xref: /openbmc/u-boot/drivers/misc/cros_ec.c (revision f9727161)
1 /*
2  * Chromium OS cros_ec driver
3  *
4  * Copyright (c) 2012 The Chromium OS Authors.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 /*
10  * The Matrix Keyboard Protocol driver handles talking to the keyboard
11  * controller chip. Mostly this is for keyboard functions, but some other
12  * things have slipped in, so we provide generic services to talk to the
13  * KBC.
14  */
15 
16 #include <common.h>
17 #include <command.h>
18 #include <i2c.h>
19 #include <cros_ec.h>
20 #include <fdtdec.h>
21 #include <malloc.h>
22 #include <spi.h>
23 #include <asm/io.h>
24 #include <asm-generic/gpio.h>
25 
26 #ifdef DEBUG_TRACE
27 #define debug_trace(fmt, b...)	debug(fmt, #b)
28 #else
29 #define debug_trace(fmt, b...)
30 #endif
31 
32 enum {
33 	/* Timeout waiting for a flash erase command to complete */
34 	CROS_EC_CMD_TIMEOUT_MS	= 5000,
35 	/* Timeout waiting for a synchronous hash to be recomputed */
36 	CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
37 };
38 
39 static struct cros_ec_dev static_dev, *last_dev;
40 
41 DECLARE_GLOBAL_DATA_PTR;
42 
43 /* Note: depends on enum ec_current_image */
44 static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"};
45 
46 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
47 {
48 #ifdef DEBUG
49 	int i;
50 
51 	printf("%s: ", name);
52 	if (cmd != -1)
53 		printf("cmd=%#x: ", cmd);
54 	for (i = 0; i < len; i++)
55 		printf("%02x ", data[i]);
56 	printf("\n");
57 #endif
58 }
59 
60 /*
61  * Calculate a simple 8-bit checksum of a data block
62  *
63  * @param data	Data block to checksum
64  * @param size	Size of data block in bytes
65  * @return checksum value (0 to 255)
66  */
67 int cros_ec_calc_checksum(const uint8_t *data, int size)
68 {
69 	int csum, i;
70 
71 	for (i = csum = 0; i < size; i++)
72 		csum += data[i];
73 	return csum & 0xff;
74 }
75 
76 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
77 			const void *dout, int dout_len,
78 			uint8_t **dinp, int din_len)
79 {
80 	int ret;
81 
82 	switch (dev->interface) {
83 #ifdef CONFIG_CROS_EC_SPI
84 	case CROS_EC_IF_SPI:
85 		ret = cros_ec_spi_command(dev, cmd, cmd_version,
86 					(const uint8_t *)dout, dout_len,
87 					dinp, din_len);
88 		break;
89 #endif
90 #ifdef CONFIG_CROS_EC_I2C
91 	case CROS_EC_IF_I2C:
92 		ret = cros_ec_i2c_command(dev, cmd, cmd_version,
93 					(const uint8_t *)dout, dout_len,
94 					dinp, din_len);
95 		break;
96 #endif
97 #ifdef CONFIG_CROS_EC_LPC
98 	case CROS_EC_IF_LPC:
99 		ret = cros_ec_lpc_command(dev, cmd, cmd_version,
100 					(const uint8_t *)dout, dout_len,
101 					dinp, din_len);
102 		break;
103 #endif
104 	case CROS_EC_IF_NONE:
105 	default:
106 		ret = -1;
107 	}
108 
109 	return ret;
110 }
111 
112 /**
113  * Send a command to the CROS-EC device and return the reply.
114  *
115  * The device's internal input/output buffers are used.
116  *
117  * @param dev		CROS-EC device
118  * @param cmd		Command to send (EC_CMD_...)
119  * @param cmd_version	Version of command to send (EC_VER_...)
120  * @param dout          Output data (may be NULL If dout_len=0)
121  * @param dout_len      Size of output data in bytes
122  * @param dinp          Response data (may be NULL If din_len=0).
123  *			If not NULL, it will be updated to point to the data
124  *			and will always be double word aligned (64-bits)
125  * @param din_len       Maximum size of response in bytes
126  * @return number of bytes in response, or -1 on error
127  */
128 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
129 		int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
130 		int din_len)
131 {
132 	uint8_t *din;
133 	int len;
134 
135 	if (cmd_version != 0 && !dev->cmd_version_is_supported) {
136 		debug("%s: Command version >0 unsupported\n", __func__);
137 		return -1;
138 	}
139 	len = send_command(dev, cmd, cmd_version, dout, dout_len,
140 				&din, din_len);
141 
142 	/* If the command doesn't complete, wait a while */
143 	if (len == -EC_RES_IN_PROGRESS) {
144 		struct ec_response_get_comms_status *resp;
145 		ulong start;
146 
147 		/* Wait for command to complete */
148 		start = get_timer(0);
149 		do {
150 			int ret;
151 
152 			mdelay(50);	/* Insert some reasonable delay */
153 			ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
154 					NULL, 0,
155 					(uint8_t **)&resp, sizeof(*resp));
156 			if (ret < 0)
157 				return ret;
158 
159 			if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
160 				debug("%s: Command %#02x timeout\n",
161 				      __func__, cmd);
162 				return -EC_RES_TIMEOUT;
163 			}
164 		} while (resp->flags & EC_COMMS_STATUS_PROCESSING);
165 
166 		/* OK it completed, so read the status response */
167 		/* not sure why it was 0 for the last argument */
168 		len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
169 				NULL, 0, &din, din_len);
170 	}
171 
172 	debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, *dinp);
173 	if (dinp) {
174 		/* If we have any data to return, it must be 64bit-aligned */
175 		assert(len <= 0 || !((uintptr_t)din & 7));
176 		*dinp = din;
177 	}
178 
179 	return len;
180 }
181 
182 /**
183  * Send a command to the CROS-EC device and return the reply.
184  *
185  * The device's internal input/output buffers are used.
186  *
187  * @param dev		CROS-EC device
188  * @param cmd		Command to send (EC_CMD_...)
189  * @param cmd_version	Version of command to send (EC_VER_...)
190  * @param dout          Output data (may be NULL If dout_len=0)
191  * @param dout_len      Size of output data in bytes
192  * @param din           Response data (may be NULL If din_len=0).
193  *			It not NULL, it is a place for ec_command() to copy the
194  *      data to.
195  * @param din_len       Maximum size of response in bytes
196  * @return number of bytes in response, or -1 on error
197  */
198 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
199 		      const void *dout, int dout_len,
200 		      void *din, int din_len)
201 {
202 	uint8_t *in_buffer;
203 	int len;
204 
205 	assert((din_len == 0) || din);
206 	len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
207 			&in_buffer, din_len);
208 	if (len > 0) {
209 		/*
210 		 * If we were asked to put it somewhere, do so, otherwise just
211 		 * disregard the result.
212 		 */
213 		if (din && in_buffer) {
214 			assert(len <= din_len);
215 			memmove(din, in_buffer, len);
216 		}
217 	}
218 	return len;
219 }
220 
221 int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan)
222 {
223 	if (ec_command(dev, EC_CMD_CROS_EC_STATE, 0, NULL, 0, scan,
224 		       sizeof(scan->data)) < sizeof(scan->data))
225 		return -1;
226 
227 	return 0;
228 }
229 
230 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
231 {
232 	struct ec_response_get_version *r;
233 
234 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
235 			(uint8_t **)&r, sizeof(*r)) < sizeof(*r))
236 		return -1;
237 
238 	if (maxlen > sizeof(r->version_string_ro))
239 		maxlen = sizeof(r->version_string_ro);
240 
241 	switch (r->current_image) {
242 	case EC_IMAGE_RO:
243 		memcpy(id, r->version_string_ro, maxlen);
244 		break;
245 	case EC_IMAGE_RW:
246 		memcpy(id, r->version_string_rw, maxlen);
247 		break;
248 	default:
249 		return -1;
250 	}
251 
252 	id[maxlen - 1] = '\0';
253 	return 0;
254 }
255 
256 int cros_ec_read_version(struct cros_ec_dev *dev,
257 		       struct ec_response_get_version **versionp)
258 {
259 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
260 			(uint8_t **)versionp, sizeof(**versionp))
261 			< sizeof(**versionp))
262 		return -1;
263 
264 	return 0;
265 }
266 
267 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
268 {
269 	if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
270 			(uint8_t **)strp, EC_HOST_PARAM_SIZE) < 0)
271 		return -1;
272 
273 	return 0;
274 }
275 
276 int cros_ec_read_current_image(struct cros_ec_dev *dev,
277 		enum ec_current_image *image)
278 {
279 	struct ec_response_get_version *r;
280 
281 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
282 			(uint8_t **)&r, sizeof(*r)) < sizeof(*r))
283 		return -1;
284 
285 	*image = r->current_image;
286 	return 0;
287 }
288 
289 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
290 				  struct ec_response_vboot_hash *hash)
291 {
292 	struct ec_params_vboot_hash p;
293 	ulong start;
294 
295 	start = get_timer(0);
296 	while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
297 		mdelay(50);	/* Insert some reasonable delay */
298 
299 		p.cmd = EC_VBOOT_HASH_GET;
300 		if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
301 		       hash, sizeof(*hash)) < 0)
302 			return -1;
303 
304 		if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
305 			debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
306 			return -EC_RES_TIMEOUT;
307 		}
308 	}
309 	return 0;
310 }
311 
312 
313 int cros_ec_read_hash(struct cros_ec_dev *dev,
314 		struct ec_response_vboot_hash *hash)
315 {
316 	struct ec_params_vboot_hash p;
317 	int rv;
318 
319 	p.cmd = EC_VBOOT_HASH_GET;
320 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
321 		       hash, sizeof(*hash)) < 0)
322 		return -1;
323 
324 	/* If the EC is busy calculating the hash, fidget until it's done. */
325 	rv = cros_ec_wait_on_hash_done(dev, hash);
326 	if (rv)
327 		return rv;
328 
329 	/* If the hash is valid, we're done. Otherwise, we have to kick it off
330 	 * again and wait for it to complete. Note that we explicitly assume
331 	 * that hashing zero bytes is always wrong, even though that would
332 	 * produce a valid hash value. */
333 	if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
334 		return 0;
335 
336 	debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
337 	      __func__, hash->status, hash->size);
338 
339 	p.cmd = EC_VBOOT_HASH_RECALC;
340 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
341 	p.nonce_size = 0;
342 	p.offset = EC_VBOOT_HASH_OFFSET_RW;
343 
344 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
345 		       hash, sizeof(*hash)) < 0)
346 		return -1;
347 
348 	rv = cros_ec_wait_on_hash_done(dev, hash);
349 	if (rv)
350 		return rv;
351 
352 	debug("%s: hash done\n", __func__);
353 
354 	return 0;
355 }
356 
357 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
358 {
359 	struct ec_params_vboot_hash p;
360 	struct ec_response_vboot_hash *hash;
361 
362 	/* We don't have an explict command for the EC to discard its current
363 	 * hash value, so we'll just tell it to calculate one that we know is
364 	 * wrong (we claim that hashing zero bytes is always invalid).
365 	 */
366 	p.cmd = EC_VBOOT_HASH_RECALC;
367 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
368 	p.nonce_size = 0;
369 	p.offset = 0;
370 	p.size = 0;
371 
372 	debug("%s:\n", __func__);
373 
374 	if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
375 		       (uint8_t **)&hash, sizeof(*hash)) < 0)
376 		return -1;
377 
378 	/* No need to wait for it to finish */
379 	return 0;
380 }
381 
382 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
383 		uint8_t flags)
384 {
385 	struct ec_params_reboot_ec p;
386 
387 	p.cmd = cmd;
388 	p.flags = flags;
389 
390 	if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
391 			< 0)
392 		return -1;
393 
394 	if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
395 		/*
396 		 * EC reboot will take place immediately so delay to allow it
397 		 * to complete.  Note that some reboot types (EC_REBOOT_COLD)
398 		 * will reboot the AP as well, in which case we won't actually
399 		 * get to this point.
400 		 */
401 		/*
402 		 * TODO(rspangler@chromium.org): Would be nice if we had a
403 		 * better way to determine when the reboot is complete.  Could
404 		 * we poll a memory-mapped LPC value?
405 		 */
406 		udelay(50000);
407 	}
408 
409 	return 0;
410 }
411 
412 int cros_ec_interrupt_pending(struct cros_ec_dev *dev)
413 {
414 	/* no interrupt support : always poll */
415 	if (!fdt_gpio_isvalid(&dev->ec_int))
416 		return 1;
417 
418 	return !gpio_get_value(dev->ec_int.gpio);
419 }
420 
421 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_cros_ec_info *info)
422 {
423 	if (ec_command(dev, EC_CMD_CROS_EC_INFO, 0, NULL, 0, info,
424 			sizeof(*info)) < sizeof(*info))
425 		return -1;
426 
427 	return 0;
428 }
429 
430 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
431 {
432 	struct ec_response_host_event_mask *resp;
433 
434 	/*
435 	 * Use the B copy of the event flags, because the main copy is already
436 	 * used by ACPI/SMI.
437 	 */
438 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
439 		       (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp))
440 		return -1;
441 
442 	if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
443 		return -1;
444 
445 	*events_ptr = resp->mask;
446 	return 0;
447 }
448 
449 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
450 {
451 	struct ec_params_host_event_mask params;
452 
453 	params.mask = events;
454 
455 	/*
456 	 * Use the B copy of the event flags, so it affects the data returned
457 	 * by cros_ec_get_host_events().
458 	 */
459 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
460 		       &params, sizeof(params), NULL, 0) < 0)
461 		return -1;
462 
463 	return 0;
464 }
465 
466 int cros_ec_flash_protect(struct cros_ec_dev *dev,
467 		       uint32_t set_mask, uint32_t set_flags,
468 		       struct ec_response_flash_protect *resp)
469 {
470 	struct ec_params_flash_protect params;
471 
472 	params.mask = set_mask;
473 	params.flags = set_flags;
474 
475 	if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
476 		       &params, sizeof(params),
477 		       resp, sizeof(*resp)) < sizeof(*resp))
478 		return -1;
479 
480 	return 0;
481 }
482 
483 static int cros_ec_check_version(struct cros_ec_dev *dev)
484 {
485 	struct ec_params_hello req;
486 	struct ec_response_hello *resp;
487 
488 #ifdef CONFIG_CROS_EC_LPC
489 	/* LPC has its own way of doing this */
490 	if (dev->interface == CROS_EC_IF_LPC)
491 		return cros_ec_lpc_check_version(dev);
492 #endif
493 
494 	/*
495 	 * TODO(sjg@chromium.org).
496 	 * There is a strange oddity here with the EC. We could just ignore
497 	 * the response, i.e. pass the last two parameters as NULL and 0.
498 	 * In this case we won't read back very many bytes from the EC.
499 	 * On the I2C bus the EC gets upset about this and will try to send
500 	 * the bytes anyway. This means that we will have to wait for that
501 	 * to complete before continuing with a new EC command.
502 	 *
503 	 * This problem is probably unique to the I2C bus.
504 	 *
505 	 * So for now, just read all the data anyway.
506 	 */
507 	dev->cmd_version_is_supported = 1;
508 	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
509 		       (uint8_t **)&resp, sizeof(*resp)) > 0) {
510 		/* It appears to understand new version commands */
511 		dev->cmd_version_is_supported = 1;
512 	} else {
513 		dev->cmd_version_is_supported = 0;
514 		if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req,
515 			      sizeof(req), (uint8_t **)&resp,
516 			      sizeof(*resp)) < 0) {
517 			debug("%s: Failed both old and new command style\n",
518 				__func__);
519 			return -1;
520 		}
521 	}
522 
523 	return 0;
524 }
525 
526 int cros_ec_test(struct cros_ec_dev *dev)
527 {
528 	struct ec_params_hello req;
529 	struct ec_response_hello *resp;
530 
531 	req.in_data = 0x12345678;
532 	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
533 		       (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
534 		printf("ec_command_inptr() returned error\n");
535 		return -1;
536 	}
537 	if (resp->out_data != req.in_data + 0x01020304) {
538 		printf("Received invalid handshake %x\n", resp->out_data);
539 		return -1;
540 	}
541 
542 	return 0;
543 }
544 
545 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
546 		      uint32_t *offset, uint32_t *size)
547 {
548 	struct ec_params_flash_region_info p;
549 	struct ec_response_flash_region_info *r;
550 	int ret;
551 
552 	p.region = region;
553 	ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
554 			 EC_VER_FLASH_REGION_INFO,
555 			 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
556 	if (ret != sizeof(*r))
557 		return -1;
558 
559 	if (offset)
560 		*offset = r->offset;
561 	if (size)
562 		*size = r->size;
563 
564 	return 0;
565 }
566 
567 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
568 {
569 	struct ec_params_flash_erase p;
570 
571 	p.offset = offset;
572 	p.size = size;
573 	return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
574 			NULL, 0);
575 }
576 
577 /**
578  * Write a single block to the flash
579  *
580  * Write a block of data to the EC flash. The size must not exceed the flash
581  * write block size which you can obtain from cros_ec_flash_write_burst_size().
582  *
583  * The offset starts at 0. You can obtain the region information from
584  * cros_ec_flash_offset() to find out where to write for a particular region.
585  *
586  * Attempting to write to the region where the EC is currently running from
587  * will result in an error.
588  *
589  * @param dev		CROS-EC device
590  * @param data		Pointer to data buffer to write
591  * @param offset	Offset within flash to write to.
592  * @param size		Number of bytes to write
593  * @return 0 if ok, -1 on error
594  */
595 static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
596 		const uint8_t *data, uint32_t offset, uint32_t size)
597 {
598 	struct ec_params_flash_write p;
599 
600 	p.offset = offset;
601 	p.size = size;
602 	assert(data && p.size <= sizeof(p.data));
603 	memcpy(p.data, data, p.size);
604 
605 	return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
606 			  &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1;
607 }
608 
609 /**
610  * Return optimal flash write burst size
611  */
612 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
613 {
614 	struct ec_params_flash_write p;
615 	return sizeof(p.data);
616 }
617 
618 /**
619  * Check if a block of data is erased (all 0xff)
620  *
621  * This function is useful when dealing with flash, for checking whether a
622  * data block is erased and thus does not need to be programmed.
623  *
624  * @param data		Pointer to data to check (must be word-aligned)
625  * @param size		Number of bytes to check (must be word-aligned)
626  * @return 0 if erased, non-zero if any word is not erased
627  */
628 static int cros_ec_data_is_erased(const uint32_t *data, int size)
629 {
630 	assert(!(size & 3));
631 	size /= sizeof(uint32_t);
632 	for (; size > 0; size -= 4, data++)
633 		if (*data != -1U)
634 			return 0;
635 
636 	return 1;
637 }
638 
639 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
640 		     uint32_t offset, uint32_t size)
641 {
642 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
643 	uint32_t end, off;
644 	int ret;
645 
646 	/*
647 	 * TODO: round up to the nearest multiple of write size.  Can get away
648 	 * without that on link right now because its write size is 4 bytes.
649 	 */
650 	end = offset + size;
651 	for (off = offset; off < end; off += burst, data += burst) {
652 		uint32_t todo;
653 
654 		/* If the data is empty, there is no point in programming it */
655 		todo = min(end - off, burst);
656 		if (dev->optimise_flash_write &&
657 				cros_ec_data_is_erased((uint32_t *)data, todo))
658 			continue;
659 
660 		ret = cros_ec_flash_write_block(dev, data, off, todo);
661 		if (ret)
662 			return ret;
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  * Read a single block from the flash
670  *
671  * Read a block of data from the EC flash. The size must not exceed the flash
672  * write block size which you can obtain from cros_ec_flash_write_burst_size().
673  *
674  * The offset starts at 0. You can obtain the region information from
675  * cros_ec_flash_offset() to find out where to read for a particular region.
676  *
677  * @param dev		CROS-EC device
678  * @param data		Pointer to data buffer to read into
679  * @param offset	Offset within flash to read from
680  * @param size		Number of bytes to read
681  * @return 0 if ok, -1 on error
682  */
683 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
684 				 uint32_t offset, uint32_t size)
685 {
686 	struct ec_params_flash_read p;
687 
688 	p.offset = offset;
689 	p.size = size;
690 
691 	return ec_command(dev, EC_CMD_FLASH_READ, 0,
692 			  &p, sizeof(p), data, size) >= 0 ? 0 : -1;
693 }
694 
695 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
696 		    uint32_t size)
697 {
698 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
699 	uint32_t end, off;
700 	int ret;
701 
702 	end = offset + size;
703 	for (off = offset; off < end; off += burst, data += burst) {
704 		ret = cros_ec_flash_read_block(dev, data, off,
705 					    min(end - off, burst));
706 		if (ret)
707 			return ret;
708 	}
709 
710 	return 0;
711 }
712 
713 int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
714 			 const uint8_t *image, int image_size)
715 {
716 	uint32_t rw_offset, rw_size;
717 	int ret;
718 
719 	if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
720 		return -1;
721 	if (image_size > rw_size)
722 		return -1;
723 
724 	/* Invalidate the existing hash, just in case the AP reboots
725 	 * unexpectedly during the update. If that happened, the EC RW firmware
726 	 * would be invalid, but the EC would still have the original hash.
727 	 */
728 	ret = cros_ec_invalidate_hash(dev);
729 	if (ret)
730 		return ret;
731 
732 	/*
733 	 * Erase the entire RW section, so that the EC doesn't see any garbage
734 	 * past the new image if it's smaller than the current image.
735 	 *
736 	 * TODO: could optimize this to erase just the current image, since
737 	 * presumably everything past that is 0xff's.  But would still need to
738 	 * round up to the nearest multiple of erase size.
739 	 */
740 	ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
741 	if (ret)
742 		return ret;
743 
744 	/* Write the image */
745 	ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
746 	if (ret)
747 		return ret;
748 
749 	return 0;
750 }
751 
752 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
753 {
754 	struct ec_params_vbnvcontext p;
755 	int len;
756 
757 	p.op = EC_VBNV_CONTEXT_OP_READ;
758 
759 	len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
760 			&p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
761 	if (len < EC_VBNV_BLOCK_SIZE)
762 		return -1;
763 
764 	return 0;
765 }
766 
767 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
768 {
769 	struct ec_params_vbnvcontext p;
770 	int len;
771 
772 	p.op = EC_VBNV_CONTEXT_OP_WRITE;
773 	memcpy(p.block, block, sizeof(p.block));
774 
775 	len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
776 			&p, sizeof(p), NULL, 0);
777 	if (len < 0)
778 		return -1;
779 
780 	return 0;
781 }
782 
783 int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state)
784 {
785 	struct ec_params_ldo_set params;
786 
787 	params.index = index;
788 	params.state = state;
789 
790 	if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0,
791 		       &params, sizeof(params),
792 		       NULL, 0))
793 		return -1;
794 
795 	return 0;
796 }
797 
798 int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state)
799 {
800 	struct ec_params_ldo_get params;
801 	struct ec_response_ldo_get *resp;
802 
803 	params.index = index;
804 
805 	if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0,
806 		       &params, sizeof(params),
807 		       (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp))
808 		return -1;
809 
810 	*state = resp->state;
811 
812 	return 0;
813 }
814 
815 /**
816  * Decode MBKP details from the device tree and allocate a suitable device.
817  *
818  * @param blob		Device tree blob
819  * @param node		Node to decode from
820  * @param devp		Returns a pointer to the new allocated device
821  * @return 0 if ok, -1 on error
822  */
823 static int cros_ec_decode_fdt(const void *blob, int node,
824 		struct cros_ec_dev **devp)
825 {
826 	enum fdt_compat_id compat;
827 	struct cros_ec_dev *dev;
828 	int parent;
829 
830 	/* See what type of parent we are inside (this is expensive) */
831 	parent = fdt_parent_offset(blob, node);
832 	if (parent < 0) {
833 		debug("%s: Cannot find node parent\n", __func__);
834 		return -1;
835 	}
836 
837 	dev = &static_dev;
838 	dev->node = node;
839 	dev->parent_node = parent;
840 
841 	compat = fdtdec_lookup(blob, parent);
842 	switch (compat) {
843 #ifdef CONFIG_CROS_EC_SPI
844 	case COMPAT_SAMSUNG_EXYNOS_SPI:
845 		dev->interface = CROS_EC_IF_SPI;
846 		if (cros_ec_spi_decode_fdt(dev, blob))
847 			return -1;
848 		break;
849 #endif
850 #ifdef CONFIG_CROS_EC_I2C
851 	case COMPAT_SAMSUNG_S3C2440_I2C:
852 		dev->interface = CROS_EC_IF_I2C;
853 		if (cros_ec_i2c_decode_fdt(dev, blob))
854 			return -1;
855 		break;
856 #endif
857 #ifdef CONFIG_CROS_EC_LPC
858 	case COMPAT_INTEL_LPC:
859 		dev->interface = CROS_EC_IF_LPC;
860 		break;
861 #endif
862 	default:
863 		debug("%s: Unknown compat id %d\n", __func__, compat);
864 		return -1;
865 	}
866 
867 	fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int);
868 	dev->optimise_flash_write = fdtdec_get_bool(blob, node,
869 						    "optimise-flash-write");
870 	*devp = dev;
871 
872 	return 0;
873 }
874 
875 int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp)
876 {
877 	char id[MSG_BYTES];
878 	struct cros_ec_dev *dev;
879 	int node = 0;
880 
881 	*cros_ecp = NULL;
882 	do {
883 		node = fdtdec_next_compatible(blob, node,
884 					      COMPAT_GOOGLE_CROS_EC);
885 		if (node < 0) {
886 			debug("%s: Node not found\n", __func__);
887 			return 0;
888 		}
889 	} while (!fdtdec_get_is_enabled(blob, node));
890 
891 	if (cros_ec_decode_fdt(blob, node, &dev)) {
892 		debug("%s: Failed to decode device.\n", __func__);
893 		return -CROS_EC_ERR_FDT_DECODE;
894 	}
895 
896 	switch (dev->interface) {
897 #ifdef CONFIG_CROS_EC_SPI
898 	case CROS_EC_IF_SPI:
899 		if (cros_ec_spi_init(dev, blob)) {
900 			debug("%s: Could not setup SPI interface\n", __func__);
901 			return -CROS_EC_ERR_DEV_INIT;
902 		}
903 		break;
904 #endif
905 #ifdef CONFIG_CROS_EC_I2C
906 	case CROS_EC_IF_I2C:
907 		if (cros_ec_i2c_init(dev, blob))
908 			return -CROS_EC_ERR_DEV_INIT;
909 		break;
910 #endif
911 #ifdef CONFIG_CROS_EC_LPC
912 	case CROS_EC_IF_LPC:
913 		if (cros_ec_lpc_init(dev, blob))
914 			return -CROS_EC_ERR_DEV_INIT;
915 		break;
916 #endif
917 	case CROS_EC_IF_NONE:
918 	default:
919 		return 0;
920 	}
921 
922 	/* we will poll the EC interrupt line */
923 	fdtdec_setup_gpio(&dev->ec_int);
924 	if (fdt_gpio_isvalid(&dev->ec_int))
925 		gpio_direction_input(dev->ec_int.gpio);
926 
927 	if (cros_ec_check_version(dev)) {
928 		debug("%s: Could not detect CROS-EC version\n", __func__);
929 		return -CROS_EC_ERR_CHECK_VERSION;
930 	}
931 
932 	if (cros_ec_read_id(dev, id, sizeof(id))) {
933 		debug("%s: Could not read KBC ID\n", __func__);
934 		return -CROS_EC_ERR_READ_ID;
935 	}
936 
937 	/* Remember this device for use by the cros_ec command */
938 	last_dev = *cros_ecp = dev;
939 	debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);
940 
941 	return 0;
942 }
943 
944 #ifdef CONFIG_CMD_CROS_EC
945 int cros_ec_decode_region(int argc, char * const argv[])
946 {
947 	if (argc > 0) {
948 		if (0 == strcmp(*argv, "rw"))
949 			return EC_FLASH_REGION_RW;
950 		else if (0 == strcmp(*argv, "ro"))
951 			return EC_FLASH_REGION_RO;
952 
953 		debug("%s: Invalid region '%s'\n", __func__, *argv);
954 	} else {
955 		debug("%s: Missing region parameter\n", __func__);
956 	}
957 
958 	return -1;
959 }
960 
961 /**
962  * Perform a flash read or write command
963  *
964  * @param dev		CROS-EC device to read/write
965  * @param is_write	1 do to a write, 0 to do a read
966  * @param argc		Number of arguments
967  * @param argv		Arguments (2 is region, 3 is address)
968  * @return 0 for ok, 1 for a usage error or -ve for ec command error
969  *	(negative EC_RES_...)
970  */
971 static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc,
972 			 char * const argv[])
973 {
974 	uint32_t offset, size = -1U, region_size;
975 	unsigned long addr;
976 	char *endp;
977 	int region;
978 	int ret;
979 
980 	region = cros_ec_decode_region(argc - 2, argv + 2);
981 	if (region == -1)
982 		return 1;
983 	if (argc < 4)
984 		return 1;
985 	addr = simple_strtoul(argv[3], &endp, 16);
986 	if (*argv[3] == 0 || *endp != 0)
987 		return 1;
988 	if (argc > 4) {
989 		size = simple_strtoul(argv[4], &endp, 16);
990 		if (*argv[4] == 0 || *endp != 0)
991 			return 1;
992 	}
993 
994 	ret = cros_ec_flash_offset(dev, region, &offset, &region_size);
995 	if (ret) {
996 		debug("%s: Could not read region info\n", __func__);
997 		return ret;
998 	}
999 	if (size == -1U)
1000 		size = region_size;
1001 
1002 	ret = is_write ?
1003 		cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) :
1004 		cros_ec_flash_read(dev, (uint8_t *)addr, offset, size);
1005 	if (ret) {
1006 		debug("%s: Could not %s region\n", __func__,
1007 		      is_write ? "write" : "read");
1008 		return ret;
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1015 {
1016 	struct cros_ec_dev *dev = last_dev;
1017 	const char *cmd;
1018 	int ret = 0;
1019 
1020 	if (argc < 2)
1021 		return CMD_RET_USAGE;
1022 
1023 	cmd = argv[1];
1024 	if (0 == strcmp("init", cmd)) {
1025 		ret = cros_ec_init(gd->fdt_blob, &dev);
1026 		if (ret) {
1027 			printf("Could not init cros_ec device (err %d)\n", ret);
1028 			return 1;
1029 		}
1030 		return 0;
1031 	}
1032 
1033 	/* Just use the last allocated device; there should be only one */
1034 	if (!last_dev) {
1035 		printf("No CROS-EC device available\n");
1036 		return 1;
1037 	}
1038 	if (0 == strcmp("id", cmd)) {
1039 		char id[MSG_BYTES];
1040 
1041 		if (cros_ec_read_id(dev, id, sizeof(id))) {
1042 			debug("%s: Could not read KBC ID\n", __func__);
1043 			return 1;
1044 		}
1045 		printf("%s\n", id);
1046 	} else if (0 == strcmp("info", cmd)) {
1047 		struct ec_response_cros_ec_info info;
1048 
1049 		if (cros_ec_info(dev, &info)) {
1050 			debug("%s: Could not read KBC info\n", __func__);
1051 			return 1;
1052 		}
1053 		printf("rows     = %u\n", info.rows);
1054 		printf("cols     = %u\n", info.cols);
1055 		printf("switches = %#x\n", info.switches);
1056 	} else if (0 == strcmp("curimage", cmd)) {
1057 		enum ec_current_image image;
1058 
1059 		if (cros_ec_read_current_image(dev, &image)) {
1060 			debug("%s: Could not read KBC image\n", __func__);
1061 			return 1;
1062 		}
1063 		printf("%d\n", image);
1064 	} else if (0 == strcmp("hash", cmd)) {
1065 		struct ec_response_vboot_hash hash;
1066 		int i;
1067 
1068 		if (cros_ec_read_hash(dev, &hash)) {
1069 			debug("%s: Could not read KBC hash\n", __func__);
1070 			return 1;
1071 		}
1072 
1073 		if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256)
1074 			printf("type:    SHA-256\n");
1075 		else
1076 			printf("type:    %d\n", hash.hash_type);
1077 
1078 		printf("offset:  0x%08x\n", hash.offset);
1079 		printf("size:    0x%08x\n", hash.size);
1080 
1081 		printf("digest:  ");
1082 		for (i = 0; i < hash.digest_size; i++)
1083 			printf("%02x", hash.hash_digest[i]);
1084 		printf("\n");
1085 	} else if (0 == strcmp("reboot", cmd)) {
1086 		int region;
1087 		enum ec_reboot_cmd cmd;
1088 
1089 		if (argc >= 3 && !strcmp(argv[2], "cold"))
1090 			cmd = EC_REBOOT_COLD;
1091 		else {
1092 			region = cros_ec_decode_region(argc - 2, argv + 2);
1093 			if (region == EC_FLASH_REGION_RO)
1094 				cmd = EC_REBOOT_JUMP_RO;
1095 			else if (region == EC_FLASH_REGION_RW)
1096 				cmd = EC_REBOOT_JUMP_RW;
1097 			else
1098 				return CMD_RET_USAGE;
1099 		}
1100 
1101 		if (cros_ec_reboot(dev, cmd, 0)) {
1102 			debug("%s: Could not reboot KBC\n", __func__);
1103 			return 1;
1104 		}
1105 	} else if (0 == strcmp("events", cmd)) {
1106 		uint32_t events;
1107 
1108 		if (cros_ec_get_host_events(dev, &events)) {
1109 			debug("%s: Could not read host events\n", __func__);
1110 			return 1;
1111 		}
1112 		printf("0x%08x\n", events);
1113 	} else if (0 == strcmp("clrevents", cmd)) {
1114 		uint32_t events = 0x7fffffff;
1115 
1116 		if (argc >= 3)
1117 			events = simple_strtol(argv[2], NULL, 0);
1118 
1119 		if (cros_ec_clear_host_events(dev, events)) {
1120 			debug("%s: Could not clear host events\n", __func__);
1121 			return 1;
1122 		}
1123 	} else if (0 == strcmp("read", cmd)) {
1124 		ret = do_read_write(dev, 0, argc, argv);
1125 		if (ret > 0)
1126 			return CMD_RET_USAGE;
1127 	} else if (0 == strcmp("write", cmd)) {
1128 		ret = do_read_write(dev, 1, argc, argv);
1129 		if (ret > 0)
1130 			return CMD_RET_USAGE;
1131 	} else if (0 == strcmp("erase", cmd)) {
1132 		int region = cros_ec_decode_region(argc - 2, argv + 2);
1133 		uint32_t offset, size;
1134 
1135 		if (region == -1)
1136 			return CMD_RET_USAGE;
1137 		if (cros_ec_flash_offset(dev, region, &offset, &size)) {
1138 			debug("%s: Could not read region info\n", __func__);
1139 			ret = -1;
1140 		} else {
1141 			ret = cros_ec_flash_erase(dev, offset, size);
1142 			if (ret) {
1143 				debug("%s: Could not erase region\n",
1144 				      __func__);
1145 			}
1146 		}
1147 	} else if (0 == strcmp("regioninfo", cmd)) {
1148 		int region = cros_ec_decode_region(argc - 2, argv + 2);
1149 		uint32_t offset, size;
1150 
1151 		if (region == -1)
1152 			return CMD_RET_USAGE;
1153 		ret = cros_ec_flash_offset(dev, region, &offset, &size);
1154 		if (ret) {
1155 			debug("%s: Could not read region info\n", __func__);
1156 		} else {
1157 			printf("Region: %s\n", region == EC_FLASH_REGION_RO ?
1158 					"RO" : "RW");
1159 			printf("Offset: %x\n", offset);
1160 			printf("Size:   %x\n", size);
1161 		}
1162 	} else if (0 == strcmp("vbnvcontext", cmd)) {
1163 		uint8_t block[EC_VBNV_BLOCK_SIZE];
1164 		char buf[3];
1165 		int i, len;
1166 		unsigned long result;
1167 
1168 		if (argc <= 2) {
1169 			ret = cros_ec_read_vbnvcontext(dev, block);
1170 			if (!ret) {
1171 				printf("vbnv_block: ");
1172 				for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++)
1173 					printf("%02x", block[i]);
1174 				putc('\n');
1175 			}
1176 		} else {
1177 			/*
1178 			 * TODO(clchiou): Move this to a utility function as
1179 			 * cmd_spi might want to call it.
1180 			 */
1181 			memset(block, 0, EC_VBNV_BLOCK_SIZE);
1182 			len = strlen(argv[2]);
1183 			buf[2] = '\0';
1184 			for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) {
1185 				if (i * 2 >= len)
1186 					break;
1187 				buf[0] = argv[2][i * 2];
1188 				if (i * 2 + 1 >= len)
1189 					buf[1] = '0';
1190 				else
1191 					buf[1] = argv[2][i * 2 + 1];
1192 				strict_strtoul(buf, 16, &result);
1193 				block[i] = result;
1194 			}
1195 			ret = cros_ec_write_vbnvcontext(dev, block);
1196 		}
1197 		if (ret) {
1198 			debug("%s: Could not %s VbNvContext\n", __func__,
1199 					argc <= 2 ?  "read" : "write");
1200 		}
1201 	} else if (0 == strcmp("test", cmd)) {
1202 		int result = cros_ec_test(dev);
1203 
1204 		if (result)
1205 			printf("Test failed with error %d\n", result);
1206 		else
1207 			puts("Test passed\n");
1208 	} else if (0 == strcmp("version", cmd)) {
1209 		struct ec_response_get_version *p;
1210 		char *build_string;
1211 
1212 		ret = cros_ec_read_version(dev, &p);
1213 		if (!ret) {
1214 			/* Print versions */
1215 			printf("RO version:    %1.*s\n",
1216 			       sizeof(p->version_string_ro),
1217 			       p->version_string_ro);
1218 			printf("RW version:    %1.*s\n",
1219 			       sizeof(p->version_string_rw),
1220 			       p->version_string_rw);
1221 			printf("Firmware copy: %s\n",
1222 				(p->current_image <
1223 					ARRAY_SIZE(ec_current_image_name) ?
1224 				ec_current_image_name[p->current_image] :
1225 				"?"));
1226 			ret = cros_ec_read_build_info(dev, &build_string);
1227 			if (!ret)
1228 				printf("Build info:    %s\n", build_string);
1229 		}
1230 	} else if (0 == strcmp("ldo", cmd)) {
1231 		uint8_t index, state;
1232 		char *endp;
1233 
1234 		if (argc < 3)
1235 			return CMD_RET_USAGE;
1236 		index = simple_strtoul(argv[2], &endp, 10);
1237 		if (*argv[2] == 0 || *endp != 0)
1238 			return CMD_RET_USAGE;
1239 		if (argc > 3) {
1240 			state = simple_strtoul(argv[3], &endp, 10);
1241 			if (*argv[3] == 0 || *endp != 0)
1242 				return CMD_RET_USAGE;
1243 			ret = cros_ec_set_ldo(dev, index, state);
1244 		} else {
1245 			ret = cros_ec_get_ldo(dev, index, &state);
1246 			if (!ret) {
1247 				printf("LDO%d: %s\n", index,
1248 					state == EC_LDO_STATE_ON ?
1249 					"on" : "off");
1250 			}
1251 		}
1252 
1253 		if (ret) {
1254 			debug("%s: Could not access LDO%d\n", __func__, index);
1255 			return ret;
1256 		}
1257 	} else {
1258 		return CMD_RET_USAGE;
1259 	}
1260 
1261 	if (ret < 0) {
1262 		printf("Error: CROS-EC command failed (error %d)\n", ret);
1263 		ret = 1;
1264 	}
1265 
1266 	return ret;
1267 }
1268 
1269 U_BOOT_CMD(
1270 	crosec,	5,	1,	do_cros_ec,
1271 	"CROS-EC utility command",
1272 	"init                Re-init CROS-EC (done on startup automatically)\n"
1273 	"crosec id                  Read CROS-EC ID\n"
1274 	"crosec info                Read CROS-EC info\n"
1275 	"crosec curimage            Read CROS-EC current image\n"
1276 	"crosec hash                Read CROS-EC hash\n"
1277 	"crosec reboot [rw | ro | cold]  Reboot CROS-EC\n"
1278 	"crosec events              Read CROS-EC host events\n"
1279 	"crosec clrevents [mask]    Clear CROS-EC host events\n"
1280 	"crosec regioninfo <ro|rw>  Read image info\n"
1281 	"crosec erase <ro|rw>       Erase EC image\n"
1282 	"crosec read <ro|rw> <addr> [<size>]   Read EC image\n"
1283 	"crosec write <ro|rw> <addr> [<size>]  Write EC image\n"
1284 	"crosec vbnvcontext [hexstring]        Read [write] VbNvContext from EC\n"
1285 	"crosec ldo <idx> [<state>] Switch/Read LDO state\n"
1286 	"crosec test                run tests on cros_ec\n"
1287 	"crosec version             Read CROS-EC version"
1288 );
1289 #endif
1290