 u8 *ptr; 63 64 printf("CMD_SEND:%d\n", cmd->cmdidx); 65 printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg); 66 ret = mmc->send_cmd(mmc, cmd, data); 67 switch (cmd->resp_type) { 68 case MMC_RSP_NONE: 69 printf("\t\tMMC_RSP_NONE\n"); 70 break; 71 case MMC_RSP_R1: 72 printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n", 73 cmd->response[0]); 74 break; 75 case MMC_RSP_R1b: 76 printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n", 77 cmd->response[0]); 78 break; 79 case MMC_RSP_R2: 80 printf("\t\tMMC_RSP_R2\t\t 0x%08X \n", 81 cmd->response[0]); 82 printf("\t\t \t\t 0x%08X \n", 83 cmd->response[1]); 84 printf("\t\t \t\t 0x%08X \n", 85 cmd->response[2]); 86 printf("\t\t \t\t 0x%08X \n", 87 cmd->response[3]); 88 printf("\n"); 89 printf("\t\t\t\t\tDUMPING DATA\n"); 90 for (i = 0; i < 4; i++) { 91 int j; 92 printf("\t\t\t\t\t%03d - ", i*4); 93 ptr = (u8 *)&cmd->response[i]; 94 ptr += 3; 95 for (j = 0; j < 4; j++) 96 printf("%02X ", *ptr--); 97 printf("\n"); 98 } 99 break; 100 case MMC_RSP_R3: 101 printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n", 102 cmd->response[0]); 103 break; 104 default: 105 printf("\t\tERROR MMC rsp not supported\n"); 106 break; 107 } 108 #else 109 ret = mmc->send_cmd(mmc, cmd, data); 110 #endif 111 return ret; 112 } 113 114 int mmc_send_status(struct mmc *mmc, int timeout) 115 { 116 struct mmc_cmd cmd; 117 int err, retries = 5; 118 #ifdef CONFIG_MMC_TRACE 119 int status; 120 #endif 121 122 cmd.cmdidx = MMC_CMD_SEND_STATUS; 123 cmd.resp_type = MMC_RSP_R1; 124 if (!mmc_host_is_spi(mmc)) 125 cmd.cmdarg = mmc->rca << 16; 126 127 do { 128 err = mmc_send_cmd(mmc, &cmd, NULL); 129 if (!err) { 130 if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) && 131 (cmd.response[0] & MMC_STATUS_CURR_STATE) != 132 MMC_STATE_PRG) 133 break; 134 else if (cmd.response[0] & MMC_STATUS_MASK) { 135 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 136 printf("Status Error: 0x%08X\n", 137 cmd.response[0]); 138 #endif 139 return COMM_ERR; 140 } 141 } else if (--retries < 0) 142 return err; 143 144 udelay(1000); 145 146 } while (timeout--); 147 148 #ifdef CONFIG_MMC_TRACE 149 status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9; 150 printf("CURR STATE:%d\n", status); 151 #endif 152 if (timeout <= 0) { 153 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 154 printf("Timeout waiting card ready\n"); 155 #endif 156 return TIMEOUT; 157 } 158 159 return 0; 160 } 161 162 int mmc_set_blocklen(struct mmc *mmc, int len) 163 { 164 struct mmc_cmd cmd; 165 166 cmd.cmdidx = MMC_CMD_SET_BLOCKLEN; 167 cmd.resp_type = MMC_RSP_R1; 168 cmd.cmdarg = len; 169 170 return mmc_send_cmd(mmc, &cmd, NULL); 171 } 172 173 struct mmc *find_mmc_device(int dev_num) 174 { 175 struct mmc *m; 176 struct list_head *entry; 177 178 list_for_each(entry, &mmc_devices) { 179 m = list_entry(entry, struct mmc, link); 180 181 if (m->block_dev.dev == dev_num) 182 return m; 183 } 184 185 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 186 printf("MMC Device %d not found\n", dev_num); 187 #endif 188 189 return NULL; 190 } 191 192 static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start, 193 lbaint_t blkcnt) 194 { 195 struct mmc_cmd cmd; 196 struct mmc_data data; 197 198 if (blkcnt > 1) 199 cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK; 200 else 201 cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; 202 203 if (mmc->high_capacity) 204 cmd.cmdarg = start; 205 else 206 cmd.cmdarg = start * mmc->read_bl_len; 207 208 cmd.resp_type = MMC_RSP_R1; 209 210 data.dest = dst; 211 data.blocks = blkcnt; 212 data.blocksize = mmc->read_bl_len; 213 data.flags = MMC_DATA_READ; 214 215 if (mmc_send_cmd(mmc, &cmd, &data)) 216 return 0; 217 218 if (blkcnt > 1) { 219 cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; 220 cmd.cmdarg = 0; 221 cmd.resp_type = MMC_RSP_R1b; 222 if (mmc_send_cmd(mmc, &cmd, NULL)) { 223 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 224 printf("mmc fail to send stop cmd\n"); 225 #endif 226 return 0; 227 } 228 } 229 230 return blkcnt; 231 } 232 233 static ulong mmc_bread(int dev_num, lbaint_t start, lbaint_t blkcnt, void *dst) 234 { 235 lbaint_t cur, blocks_todo = blkcnt; 236 237 if (blkcnt == 0) 238 return 0; 239 240 struct mmc *mmc = find_mmc_device(dev_num); 241 if (!mmc) 242 return 0; 243 244 if ((start + blkcnt) > mmc->block_dev.lba) { 245 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 246 printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n", 247 start + blkcnt, mmc->block_dev.lba); 248 #endif 249 return 0; 250 } 251 252 if (mmc_set_blocklen(mmc, mmc->read_bl_len)) 253 return 0; 254 255 do { 256 cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo; 257 if(mmc_read_blocks(mmc, dst, start, cur) != cur) 258 return 0; 259 blocks_todo -= cur; 260 start += cur; 261 dst += cur * mmc->read_bl_len; 262 } while (blocks_todo > 0); 263 264 return blkcnt; 265 } 266 267 static int mmc_go_idle(struct mmc *mmc) 268 { 269 struct mmc_cmd cmd; 270 int err; 271 272 udelay(1000); 273 274 cmd.cmdidx = MMC_CMD_GO_IDLE_STATE; 275 cmd.cmdarg = 0; 276 cmd.resp_type = MMC_RSP_NONE; 277 278 err = mmc_send_cmd(mmc, &cmd, NULL); 279 280 if (err) 281 return err; 282 283 udelay(2000); 284 285 return 0; 286 } 287 288 static int sd_send_op_cond(struct mmc *mmc) 289 { 290 int timeout = 1000; 291 int err; 292 struct mmc_cmd cmd; 293 294 do { 295 cmd.cmdidx = MMC_CMD_APP_CMD; 296 cmd.resp_type = MMC_RSP_R1; 297 cmd.cmdarg = 0; 298 299 err = mmc_send_cmd(mmc, &cmd, NULL); 300 301 if (err) 302 return err; 303 304 cmd.cmdidx = SD_CMD_APP_SEND_OP_COND; 305 cmd.resp_type = MMC_RSP_R3; 306 307 /* 308 * Most cards do not answer if some reserved bits 309 * in the ocr are set. However, Some controller 310 * can set bit 7 (reserved for low voltages), but 311 * how to manage low voltages SD card is not yet 312 * specified. 313 */ 314 cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 : 315 (mmc->voltages & 0xff8000); 316 317 if (mmc->version == SD_VERSION_2) 318 cmd.cmdarg |= OCR_HCS; 319 320 err = mmc_send_cmd(mmc, &cmd, NULL); 321 322 if (err) 323 return err; 324 325 udelay(1000); 326 } while ((!(cmd.response[0] & OCR_BUSY)) && timeout--); 327 328 if (timeout <= 0) 329 return UNUSABLE_ERR; 330 331 if (mmc->version != SD_VERSION_2) 332 mmc->version = SD_VERSION_1_0; 333 334 if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ 335 cmd.cmdidx = MMC_CMD_SPI_READ_OCR; 336 cmd.resp_type = MMC_RSP_R3; 337 cmd.cmdarg = 0; 338 339 err = mmc_send_cmd(mmc, &cmd, NULL); 340 341 if (err) 342 return err; 343 } 344 345 mmc->ocr = cmd.response[0]; 346 347 mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); 348 mmc->rca = 0; 349 350 return 0; 351 } 352 353 /* We pass in the cmd since otherwise the init seems to fail */ 354 static int mmc_send_op_cond_iter(struct mmc *mmc, struct mmc_cmd *cmd, 355 int use_arg) 356 { 357 int err; 358 359 cmd->cmdidx = MMC_CMD_SEND_OP_COND; 360 cmd->resp_type = MMC_RSP_R3; 361 cmd->cmdarg = 0; 362 if (use_arg && !mmc_host_is_spi(mmc)) { 363 cmd->cmdarg = 364 (mmc->voltages & 365 (mmc->op_cond_response & OCR_VOLTAGE_MASK)) | 366 (mmc->op_cond_response & OCR_ACCESS_MODE); 367 368 if (mmc->host_caps & MMC_MODE_HC) 369 cmd->cmdarg |= OCR_HCS; 370 } 371 err = mmc_send_cmd(mmc, cmd, NULL); 372 if (err) 373 return err; 374 mmc->op_cond_response = cmd->response[0]; 375 return 0; 376 } 377 378 int mmc_send_op_cond(struct mmc *mmc) 379 { 380 struct mmc_cmd cmd; 381 int err, i; 382 383 /* Some cards seem to need this */ 384 mmc_go_idle(mmc); 385 386 /* Asking to the card its capabilities */ 387 mmc->op_cond_pending = 1; 388 for (i = 0; i < 2; i++) { 389 err = mmc_send_op_cond_iter(mmc, &cmd, i != 0); 390 if (err) 391 return err; 392 393 /* exit if not busy (flag seems to be inverted) */ 394 if (mmc->op_cond_response & OCR_BUSY) 395 return 0; 396 } 397 return IN_PROGRESS; 398 } 399 400 int mmc_complete_op_cond(struct mmc *mmc) 401 { 402 struct mmc_cmd cmd; 403 int timeout = 1000; 404 uint start; 405 int err; 406 407 mmc->op_cond_pending = 0; 408 start = get_timer(0); 409 do { 410 err = mmc_send_op_cond_iter(mmc, &cmd, 1); 411 if (err) 412 return err; 413 if (get_timer(start) > timeout) 414 return UNUSABLE_ERR; 415 udelay(100); 416 } while (!(mmc->op_cond_response & OCR_BUSY)); 417 418 if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ 419 cmd.cmdidx = MMC_CMD_SPI_READ_OCR; 420 cmd.resp_type = MMC_RSP_R3; 421 cmd.cmdarg = 0; 422 423 err = mmc_send_cmd(mmc, &cmd, NULL); 424 425 if (err) 426 return err; 427 } 428 429 mmc->version = MMC_VERSION_UNKNOWN; 430 mmc->ocr = cmd.response[0]; 431 432 mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); 433 mmc->rca = 0; 434 435 return 0; 436 } 437 438 439 static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd) 440 { 441 struct mmc_cmd cmd; 442 struct mmc_data data; 443 int err; 444 445 /* Get the Card Status Register */ 446 cmd.cmdidx = MMC_CMD_SEND_EXT_CSD; 447 cmd.resp_type = MMC_RSP_R1; 448 cmd.cmdarg = 0; 449 450 data.dest = (char *)ext_csd; 451 data.blocks = 1; 452 data.blocksize = MMC_MAX_BLOCK_LEN; 453 data.flags = MMC_DATA_READ; 454 455 err = mmc_send_cmd(mmc, &cmd, &data); 456 457 return err; 458 } 459 460 461 static int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value) 462 { 463 struct mmc_cmd cmd; 464 int timeout = 1000; 465 int ret; 466 467 cmd.cmdidx = MMC_CMD_SWITCH; 468 cmd.resp_type = MMC_RSP_R1b; 469 cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 470 (index << 16) | 471 (value << 8); 472 473 ret = mmc_send_cmd(mmc, &cmd, NULL); 474 475 /* Waiting for the ready status */ 476 if (!ret) 477 ret = mmc_send_status(mmc, timeout); 478 479 return ret; 480 481 } 482 483 static int mmc_change_freq(struct mmc *mmc) 484 { 485 ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); 486 char cardtype; 487 int err; 488 489 mmc->card_caps = 0; 490 491 if (mmc_host_is_spi(mmc)) 492 return 0; 493 494 /* Only version 4 supports high-speed */ 495 if (mmc->version < MMC_VERSION_4) 496 return 0; 497 498 err = mmc_send_ext_csd(mmc, ext_csd); 499 500 if (err) 501 return err; 502 503 cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf; 504 505 err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1); 506 507 if (err) 508 return err; 509 510 /* Now check to see that it worked */ 511 err = mmc_send_ext_csd(mmc, ext_csd); 512 513 if (err) 514 return err; 515 516 /* No high-speed support */ 517 if (!ext_csd[EXT_CSD_HS_TIMING]) 518 return 0; 519 520 /* High Speed is set, there are two types: 52MHz and 26MHz */ 521 if (cardtype & MMC_HS_52MHZ) 522 mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; 523 else 524 mmc->card_caps |= MMC_MODE_HS; 525 526 return 0; 527 } 528 529 static int mmc_set_capacity(struct mmc *mmc, int part_num) 530 { 531 switch (part_num) { 532 case 0: 533 mmc->capacity = mmc->capacity_user; 534 break; 535 case 1: 536 case 2: 537 mmc->capacity = mmc->capacity_boot; 538 break; 539 case 3: 540 mmc->capacity = mmc->capacity_rpmb; 541 break; 542 case 4: 543 case 5: 544 case 6: 545 case 7: 546 mmc->capacity = mmc->capacity_gp[part_num - 4]; 547 break; 548 default: 549 return -1; 550 } 551 552 mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len); 553 554 return 0; 555 } 556 557 int mmc_switch_part(int dev_num, unsigned int part_num) 558 { 559 struct mmc *mmc = find_mmc_device(dev_num); 560 int ret; 561 562 if (!mmc) 563 return -1; 564 565 ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF, 566 (mmc->part_config & ~PART_ACCESS_MASK) 567 | (part_num & PART_ACCESS_MASK)); 568 if (ret) 569 return ret; 570 571 return mmc_set_capacity(mmc, part_num); 572 } 573 574 int mmc_getcd(struct mmc *mmc) 575 { 576 int cd; 577 578 cd = board_mmc_getcd(mmc); 579 580 if (cd < 0) { 581 if (mmc->getcd) 582 cd = mmc->getcd(mmc); 583 else 584 cd = 1; 585 } 586 587 return cd; 588 } 589 590 static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp) 591 { 592 struct mmc_cmd cmd; 593 struct mmc_data data; 594 595 /* Switch the frequency */ 596 cmd.cmdidx = SD_CMD_SWITCH_FUNC; 597 cmd.resp_type = MMC_RSP_R1; 598 cmd.cmdarg = (mode << 31) | 0xffffff; 599 cmd.cmdarg &= ~(0xf << (group * 4)); 600 cmd.cmdarg |= value << (group * 4); 601 602 data.dest = (char *)resp; 603 data.blocksize = 64; 604 data.blocks = 1; 605 data.flags = MMC_DATA_READ; 606 607 return mmc_send_cmd(mmc, &cmd, &data); 608 } 609 610 611 static int sd_change_freq(struct mmc *mmc) 612 { 613 int err; 614 struct mmc_cmd cmd; 615 ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2); 616 ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16); 617 struct mmc_data data; 618 int timeout; 619 620 mmc->card_caps = 0; 621 622 if (mmc_host_is_spi(mmc)) 623 return 0; 624 625 /* Read the SCR to find out if this card supports higher speeds */ 626 cmd.cmdidx = MMC_CMD_APP_CMD; 627 cmd.resp_type = MMC_RSP_R1; 628 cmd.cmdarg = mmc->rca << 16; 629 630 err = mmc_send_cmd(mmc, &cmd, NULL); 631 632 if (err) 633 return err; 634 635 cmd.cmdidx = SD_CMD_APP_SEND_SCR; 636 cmd.resp_type = MMC_RSP_R1; 637 cmd.cmdarg = 0; 638 639 timeout = 3; 640 641 retry_scr: 642 data.dest = (char *)scr; 643 data.blocksize = 8; 644 data.blocks = 1; 645 data.flags = MMC_DATA_READ; 646 647 err = mmc_send_cmd(mmc, &cmd, &data); 648 649 if (err) { 650 if (timeout--) 651 goto retry_scr; 652 653 return err; 654 } 655 656 mmc->scr[0] = __be32_to_cpu(scr[0]); 657 mmc->scr[1] = __be32_to_cpu(scr[1]); 658 659 switch ((mmc->scr[0] >> 24) & 0xf) { 660 case 0: 661 mmc->version = SD_VERSION_1_0; 662 break; 663 case 1: 664 mmc->version = SD_VERSION_1_10; 665 break; 666 case 2: 667 mmc->version = SD_VERSION_2; 668 if ((mmc->scr[0] >> 15) & 0x1) 669 mmc->version = SD_VERSION_3; 670 break; 671 default: 672 mmc->version = SD_VERSION_1_0; 673 break; 674 } 675 676 if (mmc->scr[0] & SD_DATA_4BIT) 677 mmc->card_caps |= MMC_MODE_4BIT; 678 679 /* Version 1.0 doesn't support switching */ 680 if (mmc->version == SD_VERSION_1_0) 681 return 0; 682 683 timeout = 4; 684 while (timeout--) { 685 err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1, 686 (u8 *)switch_status); 687 688 if (err) 689 return err; 690 691 /* The high-speed function is busy. Try again */ 692 if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY)) 693 break; 694 } 695 696 /* If high-speed isn't supported, we return */ 697 if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED)) 698 return 0; 699 700 /* 701 * If the host doesn't support SD_HIGHSPEED, do not switch card to 702 * HIGHSPEED mode even if the card support SD_HIGHSPPED. 703 * This can avoid furthur problem when the card runs in different 704 * mode between the host. 705 */ 706 if (!((mmc->host_caps & MMC_MODE_HS_52MHz) && 707 (mmc->host_caps & MMC_MODE_HS))) 708 return 0; 709 710 err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status); 711 712 if (err) 713 return err; 714 715 if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000) 716 mmc->card_caps |= MMC_MODE_HS; 717 718 return 0; 719 } 720 721 /* frequency bases */ 722 /* divided by 10 to be nice to platforms without floating point */ 723 static const int fbase[] = { 724 10000, 725 100000, 726 1000000, 727 10000000, 728 }; 729 730 /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice 731 * to platforms without floating point. 732 */ 733 static const int multipliers[] = { 734 0, /* reserved */ 735 10, 736 12, 737 13, 738 15, 739 20, 740 25, 741 30, 742 35, 743 40, 744 45, 745 50, 746 55, 747 60, 748 70, 749 80, 750 }; 751 752 static void mmc_set_ios(struct mmc *mmc) 753 { 754 mmc->set_ios(mmc); 755 } 756 757 void mmc_set_clock(struct mmc *mmc, uint clock) 758 { 759 if (clock > mmc->f_max) 760 clock = mmc->f_max; 761 762 if (clock < mmc->f_min) 763 clock = mmc->f_min; 764 765 mmc->clock = clock; 766 767 mmc_set_ios(mmc); 768 } 769 770 static void mmc_set_bus_width(struct mmc *mmc, uint width) 771 { 772 mmc->bus_width = width; 773 774 mmc_set_ios(mmc); 775 } 776 777 static int mmc_startup(struct mmc *mmc) 778 { 779 int err, i; 780 uint mult, freq; 781 u64 cmult, csize, capacity; 782 struct mmc_cmd cmd; 783 ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); 784 ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN); 785 int timeout = 1000; 786 787 #ifdef CONFIG_MMC_SPI_CRC_ON 788 if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */ 789 cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF; 790 cmd.resp_type = MMC_RSP_R1; 791 cmd.cmdarg = 1; 792 err = mmc_send_cmd(mmc, &cmd, NULL); 793 794 if (err) 795 return err; 796 } 797 #endif 798 799 /* Put the Card in Identify Mode */ 800 cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID : 801 MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */ 802 cmd.resp_type = MMC_RSP_R2; 803 cmd.cmdarg = 0; 804 805 err = mmc_send_cmd(mmc, &cmd, NULL); 806 807 if (err) 808 return err; 809 810 memcpy(mmc->cid, cmd.response, 16); 811 812 /* 813 * For MMC cards, set the Relative Address. 814 * For SD cards, get the Relatvie Address. 815 * This also puts the cards into Standby State 816 */ 817 if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ 818 cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR; 819 cmd.cmdarg = mmc->rca << 16; 820 cmd.resp_type = MMC_RSP_R6; 821 822 err = mmc_send_cmd(mmc, &cmd, NULL); 823 824 if (err) 825 return err; 826 827 if (IS_SD(mmc)) 828 mmc->rca = (cmd.response[0] >> 16) & 0xffff; 829 } 830 831 /* Get the Card-Specific Data */ 832 cmd.cmdidx = MMC_CMD_SEND_CSD; 833 cmd.resp_type = MMC_RSP_R2; 834 cmd.cmdarg = mmc->rca << 16; 835 836 err = mmc_send_cmd(mmc, &cmd, NULL); 837 838 /* Waiting for the ready status */ 839 mmc_send_status(mmc, timeout); 840 841 if (err) 842 return err; 843 844 mmc->csd[0] = cmd.response[0]; 845 mmc->csd[1] = cmd.response[1]; 846 mmc->csd[2] = cmd.response[2]; 847 mmc->csd[3] = cmd.response[3]; 848 849 if (mmc->version == MMC_VERSION_UNKNOWN) { 850 int version = (cmd.response[0] >> 26) & 0xf; 851 852 switch (version) { 853 case 0: 854 mmc->version = MMC_VERSION_1_2; 855 break; 856 case 1: 857 mmc->version = MMC_VERSION_1_4; 858 break; 859 case 2: 860 mmc->version = MMC_VERSION_2_2; 861 break; 862 case 3: 863 mmc->version = MMC_VERSION_3; 864 break; 865 case 4: 866 mmc->version = MMC_VERSION_4; 867 break; 868 default: 869 mmc->version = MMC_VERSION_1_2; 870 break; 871 } 872 } 873 874 /* divide frequency by 10, since the mults are 10x bigger */ 875 freq = fbase[(cmd.response[0] & 0x7)]; 876 mult = multipliers[((cmd.response[0] >> 3) & 0xf)]; 877 878 mmc->tran_speed = freq * mult; 879 880 mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf); 881 882 if (IS_SD(mmc)) 883 mmc->write_bl_len = mmc->read_bl_len; 884 else 885 mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf); 886 887 if (mmc->high_capacity) { 888 csize = (mmc->csd[1] & 0x3f) << 16 889 | (mmc->csd[2] & 0xffff0000) >> 16; 890 cmult = 8; 891 } else { 892 csize = (mmc->csd[1] & 0x3ff) << 2 893 | (mmc->csd[2] & 0xc0000000) >> 30; 894 cmult = (mmc->csd[2] & 0x00038000) >> 15; 895 } 896 897 mmc->capacity_user = (csize + 1) << (cmult + 2); 898 mmc->capacity_user *= mmc->read_bl_len; 899 mmc->capacity_boot = 0; 900 mmc->capacity_rpmb = 0; 901 for (i = 0; i < 4; i++) 902 mmc->capacity_gp[i] = 0; 903 904 if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN) 905 mmc->read_bl_len = MMC_MAX_BLOCK_LEN; 906 907 if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN) 908 mmc->write_bl_len = MMC_MAX_BLOCK_LEN; 909 910 /* Select the card, and put it into Transfer Mode */ 911 if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ 912 cmd.cmdidx = MMC_CMD_SELECT_CARD; 913 cmd.resp_type = MMC_RSP_R1; 914 cmd.cmdarg = mmc->rca << 16; 915 err = mmc_send_cmd(mmc, &cmd, NULL); 916 917 if (err) 918 return err; 919 } 920 921 /* 922 * For SD, its erase group is always one sector 923 */ 924 mmc->erase_grp_size = 1; 925 mmc->part_config = MMCPART_NOAVAILABLE; 926 if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) { 927 /* check ext_csd version and capacity */ 928 err = mmc_send_ext_csd(mmc, ext_csd); 929 if (!err && (ext_csd[EXT_CSD_REV] >= 2)) { 930 /* 931 * According to the JEDEC Standard, the value of 932 * ext_csd's capacity is valid if the value is more 933 * than 2GB 934 */ 935 capacity = ext_csd[EXT_CSD_SEC_CNT] << 0 936 | ext_csd[EXT_CSD_SEC_CNT + 1] << 8 937 | ext_csd[EXT_CSD_SEC_CNT + 2] << 16 938 | ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 939 capacity *= MMC_MAX_BLOCK_LEN; 940 if ((capacity >> 20) > 2 * 1024) 941 mmc->capacity_user = capacity; 942 } 943 944 switch (ext_csd[EXT_CSD_REV]) { 945 case 1: 946 mmc->version = MMC_VERSION_4_1; 947 break; 948 case 2: 949 mmc->version = MMC_VERSION_4_2; 950 break; 951 case 3: 952 mmc->version = MMC_VERSION_4_3; 953 break; 954 case 5: 955 mmc->version = MMC_VERSION_4_41; 956 break; 957 case 6: 958 mmc->version = MMC_VERSION_4_5; 959 break; 960 } 961 962 /* 963 * Host needs to enable ERASE_GRP_DEF bit if device is 964 * partitioned. This bit will be lost every time after a reset 965 * or power off. This will affect erase size. 966 */ 967 if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) && 968 (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & PART_ENH_ATTRIB)) { 969 err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, 970 EXT_CSD_ERASE_GROUP_DEF, 1); 971 972 if (err) 973 return err; 974 975 /* Read out group size from ext_csd */ 976 mmc->erase_grp_size = 977 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 978 MMC_MAX_BLOCK_LEN * 1024; 979 } else { 980 /* Calculate the group size from the csd value. */ 981 int erase_gsz, erase_gmul; 982 erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10; 983 erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5; 984 mmc->erase_grp_size = (erase_gsz + 1) 985 * (erase_gmul + 1); 986 } 987 988 /* store the partition info of emmc */ 989 if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) || 990 ext_csd[EXT_CSD_BOOT_MULT]) 991 mmc->part_config = ext_csd[EXT_CSD_PART_CONF]; 992 993 mmc->capacity_boot = ext_csd[EXT_CSD_BOOT_MULT] << 17; 994 995 mmc->capacity_rpmb = ext_csd[EXT_CSD_RPMB_MULT] << 17; 996 997 for (i = 0; i < 4; i++) { 998 int idx = EXT_CSD_GP_SIZE_MULT + i * 3; 999 mmc->capacity_gp[i] = (ext_csd[idx + 2] << 16) + 1000 (ext_csd[idx + 1] << 8) + ext_csd[idx]; 1001 mmc->capacity_gp[i] *= 1002 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 1003 mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 1004 } 1005 } 1006 1007 err = mmc_set_capacity(mmc, mmc->part_num); 1008 if (err) 1009 return err; 1010 1011 if (IS_SD(mmc)) 1012 err = sd_change_freq(mmc); 1013 else 1014 err = mmc_change_freq(mmc); 1015 1016 if (err) 1017 return err; 1018 1019 /* Restrict card's capabilities by what the host can do */ 1020 mmc->card_caps &= mmc->host_caps; 1021 1022 if (IS_SD(mmc)) { 1023 if (mmc->card_caps & MMC_MODE_4BIT) { 1024 cmd.cmdidx = MMC_CMD_APP_CMD; 1025 cmd.resp_type = MMC_RSP_R1; 1026 cmd.cmdarg = mmc->rca << 16; 1027 1028 err = mmc_send_cmd(mmc, &cmd, NULL); 1029 if (err) 1030 return err; 1031 1032 cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH; 1033 cmd.resp_type = MMC_RSP_R1; 1034 cmd.cmdarg = 2; 1035 err = mmc_send_cmd(mmc, &cmd, NULL); 1036 if (err) 1037 return err; 1038 1039 mmc_set_bus_width(mmc, 4); 1040 } 1041 1042 if (mmc->card_caps & MMC_MODE_HS) 1043 mmc->tran_speed = 50000000; 1044 else 1045 mmc->tran_speed = 25000000; 1046 } else { 1047 int idx; 1048 1049 /* An array of possible bus widths in order of preference */ 1050 static unsigned ext_csd_bits[] = { 1051 EXT_CSD_BUS_WIDTH_8, 1052 EXT_CSD_BUS_WIDTH_4, 1053 EXT_CSD_BUS_WIDTH_1, 1054 }; 1055 1056 /* An array to map CSD bus widths to host cap bits */ 1057 static unsigned ext_to_hostcaps[] = { 1058 [EXT_CSD_BUS_WIDTH_4] = MMC_MODE_4BIT, 1059 [EXT_CSD_BUS_WIDTH_8] = MMC_MODE_8BIT, 1060 }; 1061 1062 /* An array to map chosen bus width to an integer */ 1063 static unsigned widths[] = { 1064 8, 4, 1, 1065 }; 1066 1067 for (idx=0; idx < ARRAY_SIZE(ext_csd_bits); idx++) { 1068 unsigned int extw = ext_csd_bits[idx]; 1069 1070 /* 1071 * Check to make sure the controller supports 1072 * this bus width, if it's more than 1 1073 */ 1074 if (extw != EXT_CSD_BUS_WIDTH_1 && 1075 !(mmc->host_caps & ext_to_hostcaps[extw])) 1076 continue; 1077 1078 err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, 1079 EXT_CSD_BUS_WIDTH, extw); 1080 1081 if (err) 1082 continue; 1083 1084 mmc_set_bus_width(mmc, widths[idx]); 1085 1086 err = mmc_send_ext_csd(mmc, test_csd); 1087 if (!err && ext_csd[EXT_CSD_PARTITIONING_SUPPORT] \ 1088 == test_csd[EXT_CSD_PARTITIONING_SUPPORT] 1089 && ext_csd[EXT_CSD_ERASE_GROUP_DEF] \ 1090 == test_csd[EXT_CSD_ERASE_GROUP_DEF] \ 1091 && ext_csd[EXT_CSD_REV] \ 1092 == test_csd[EXT_CSD_REV] 1093 && ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] \ 1094 == test_csd[EXT_CSD_HC_ERASE_GRP_SIZE] 1095 && memcmp(&ext_csd[EXT_CSD_SEC_CNT], \ 1096 &test_csd[EXT_CSD_SEC_CNT], 4) == 0) { 1097 1098 mmc->card_caps |= ext_to_hostcaps[extw]; 1099 break; 1100 } 1101 } 1102 1103 if (mmc->card_caps & MMC_MODE_HS) { 1104 if (mmc->card_caps & MMC_MODE_HS_52MHz) 1105 mmc->tran_speed = 52000000; 1106 else 1107 mmc->tran_speed = 26000000; 1108 } 1109 } 1110 1111 mmc_set_clock(mmc, mmc->tran_speed); 1112 1113 /* fill in device description */ 1114 mmc->block_dev.lun = 0; 1115 mmc->block_dev.type = 0; 1116 mmc->block_dev.blksz = mmc->read_bl_len; 1117 mmc->block_dev.log2blksz = LOG2(mmc->block_dev.blksz); 1118 mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len); 1119 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 1120 sprintf(mmc->block_dev.vendor, "Man %06x Snr %04x%04x", 1121 mmc->cid[0] >> 24, (mmc->cid[2] & 0xffff), 1122 (mmc->cid[3] >> 16) & 0xffff); 1123 sprintf(mmc->block_dev.product, "%c%c%c%c%c%c", mmc->cid[0] & 0xff, 1124 (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff, 1125 (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff, 1126 (mmc->cid[2] >> 24) & 0xff); 1127 sprintf(mmc->block_dev.revision, "%d.%d", (mmc->cid[2] >> 20) & 0xf, 1128 (mmc->cid[2] >> 16) & 0xf); 1129 #else 1130 mmc->block_dev.vendor[0] = 0; 1131 mmc->block_dev.product[0] = 0; 1132 mmc->block_dev.revision[0] = 0; 1133 #endif 1134 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBDISK_SUPPORT) 1135 init_part(&mmc->block_dev); 1136 #endif 1137 1138 return 0; 1139 } 1140 1141 static int mmc_send_if_cond(struct mmc *mmc) 1142 { 1143 struct mmc_cmd cmd; 1144 int err; 1145 1146 cmd.cmdidx = SD_CMD_SEND_IF_COND; 1147 /* We set the bit if the host supports voltages between 2.7 and 3.6 V */ 1148 cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa; 1149 cmd.resp_type = MMC_RSP_R7; 1150 1151 err = mmc_send_cmd(mmc, &cmd, NULL); 1152 1153 if (err) 1154 return err; 1155 1156 if ((cmd.response[0] & 0xff) != 0xaa) 1157 return UNUSABLE_ERR; 1158 else 1159 mmc->version = SD_VERSION_2; 1160 1161 return 0; 1162 } 1163 1164 int mmc_register(struct mmc *mmc) 1165 { 1166 /* Setup the universal parts of the block interface just once */ 1167 mmc->block_dev.if_type = IF_TYPE_MMC; 1168 mmc->block_dev.dev = cur_dev_num++; 1169 mmc->block_dev.removable = 1; 1170 mmc->block_dev.block_read = mmc_bread; 1171 mmc->block_dev.block_write = mmc_bwrite; 1172 mmc->block_dev.block_erase = mmc_berase; 1173 if (!mmc->b_max) 1174 mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; 1175 1176 INIT_LIST_HEAD (&mmc->link); 1177 1178 list_add_tail (&mmc->link, &mmc_devices); 1179 1180 return 0; 1181 } 1182 1183 #ifdef CONFIG_PARTITIONS 1184 block_dev_desc_t *mmc_get_dev(int dev) 1185 { 1186 struct mmc *mmc = find_mmc_device(dev); 1187 if (!mmc || mmc_init(mmc)) 1188 return NULL; 1189 1190 return &mmc->block_dev; 1191 } 1192 #endif 1193 1194 int mmc_start_init(struct mmc *mmc) 1195 { 1196 int err; 1197 1198 if (mmc_getcd(mmc) == 0) { 1199 mmc->has_init = 0; 1200 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 1201 printf("MMC: no card present\n"); 1202 #endif 1203 return NO_CARD_ERR; 1204 } 1205 1206 if (mmc->has_init) 1207 return 0; 1208 1209 err = mmc->init(mmc); 1210 1211 if (err) 1212 return err; 1213 1214 mmc_set_bus_width(mmc, 1); 1215 mmc_set_clock(mmc, 1); 1216 1217 /* Reset the Card */ 1218 err = mmc_go_idle(mmc); 1219 1220 if (err) 1221 return err; 1222 1223 /* The internal partition reset to user partition(0) at every CMD0*/ 1224 mmc->part_num = 0; 1225 1226 /* Test for SD version 2 */ 1227 err = mmc_send_if_cond(mmc); 1228 1229 /* Now try to get the SD card's operating condition */ 1230 err = sd_send_op_cond(mmc); 1231 1232 /* If the command timed out, we check for an MMC card */ 1233 if (err == TIMEOUT) { 1234 err = mmc_send_op_cond(mmc); 1235 1236 if (err && err != IN_PROGRESS) { 1237 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 1238 printf("Card did not respond to voltage select!\n"); 1239 #endif 1240 return UNUSABLE_ERR; 1241 } 1242 } 1243 1244 if (err == IN_PROGRESS) 1245 mmc->init_in_progress = 1; 1246 1247 return err; 1248 } 1249 1250 static int mmc_complete_init(struct mmc *mmc) 1251 { 1252 int err = 0; 1253 1254 if (mmc->op_cond_pending) 1255 err = mmc_complete_op_cond(mmc); 1256 1257 if (!err) 1258 err = mmc_startup(mmc); 1259 if (err) 1260 mmc->has_init = 0; 1261 else 1262 mmc->has_init = 1; 1263 mmc->init_in_progress = 0; 1264 return err; 1265 } 1266 1267 int mmc_init(struct mmc *mmc) 1268 { 1269 int err = IN_PROGRESS; 1270 unsigned start = get_timer(0); 1271 1272 if (mmc->has_init) 1273 return 0; 1274 if (!mmc->init_in_progress) 1275 err = mmc_start_init(mmc); 1276 1277 if (!err || err == IN_PROGRESS) 1278 err = mmc_complete_init(mmc); 1279 debug("%s: %d, time %lu\n", __func__, err, get_timer(start)); 1280 return err; 1281 } 1282 1283 /* 1284 * CPU and board-specific MMC initializations. Aliased function 1285 * signals caller to move on 1286 */ 1287 static int __def_mmc_init(bd_t *bis) 1288 { 1289 return -1; 1290 } 1291 1292 int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init"))); 1293 int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init"))); 1294 1295 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) 1296 1297 void print_mmc_devices(char separator) 1298 { 1299 struct mmc *m; 1300 struct list_head *entry; 1301 1302 list_for_each(entry, &mmc_devices) { 1303 m = list_entry(entry, struct mmc, link); 1304 1305 printf("%s: %d", m->name, m->block_dev.dev); 1306 1307 if (entry->next != &mmc_devices) 1308 printf("%c ", separator); 1309 } 1310 1311 printf("\n"); 1312 } 1313 1314 #else 1315 void print_mmc_devices(char separator) { } 1316 #endif 1317 1318 int get_mmc_num(void) 1319 { 1320 return cur_dev_num; 1321 } 1322 1323 void mmc_set_preinit(struct mmc *mmc, int preinit) 1324 { 1325 mmc->preinit = preinit; 1326 } 1327 1328 static void do_preinit(void) 1329 { 1330 struct mmc *m; 1331 struct list_head *entry; 1332 1333 list_for_each(entry, &mmc_devices) { 1334 m = list_entry(entry, struct mmc, link); 1335 1336 if (m->preinit) 1337 mmc_start_init(m); 1338 } 1339 } 1340 1341 1342 int mmc_initialize(bd_t *bis) 1343 { 1344 INIT_LIST_HEAD (&mmc_devices); 1345 cur_dev_num = 0; 1346 1347 if (board_mmc_init(bis) < 0) 1348 cpu_mmc_init(bis); 1349 1350 #ifndef CONFIG_SPL_BUILD 1351 print_mmc_devices(','); 1352 #endif 1353 1354 do_preinit(); 1355 return 0; 1356 } 1357 1358 #ifdef CONFIG_SUPPORT_EMMC_BOOT 1359 /* 1360 * This function changes the size of boot partition and the size of rpmb 1361 * partition present on EMMC devices. 1362 * 1363 * Input Parameters: 1364 * struct *mmc: pointer for the mmc device strcuture 1365 * bootsize: size of boot partition 1366 * rpmbsize: size of rpmb partition 1367 * 1368 * Returns 0 on success. 1369 */ 1370 1371 int mmc_boot_partition_size_change(struct mmc *mmc, unsigned long bootsize, 1372 unsigned long rpmbsize) 1373 { 1374 int err; 1375 struct mmc_cmd cmd; 1376 1377 /* Only use this command for raw EMMC moviNAND. Enter backdoor mode */ 1378 cmd.cmdidx = MMC_CMD_RES_MAN; 1379 cmd.resp_type = MMC_RSP_R1b; 1380 cmd.cmdarg = MMC_CMD62_ARG1; 1381 1382 err = mmc_send_cmd(mmc, &cmd, NULL); 1383 if (err) { 1384 debug("mmc_boot_partition_size_change: Error1 = %d\n", err); 1385 return err; 1386 } 1387 1388 /* Boot partition changing mode */ 1389 cmd.cmdidx = MMC_CMD_RES_MAN; 1390 cmd.resp_type = MMC_RSP_R1b; 1391 cmd.cmdarg = MMC_CMD62_ARG2; 1392 1393 err = mmc_send_cmd(mmc, &cmd, NULL); 1394 if (err) { 1395 debug("mmc_boot_partition_size_change: Error2 = %d\n", err); 1396 return err; 1397 } 1398 /* boot partition size is multiple of 128KB */ 1399 bootsize = (bootsize * 1024) / 128; 1400 1401 /* Arg: boot partition size */ 1402 cmd.cmdidx = MMC_CMD_RES_MAN; 1403 cmd.resp_type = MMC_RSP_R1b; 1404 cmd.cmdarg = bootsize; 1405 1406 err = mmc_send_cmd(mmc, &cmd, NULL); 1407 if (err) { 1408 debug("mmc_boot_partition_size_change: Error3 = %d\n", err); 1409 return err; 1410 } 1411 /* RPMB partition size is multiple of 128KB */ 1412 rpmbsize = (rpmbsize * 1024) / 128; 1413 /* Arg: RPMB partition size */ 1414 cmd.cmdidx = MMC_CMD_RES_MAN; 1415 cmd.resp_type = MMC_RSP_R1b; 1416 cmd.cmdarg = rpmbsize; 1417 1418 err = mmc_send_cmd(mmc, &cmd, NULL); 1419 if (err) { 1420 debug("mmc_boot_partition_size_change: Error4 = %d\n", err); 1421 return err; 1422 } 1423 return 0; 1424 } 1425 1426 /* 1427 * This function shall form and send the commands to open / close the 1428 * boot partition specified by user. 1429 * 1430 * Input Parameters: 1431 * ack: 0x0 - No boot acknowledge sent (default) 1432 * 0x1 - Boot acknowledge sent during boot operation 1433 * part_num: User selects boot data that will be sent to master 1434 * 0x0 - Device not boot enabled (default) 1435 * 0x1 - Boot partition 1 enabled for boot 1436 * 0x2 - Boot partition 2 enabled for boot 1437 * access: User selects partitions to access 1438 * 0x0 : No access to boot partition (default) 1439 * 0x1 : R/W boot partition 1 1440 * 0x2 : R/W boot partition 2 1441 * 0x3 : R/W Replay Protected Memory Block (RPMB) 1442 * 1443 * Returns 0 on success. 1444 */ 1445 int mmc_boot_part_access(struct mmc *mmc, u8 ack, u8 part_num, u8 access) 1446 { 1447 int err; 1448 struct mmc_cmd cmd; 1449 1450 /* Boot ack enable, boot partition enable , boot partition access */ 1451 cmd.cmdidx = MMC_CMD_SWITCH; 1452 cmd.resp_type = MMC_RSP_R1b; 1453 1454 cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1455 (EXT_CSD_PART_CONF << 16) | 1456 ((EXT_CSD_BOOT_ACK(ack) | 1457 EXT_CSD_BOOT_PART_NUM(part_num) | 1458 EXT_CSD_PARTITION_ACCESS(access)) << 8); 1459 1460 err = mmc_send_cmd(mmc, &cmd, NULL); 1461 if (err) { 1462 if (access) { 1463 debug("mmc boot partition#%d open fail:Error1 = %d\n", 1464 part_num, err); 1465 } else { 1466 debug("mmc boot partition#%d close fail:Error = %d\n", 1467 part_num, err); 1468 } 1469 return err; 1470 } 1471 1472 if (access) { 1473 /* 4bit transfer mode at booting time. */ 1474 cmd.cmdidx = MMC_CMD_SWITCH; 1475 cmd.resp_type = MMC_RSP_R1b; 1476 1477 cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1478 (EXT_CSD_BOOT_BUS_WIDTH << 16) | 1479 ((1 << 0) << 8); 1480 1481 err = mmc_send_cmd(mmc, &cmd, NULL); 1482 if (err) { 1483 debug("mmc boot partition#%d open fail:Error2 = %d\n", 1484 part_num, err); 1485 return err; 1486 } 1487 } 1488 return 0; 1489 } 1490 #endif 1491