1 /* 2 * Chromium OS cros_ec driver 3 * 4 * Copyright (c) 2012 The Chromium OS Authors. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 */ 8 9 /* 10 * This is the interface to the Chrome OS EC. It provides keyboard functions, 11 * power control and battery management. Quite a few other functions are 12 * provided to enable the EC software to be updated, talk to the EC's I2C bus 13 * and store a small amount of data in a memory which persists while the EC 14 * is not reset. 15 */ 16 17 #include <common.h> 18 #include <command.h> 19 #include <dm.h> 20 #include <i2c.h> 21 #include <cros_ec.h> 22 #include <fdtdec.h> 23 #include <malloc.h> 24 #include <spi.h> 25 #include <asm/errno.h> 26 #include <asm/io.h> 27 #include <asm-generic/gpio.h> 28 #include <dm/device-internal.h> 29 #include <dm/root.h> 30 #include <dm/uclass-internal.h> 31 32 #ifdef DEBUG_TRACE 33 #define debug_trace(fmt, b...) debug(fmt, #b) 34 #else 35 #define debug_trace(fmt, b...) 36 #endif 37 38 enum { 39 /* Timeout waiting for a flash erase command to complete */ 40 CROS_EC_CMD_TIMEOUT_MS = 5000, 41 /* Timeout waiting for a synchronous hash to be recomputed */ 42 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, 43 }; 44 45 DECLARE_GLOBAL_DATA_PTR; 46 47 /* Note: depends on enum ec_current_image */ 48 static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"}; 49 50 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) 51 { 52 #ifdef DEBUG 53 int i; 54 55 printf("%s: ", name); 56 if (cmd != -1) 57 printf("cmd=%#x: ", cmd); 58 for (i = 0; i < len; i++) 59 printf("%02x ", data[i]); 60 printf("\n"); 61 #endif 62 } 63 64 /* 65 * Calculate a simple 8-bit checksum of a data block 66 * 67 * @param data Data block to checksum 68 * @param size Size of data block in bytes 69 * @return checksum value (0 to 255) 70 */ 71 int cros_ec_calc_checksum(const uint8_t *data, int size) 72 { 73 int csum, i; 74 75 for (i = csum = 0; i < size; i++) 76 csum += data[i]; 77 return csum & 0xff; 78 } 79 80 /** 81 * Create a request packet for protocol version 3. 82 * 83 * The packet is stored in the device's internal output buffer. 84 * 85 * @param dev CROS-EC device 86 * @param cmd Command to send (EC_CMD_...) 87 * @param cmd_version Version of command to send (EC_VER_...) 88 * @param dout Output data (may be NULL If dout_len=0) 89 * @param dout_len Size of output data in bytes 90 * @return packet size in bytes, or <0 if error. 91 */ 92 static int create_proto3_request(struct cros_ec_dev *dev, 93 int cmd, int cmd_version, 94 const void *dout, int dout_len) 95 { 96 struct ec_host_request *rq = (struct ec_host_request *)dev->dout; 97 int out_bytes = dout_len + sizeof(*rq); 98 99 /* Fail if output size is too big */ 100 if (out_bytes > (int)sizeof(dev->dout)) { 101 debug("%s: Cannot send %d bytes\n", __func__, dout_len); 102 return -EC_RES_REQUEST_TRUNCATED; 103 } 104 105 /* Fill in request packet */ 106 rq->struct_version = EC_HOST_REQUEST_VERSION; 107 rq->checksum = 0; 108 rq->command = cmd; 109 rq->command_version = cmd_version; 110 rq->reserved = 0; 111 rq->data_len = dout_len; 112 113 /* Copy data after header */ 114 memcpy(rq + 1, dout, dout_len); 115 116 /* Write checksum field so the entire packet sums to 0 */ 117 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes)); 118 119 cros_ec_dump_data("out", cmd, dev->dout, out_bytes); 120 121 /* Return size of request packet */ 122 return out_bytes; 123 } 124 125 /** 126 * Prepare the device to receive a protocol version 3 response. 127 * 128 * @param dev CROS-EC device 129 * @param din_len Maximum size of response in bytes 130 * @return maximum expected number of bytes in response, or <0 if error. 131 */ 132 static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len) 133 { 134 int in_bytes = din_len + sizeof(struct ec_host_response); 135 136 /* Fail if input size is too big */ 137 if (in_bytes > (int)sizeof(dev->din)) { 138 debug("%s: Cannot receive %d bytes\n", __func__, din_len); 139 return -EC_RES_RESPONSE_TOO_BIG; 140 } 141 142 /* Return expected size of response packet */ 143 return in_bytes; 144 } 145 146 /** 147 * Handle a protocol version 3 response packet. 148 * 149 * The packet must already be stored in the device's internal input buffer. 150 * 151 * @param dev CROS-EC device 152 * @param dinp Returns pointer to response data 153 * @param din_len Maximum size of response in bytes 154 * @return number of bytes of response data, or <0 if error. Note that error 155 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they 156 * overlap!) 157 */ 158 static int handle_proto3_response(struct cros_ec_dev *dev, 159 uint8_t **dinp, int din_len) 160 { 161 struct ec_host_response *rs = (struct ec_host_response *)dev->din; 162 int in_bytes; 163 int csum; 164 165 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs)); 166 167 /* Check input data */ 168 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) { 169 debug("%s: EC response version mismatch\n", __func__); 170 return -EC_RES_INVALID_RESPONSE; 171 } 172 173 if (rs->reserved) { 174 debug("%s: EC response reserved != 0\n", __func__); 175 return -EC_RES_INVALID_RESPONSE; 176 } 177 178 if (rs->data_len > din_len) { 179 debug("%s: EC returned too much data\n", __func__); 180 return -EC_RES_RESPONSE_TOO_BIG; 181 } 182 183 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len); 184 185 /* Update in_bytes to actual data size */ 186 in_bytes = sizeof(*rs) + rs->data_len; 187 188 /* Verify checksum */ 189 csum = cros_ec_calc_checksum(dev->din, in_bytes); 190 if (csum) { 191 debug("%s: EC response checksum invalid: 0x%02x\n", __func__, 192 csum); 193 return -EC_RES_INVALID_CHECKSUM; 194 } 195 196 /* Return error result, if any */ 197 if (rs->result) 198 return -(int)rs->result; 199 200 /* If we're still here, set response data pointer and return length */ 201 *dinp = (uint8_t *)(rs + 1); 202 203 return rs->data_len; 204 } 205 206 static int send_command_proto3(struct cros_ec_dev *dev, 207 int cmd, int cmd_version, 208 const void *dout, int dout_len, 209 uint8_t **dinp, int din_len) 210 { 211 struct dm_cros_ec_ops *ops; 212 int out_bytes, in_bytes; 213 int rv; 214 215 /* Create request packet */ 216 out_bytes = create_proto3_request(dev, cmd, cmd_version, 217 dout, dout_len); 218 if (out_bytes < 0) 219 return out_bytes; 220 221 /* Prepare response buffer */ 222 in_bytes = prepare_proto3_response_buffer(dev, din_len); 223 if (in_bytes < 0) 224 return in_bytes; 225 226 ops = dm_cros_ec_get_ops(dev->dev); 227 rv = ops->packet ? ops->packet(dev->dev, out_bytes, in_bytes) : -ENOSYS; 228 if (rv < 0) 229 return rv; 230 231 /* Process the response */ 232 return handle_proto3_response(dev, dinp, din_len); 233 } 234 235 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 236 const void *dout, int dout_len, 237 uint8_t **dinp, int din_len) 238 { 239 struct dm_cros_ec_ops *ops; 240 int ret = -1; 241 242 /* Handle protocol version 3 support */ 243 if (dev->protocol_version == 3) { 244 return send_command_proto3(dev, cmd, cmd_version, 245 dout, dout_len, dinp, din_len); 246 } 247 248 ops = dm_cros_ec_get_ops(dev->dev); 249 ret = ops->command(dev->dev, cmd, cmd_version, 250 (const uint8_t *)dout, dout_len, dinp, din_len); 251 252 return ret; 253 } 254 255 /** 256 * Send a command to the CROS-EC device and return the reply. 257 * 258 * The device's internal input/output buffers are used. 259 * 260 * @param dev CROS-EC device 261 * @param cmd Command to send (EC_CMD_...) 262 * @param cmd_version Version of command to send (EC_VER_...) 263 * @param dout Output data (may be NULL If dout_len=0) 264 * @param dout_len Size of output data in bytes 265 * @param dinp Response data (may be NULL If din_len=0). 266 * If not NULL, it will be updated to point to the data 267 * and will always be double word aligned (64-bits) 268 * @param din_len Maximum size of response in bytes 269 * @return number of bytes in response, or -ve on error 270 */ 271 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd, 272 int cmd_version, const void *dout, int dout_len, uint8_t **dinp, 273 int din_len) 274 { 275 uint8_t *din = NULL; 276 int len; 277 278 len = send_command(dev, cmd, cmd_version, dout, dout_len, 279 &din, din_len); 280 281 /* If the command doesn't complete, wait a while */ 282 if (len == -EC_RES_IN_PROGRESS) { 283 struct ec_response_get_comms_status *resp = NULL; 284 ulong start; 285 286 /* Wait for command to complete */ 287 start = get_timer(0); 288 do { 289 int ret; 290 291 mdelay(50); /* Insert some reasonable delay */ 292 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0, 293 NULL, 0, 294 (uint8_t **)&resp, sizeof(*resp)); 295 if (ret < 0) 296 return ret; 297 298 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { 299 debug("%s: Command %#02x timeout\n", 300 __func__, cmd); 301 return -EC_RES_TIMEOUT; 302 } 303 } while (resp->flags & EC_COMMS_STATUS_PROCESSING); 304 305 /* OK it completed, so read the status response */ 306 /* not sure why it was 0 for the last argument */ 307 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0, 308 NULL, 0, &din, din_len); 309 } 310 311 debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, 312 dinp ? *dinp : NULL); 313 if (dinp) { 314 /* If we have any data to return, it must be 64bit-aligned */ 315 assert(len <= 0 || !((uintptr_t)din & 7)); 316 *dinp = din; 317 } 318 319 return len; 320 } 321 322 /** 323 * Send a command to the CROS-EC device and return the reply. 324 * 325 * The device's internal input/output buffers are used. 326 * 327 * @param dev CROS-EC device 328 * @param cmd Command to send (EC_CMD_...) 329 * @param cmd_version Version of command to send (EC_VER_...) 330 * @param dout Output data (may be NULL If dout_len=0) 331 * @param dout_len Size of output data in bytes 332 * @param din Response data (may be NULL If din_len=0). 333 * It not NULL, it is a place for ec_command() to copy the 334 * data to. 335 * @param din_len Maximum size of response in bytes 336 * @return number of bytes in response, or -ve on error 337 */ 338 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 339 const void *dout, int dout_len, 340 void *din, int din_len) 341 { 342 uint8_t *in_buffer; 343 int len; 344 345 assert((din_len == 0) || din); 346 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, 347 &in_buffer, din_len); 348 if (len > 0) { 349 /* 350 * If we were asked to put it somewhere, do so, otherwise just 351 * disregard the result. 352 */ 353 if (din && in_buffer) { 354 assert(len <= din_len); 355 memmove(din, in_buffer, len); 356 } 357 } 358 return len; 359 } 360 361 int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan) 362 { 363 if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan, 364 sizeof(scan->data)) != sizeof(scan->data)) 365 return -1; 366 367 return 0; 368 } 369 370 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen) 371 { 372 struct ec_response_get_version *r; 373 374 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 375 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 376 return -1; 377 378 if (maxlen > (int)sizeof(r->version_string_ro)) 379 maxlen = sizeof(r->version_string_ro); 380 381 switch (r->current_image) { 382 case EC_IMAGE_RO: 383 memcpy(id, r->version_string_ro, maxlen); 384 break; 385 case EC_IMAGE_RW: 386 memcpy(id, r->version_string_rw, maxlen); 387 break; 388 default: 389 return -1; 390 } 391 392 id[maxlen - 1] = '\0'; 393 return 0; 394 } 395 396 int cros_ec_read_version(struct cros_ec_dev *dev, 397 struct ec_response_get_version **versionp) 398 { 399 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 400 (uint8_t **)versionp, sizeof(**versionp)) 401 != sizeof(**versionp)) 402 return -1; 403 404 return 0; 405 } 406 407 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp) 408 { 409 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, 410 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0) 411 return -1; 412 413 return 0; 414 } 415 416 int cros_ec_read_current_image(struct cros_ec_dev *dev, 417 enum ec_current_image *image) 418 { 419 struct ec_response_get_version *r; 420 421 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 422 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 423 return -1; 424 425 *image = r->current_image; 426 return 0; 427 } 428 429 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev, 430 struct ec_response_vboot_hash *hash) 431 { 432 struct ec_params_vboot_hash p; 433 ulong start; 434 435 start = get_timer(0); 436 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { 437 mdelay(50); /* Insert some reasonable delay */ 438 439 p.cmd = EC_VBOOT_HASH_GET; 440 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 441 hash, sizeof(*hash)) < 0) 442 return -1; 443 444 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { 445 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); 446 return -EC_RES_TIMEOUT; 447 } 448 } 449 return 0; 450 } 451 452 453 int cros_ec_read_hash(struct cros_ec_dev *dev, 454 struct ec_response_vboot_hash *hash) 455 { 456 struct ec_params_vboot_hash p; 457 int rv; 458 459 p.cmd = EC_VBOOT_HASH_GET; 460 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 461 hash, sizeof(*hash)) < 0) 462 return -1; 463 464 /* If the EC is busy calculating the hash, fidget until it's done. */ 465 rv = cros_ec_wait_on_hash_done(dev, hash); 466 if (rv) 467 return rv; 468 469 /* If the hash is valid, we're done. Otherwise, we have to kick it off 470 * again and wait for it to complete. Note that we explicitly assume 471 * that hashing zero bytes is always wrong, even though that would 472 * produce a valid hash value. */ 473 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) 474 return 0; 475 476 debug("%s: No valid hash (status=%d size=%d). Compute one...\n", 477 __func__, hash->status, hash->size); 478 479 p.cmd = EC_VBOOT_HASH_START; 480 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 481 p.nonce_size = 0; 482 p.offset = EC_VBOOT_HASH_OFFSET_RW; 483 484 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 485 hash, sizeof(*hash)) < 0) 486 return -1; 487 488 rv = cros_ec_wait_on_hash_done(dev, hash); 489 if (rv) 490 return rv; 491 492 debug("%s: hash done\n", __func__); 493 494 return 0; 495 } 496 497 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev) 498 { 499 struct ec_params_vboot_hash p; 500 struct ec_response_vboot_hash *hash; 501 502 /* We don't have an explict command for the EC to discard its current 503 * hash value, so we'll just tell it to calculate one that we know is 504 * wrong (we claim that hashing zero bytes is always invalid). 505 */ 506 p.cmd = EC_VBOOT_HASH_RECALC; 507 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 508 p.nonce_size = 0; 509 p.offset = 0; 510 p.size = 0; 511 512 debug("%s:\n", __func__); 513 514 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 515 (uint8_t **)&hash, sizeof(*hash)) < 0) 516 return -1; 517 518 /* No need to wait for it to finish */ 519 return 0; 520 } 521 522 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd, 523 uint8_t flags) 524 { 525 struct ec_params_reboot_ec p; 526 527 p.cmd = cmd; 528 p.flags = flags; 529 530 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) 531 < 0) 532 return -1; 533 534 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { 535 /* 536 * EC reboot will take place immediately so delay to allow it 537 * to complete. Note that some reboot types (EC_REBOOT_COLD) 538 * will reboot the AP as well, in which case we won't actually 539 * get to this point. 540 */ 541 /* 542 * TODO(rspangler@chromium.org): Would be nice if we had a 543 * better way to determine when the reboot is complete. Could 544 * we poll a memory-mapped LPC value? 545 */ 546 udelay(50000); 547 } 548 549 return 0; 550 } 551 552 int cros_ec_interrupt_pending(struct cros_ec_dev *dev) 553 { 554 /* no interrupt support : always poll */ 555 if (!dm_gpio_is_valid(&dev->ec_int)) 556 return -ENOENT; 557 558 return dm_gpio_get_value(&dev->ec_int); 559 } 560 561 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info) 562 { 563 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info, 564 sizeof(*info)) != sizeof(*info)) 565 return -1; 566 567 return 0; 568 } 569 570 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr) 571 { 572 struct ec_response_host_event_mask *resp; 573 574 /* 575 * Use the B copy of the event flags, because the main copy is already 576 * used by ACPI/SMI. 577 */ 578 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, 579 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp)) 580 return -1; 581 582 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) 583 return -1; 584 585 *events_ptr = resp->mask; 586 return 0; 587 } 588 589 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events) 590 { 591 struct ec_params_host_event_mask params; 592 593 params.mask = events; 594 595 /* 596 * Use the B copy of the event flags, so it affects the data returned 597 * by cros_ec_get_host_events(). 598 */ 599 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, 600 ¶ms, sizeof(params), NULL, 0) < 0) 601 return -1; 602 603 return 0; 604 } 605 606 int cros_ec_flash_protect(struct cros_ec_dev *dev, 607 uint32_t set_mask, uint32_t set_flags, 608 struct ec_response_flash_protect *resp) 609 { 610 struct ec_params_flash_protect params; 611 612 params.mask = set_mask; 613 params.flags = set_flags; 614 615 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, 616 ¶ms, sizeof(params), 617 resp, sizeof(*resp)) != sizeof(*resp)) 618 return -1; 619 620 return 0; 621 } 622 623 static int cros_ec_check_version(struct cros_ec_dev *dev) 624 { 625 struct ec_params_hello req; 626 struct ec_response_hello *resp; 627 628 struct dm_cros_ec_ops *ops; 629 int ret; 630 631 ops = dm_cros_ec_get_ops(dev->dev); 632 if (ops->check_version) { 633 ret = ops->check_version(dev->dev); 634 if (ret) 635 return ret; 636 } 637 638 /* 639 * TODO(sjg@chromium.org). 640 * There is a strange oddity here with the EC. We could just ignore 641 * the response, i.e. pass the last two parameters as NULL and 0. 642 * In this case we won't read back very many bytes from the EC. 643 * On the I2C bus the EC gets upset about this and will try to send 644 * the bytes anyway. This means that we will have to wait for that 645 * to complete before continuing with a new EC command. 646 * 647 * This problem is probably unique to the I2C bus. 648 * 649 * So for now, just read all the data anyway. 650 */ 651 652 /* Try sending a version 3 packet */ 653 dev->protocol_version = 3; 654 req.in_data = 0; 655 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 656 (uint8_t **)&resp, sizeof(*resp)) > 0) { 657 return 0; 658 } 659 660 /* Try sending a version 2 packet */ 661 dev->protocol_version = 2; 662 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 663 (uint8_t **)&resp, sizeof(*resp)) > 0) { 664 return 0; 665 } 666 667 /* 668 * Fail if we're still here, since the EC doesn't understand any 669 * protcol version we speak. Version 1 interface without command 670 * version is no longer supported, and we don't know about any new 671 * protocol versions. 672 */ 673 dev->protocol_version = 0; 674 printf("%s: ERROR: old EC interface not supported\n", __func__); 675 return -1; 676 } 677 678 int cros_ec_test(struct cros_ec_dev *dev) 679 { 680 struct ec_params_hello req; 681 struct ec_response_hello *resp; 682 683 req.in_data = 0x12345678; 684 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 685 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { 686 printf("ec_command_inptr() returned error\n"); 687 return -1; 688 } 689 if (resp->out_data != req.in_data + 0x01020304) { 690 printf("Received invalid handshake %x\n", resp->out_data); 691 return -1; 692 } 693 694 return 0; 695 } 696 697 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region, 698 uint32_t *offset, uint32_t *size) 699 { 700 struct ec_params_flash_region_info p; 701 struct ec_response_flash_region_info *r; 702 int ret; 703 704 p.region = region; 705 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, 706 EC_VER_FLASH_REGION_INFO, 707 &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); 708 if (ret != sizeof(*r)) 709 return -1; 710 711 if (offset) 712 *offset = r->offset; 713 if (size) 714 *size = r->size; 715 716 return 0; 717 } 718 719 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size) 720 { 721 struct ec_params_flash_erase p; 722 723 p.offset = offset; 724 p.size = size; 725 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), 726 NULL, 0); 727 } 728 729 /** 730 * Write a single block to the flash 731 * 732 * Write a block of data to the EC flash. The size must not exceed the flash 733 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 734 * 735 * The offset starts at 0. You can obtain the region information from 736 * cros_ec_flash_offset() to find out where to write for a particular region. 737 * 738 * Attempting to write to the region where the EC is currently running from 739 * will result in an error. 740 * 741 * @param dev CROS-EC device 742 * @param data Pointer to data buffer to write 743 * @param offset Offset within flash to write to. 744 * @param size Number of bytes to write 745 * @return 0 if ok, -1 on error 746 */ 747 static int cros_ec_flash_write_block(struct cros_ec_dev *dev, 748 const uint8_t *data, uint32_t offset, uint32_t size) 749 { 750 struct ec_params_flash_write p; 751 752 p.offset = offset; 753 p.size = size; 754 assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE); 755 memcpy(&p + 1, data, p.size); 756 757 return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, 758 &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1; 759 } 760 761 /** 762 * Return optimal flash write burst size 763 */ 764 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev) 765 { 766 return EC_FLASH_WRITE_VER0_SIZE; 767 } 768 769 /** 770 * Check if a block of data is erased (all 0xff) 771 * 772 * This function is useful when dealing with flash, for checking whether a 773 * data block is erased and thus does not need to be programmed. 774 * 775 * @param data Pointer to data to check (must be word-aligned) 776 * @param size Number of bytes to check (must be word-aligned) 777 * @return 0 if erased, non-zero if any word is not erased 778 */ 779 static int cros_ec_data_is_erased(const uint32_t *data, int size) 780 { 781 assert(!(size & 3)); 782 size /= sizeof(uint32_t); 783 for (; size > 0; size -= 4, data++) 784 if (*data != -1U) 785 return 0; 786 787 return 1; 788 } 789 790 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data, 791 uint32_t offset, uint32_t size) 792 { 793 uint32_t burst = cros_ec_flash_write_burst_size(dev); 794 uint32_t end, off; 795 int ret; 796 797 /* 798 * TODO: round up to the nearest multiple of write size. Can get away 799 * without that on link right now because its write size is 4 bytes. 800 */ 801 end = offset + size; 802 for (off = offset; off < end; off += burst, data += burst) { 803 uint32_t todo; 804 805 /* If the data is empty, there is no point in programming it */ 806 todo = min(end - off, burst); 807 if (dev->optimise_flash_write && 808 cros_ec_data_is_erased((uint32_t *)data, todo)) 809 continue; 810 811 ret = cros_ec_flash_write_block(dev, data, off, todo); 812 if (ret) 813 return ret; 814 } 815 816 return 0; 817 } 818 819 /** 820 * Read a single block from the flash 821 * 822 * Read a block of data from the EC flash. The size must not exceed the flash 823 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 824 * 825 * The offset starts at 0. You can obtain the region information from 826 * cros_ec_flash_offset() to find out where to read for a particular region. 827 * 828 * @param dev CROS-EC device 829 * @param data Pointer to data buffer to read into 830 * @param offset Offset within flash to read from 831 * @param size Number of bytes to read 832 * @return 0 if ok, -1 on error 833 */ 834 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data, 835 uint32_t offset, uint32_t size) 836 { 837 struct ec_params_flash_read p; 838 839 p.offset = offset; 840 p.size = size; 841 842 return ec_command(dev, EC_CMD_FLASH_READ, 0, 843 &p, sizeof(p), data, size) >= 0 ? 0 : -1; 844 } 845 846 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset, 847 uint32_t size) 848 { 849 uint32_t burst = cros_ec_flash_write_burst_size(dev); 850 uint32_t end, off; 851 int ret; 852 853 end = offset + size; 854 for (off = offset; off < end; off += burst, data += burst) { 855 ret = cros_ec_flash_read_block(dev, data, off, 856 min(end - off, burst)); 857 if (ret) 858 return ret; 859 } 860 861 return 0; 862 } 863 864 int cros_ec_flash_update_rw(struct cros_ec_dev *dev, 865 const uint8_t *image, int image_size) 866 { 867 uint32_t rw_offset, rw_size; 868 int ret; 869 870 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size)) 871 return -1; 872 if (image_size > (int)rw_size) 873 return -1; 874 875 /* Invalidate the existing hash, just in case the AP reboots 876 * unexpectedly during the update. If that happened, the EC RW firmware 877 * would be invalid, but the EC would still have the original hash. 878 */ 879 ret = cros_ec_invalidate_hash(dev); 880 if (ret) 881 return ret; 882 883 /* 884 * Erase the entire RW section, so that the EC doesn't see any garbage 885 * past the new image if it's smaller than the current image. 886 * 887 * TODO: could optimize this to erase just the current image, since 888 * presumably everything past that is 0xff's. But would still need to 889 * round up to the nearest multiple of erase size. 890 */ 891 ret = cros_ec_flash_erase(dev, rw_offset, rw_size); 892 if (ret) 893 return ret; 894 895 /* Write the image */ 896 ret = cros_ec_flash_write(dev, image, rw_offset, image_size); 897 if (ret) 898 return ret; 899 900 return 0; 901 } 902 903 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block) 904 { 905 struct ec_params_vbnvcontext p; 906 int len; 907 908 p.op = EC_VBNV_CONTEXT_OP_READ; 909 910 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 911 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE); 912 if (len < EC_VBNV_BLOCK_SIZE) 913 return -1; 914 915 return 0; 916 } 917 918 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block) 919 { 920 struct ec_params_vbnvcontext p; 921 int len; 922 923 p.op = EC_VBNV_CONTEXT_OP_WRITE; 924 memcpy(p.block, block, sizeof(p.block)); 925 926 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 927 &p, sizeof(p), NULL, 0); 928 if (len < 0) 929 return -1; 930 931 return 0; 932 } 933 934 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state) 935 { 936 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 937 struct ec_params_ldo_set params; 938 939 params.index = index; 940 params.state = state; 941 942 if (ec_command_inptr(cdev, EC_CMD_LDO_SET, 0, ¶ms, sizeof(params), 943 NULL, 0)) 944 return -1; 945 946 return 0; 947 } 948 949 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state) 950 { 951 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 952 struct ec_params_ldo_get params; 953 struct ec_response_ldo_get *resp; 954 955 params.index = index; 956 957 if (ec_command_inptr(cdev, EC_CMD_LDO_GET, 0, ¶ms, sizeof(params), 958 (uint8_t **)&resp, sizeof(*resp)) != 959 sizeof(*resp)) 960 return -1; 961 962 *state = resp->state; 963 964 return 0; 965 } 966 967 int cros_ec_register(struct udevice *dev) 968 { 969 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 970 const void *blob = gd->fdt_blob; 971 int node = dev->of_offset; 972 char id[MSG_BYTES]; 973 974 cdev->dev = dev; 975 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int, 976 GPIOD_IS_IN); 977 cdev->optimise_flash_write = fdtdec_get_bool(blob, node, 978 "optimise-flash-write"); 979 980 if (cros_ec_check_version(cdev)) { 981 debug("%s: Could not detect CROS-EC version\n", __func__); 982 return -CROS_EC_ERR_CHECK_VERSION; 983 } 984 985 if (cros_ec_read_id(cdev, id, sizeof(id))) { 986 debug("%s: Could not read KBC ID\n", __func__); 987 return -CROS_EC_ERR_READ_ID; 988 } 989 990 /* Remember this device for use by the cros_ec command */ 991 debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n", 992 cdev->protocol_version, id); 993 994 return 0; 995 } 996 997 int cros_ec_decode_region(int argc, char * const argv[]) 998 { 999 if (argc > 0) { 1000 if (0 == strcmp(*argv, "rw")) 1001 return EC_FLASH_REGION_RW; 1002 else if (0 == strcmp(*argv, "ro")) 1003 return EC_FLASH_REGION_RO; 1004 1005 debug("%s: Invalid region '%s'\n", __func__, *argv); 1006 } else { 1007 debug("%s: Missing region parameter\n", __func__); 1008 } 1009 1010 return -1; 1011 } 1012 1013 int cros_ec_decode_ec_flash(const void *blob, int node, 1014 struct fdt_cros_ec *config) 1015 { 1016 int flash_node; 1017 1018 flash_node = fdt_subnode_offset(blob, node, "flash"); 1019 if (flash_node < 0) { 1020 debug("Failed to find flash node\n"); 1021 return -1; 1022 } 1023 1024 if (fdtdec_read_fmap_entry(blob, flash_node, "flash", 1025 &config->flash)) { 1026 debug("Failed to decode flash node in chrome-ec'\n"); 1027 return -1; 1028 } 1029 1030 config->flash_erase_value = fdtdec_get_int(blob, flash_node, 1031 "erase-value", -1); 1032 for (node = fdt_first_subnode(blob, flash_node); node >= 0; 1033 node = fdt_next_subnode(blob, node)) { 1034 const char *name = fdt_get_name(blob, node, NULL); 1035 enum ec_flash_region region; 1036 1037 if (0 == strcmp(name, "ro")) { 1038 region = EC_FLASH_REGION_RO; 1039 } else if (0 == strcmp(name, "rw")) { 1040 region = EC_FLASH_REGION_RW; 1041 } else if (0 == strcmp(name, "wp-ro")) { 1042 region = EC_FLASH_REGION_WP_RO; 1043 } else { 1044 debug("Unknown EC flash region name '%s'\n", name); 1045 return -1; 1046 } 1047 1048 if (fdtdec_read_fmap_entry(blob, node, "reg", 1049 &config->region[region])) { 1050 debug("Failed to decode flash region in chrome-ec'\n"); 1051 return -1; 1052 } 1053 } 1054 1055 return 0; 1056 } 1057 1058 int cros_ec_i2c_tunnel(struct udevice *dev, struct i2c_msg *in, int nmsgs) 1059 { 1060 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 1061 union { 1062 struct ec_params_i2c_passthru p; 1063 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1064 } params; 1065 union { 1066 struct ec_response_i2c_passthru r; 1067 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1068 } response; 1069 struct ec_params_i2c_passthru *p = ¶ms.p; 1070 struct ec_response_i2c_passthru *r = &response.r; 1071 struct ec_params_i2c_passthru_msg *msg; 1072 uint8_t *pdata, *read_ptr = NULL; 1073 int read_len; 1074 int size; 1075 int rv; 1076 int i; 1077 1078 p->port = 0; 1079 1080 p->num_msgs = nmsgs; 1081 size = sizeof(*p) + p->num_msgs * sizeof(*msg); 1082 1083 /* Create a message to write the register address and optional data */ 1084 pdata = (uint8_t *)p + size; 1085 1086 read_len = 0; 1087 for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) { 1088 bool is_read = in->flags & I2C_M_RD; 1089 1090 msg->addr_flags = in->addr; 1091 msg->len = in->len; 1092 if (is_read) { 1093 msg->addr_flags |= EC_I2C_FLAG_READ; 1094 read_len += in->len; 1095 read_ptr = in->buf; 1096 if (sizeof(*r) + read_len > sizeof(response)) { 1097 puts("Read length too big for buffer\n"); 1098 return -1; 1099 } 1100 } else { 1101 if (pdata - (uint8_t *)p + in->len > sizeof(params)) { 1102 puts("Params too large for buffer\n"); 1103 return -1; 1104 } 1105 memcpy(pdata, in->buf, in->len); 1106 pdata += in->len; 1107 } 1108 } 1109 1110 rv = ec_command(cdev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p, 1111 r, sizeof(*r) + read_len); 1112 if (rv < 0) 1113 return rv; 1114 1115 /* Parse response */ 1116 if (r->i2c_status & EC_I2C_STATUS_ERROR) { 1117 printf("Transfer failed with status=0x%x\n", r->i2c_status); 1118 return -1; 1119 } 1120 1121 if (rv < sizeof(*r) + read_len) { 1122 puts("Truncated read response\n"); 1123 return -1; 1124 } 1125 1126 /* We only support a single read message for each transfer */ 1127 if (read_len) 1128 memcpy(read_ptr, r->data, read_len); 1129 1130 return 0; 1131 } 1132 1133 #ifdef CONFIG_CMD_CROS_EC 1134 1135 /** 1136 * Perform a flash read or write command 1137 * 1138 * @param dev CROS-EC device to read/write 1139 * @param is_write 1 do to a write, 0 to do a read 1140 * @param argc Number of arguments 1141 * @param argv Arguments (2 is region, 3 is address) 1142 * @return 0 for ok, 1 for a usage error or -ve for ec command error 1143 * (negative EC_RES_...) 1144 */ 1145 static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc, 1146 char * const argv[]) 1147 { 1148 uint32_t offset, size = -1U, region_size; 1149 unsigned long addr; 1150 char *endp; 1151 int region; 1152 int ret; 1153 1154 region = cros_ec_decode_region(argc - 2, argv + 2); 1155 if (region == -1) 1156 return 1; 1157 if (argc < 4) 1158 return 1; 1159 addr = simple_strtoul(argv[3], &endp, 16); 1160 if (*argv[3] == 0 || *endp != 0) 1161 return 1; 1162 if (argc > 4) { 1163 size = simple_strtoul(argv[4], &endp, 16); 1164 if (*argv[4] == 0 || *endp != 0) 1165 return 1; 1166 } 1167 1168 ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size); 1169 if (ret) { 1170 debug("%s: Could not read region info\n", __func__); 1171 return ret; 1172 } 1173 if (size == -1U) 1174 size = region_size; 1175 1176 ret = is_write ? 1177 cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) : 1178 cros_ec_flash_read(dev, (uint8_t *)addr, offset, size); 1179 if (ret) { 1180 debug("%s: Could not %s region\n", __func__, 1181 is_write ? "write" : "read"); 1182 return ret; 1183 } 1184 1185 return 0; 1186 } 1187 1188 static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) 1189 { 1190 struct cros_ec_dev *dev; 1191 struct udevice *udev; 1192 const char *cmd; 1193 int ret = 0; 1194 1195 if (argc < 2) 1196 return CMD_RET_USAGE; 1197 1198 cmd = argv[1]; 1199 if (0 == strcmp("init", cmd)) { 1200 /* Remove any existing device */ 1201 ret = uclass_find_device(UCLASS_CROS_EC, 0, &udev); 1202 if (!ret) 1203 device_remove(udev); 1204 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev); 1205 if (ret) { 1206 printf("Could not init cros_ec device (err %d)\n", ret); 1207 return 1; 1208 } 1209 return 0; 1210 } 1211 1212 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev); 1213 if (ret) { 1214 printf("Cannot get cros-ec device (err=%d)\n", ret); 1215 return 1; 1216 } 1217 dev = dev_get_uclass_priv(udev); 1218 if (0 == strcmp("id", cmd)) { 1219 char id[MSG_BYTES]; 1220 1221 if (cros_ec_read_id(dev, id, sizeof(id))) { 1222 debug("%s: Could not read KBC ID\n", __func__); 1223 return 1; 1224 } 1225 printf("%s\n", id); 1226 } else if (0 == strcmp("info", cmd)) { 1227 struct ec_response_mkbp_info info; 1228 1229 if (cros_ec_info(dev, &info)) { 1230 debug("%s: Could not read KBC info\n", __func__); 1231 return 1; 1232 } 1233 printf("rows = %u\n", info.rows); 1234 printf("cols = %u\n", info.cols); 1235 printf("switches = %#x\n", info.switches); 1236 } else if (0 == strcmp("curimage", cmd)) { 1237 enum ec_current_image image; 1238 1239 if (cros_ec_read_current_image(dev, &image)) { 1240 debug("%s: Could not read KBC image\n", __func__); 1241 return 1; 1242 } 1243 printf("%d\n", image); 1244 } else if (0 == strcmp("hash", cmd)) { 1245 struct ec_response_vboot_hash hash; 1246 int i; 1247 1248 if (cros_ec_read_hash(dev, &hash)) { 1249 debug("%s: Could not read KBC hash\n", __func__); 1250 return 1; 1251 } 1252 1253 if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256) 1254 printf("type: SHA-256\n"); 1255 else 1256 printf("type: %d\n", hash.hash_type); 1257 1258 printf("offset: 0x%08x\n", hash.offset); 1259 printf("size: 0x%08x\n", hash.size); 1260 1261 printf("digest: "); 1262 for (i = 0; i < hash.digest_size; i++) 1263 printf("%02x", hash.hash_digest[i]); 1264 printf("\n"); 1265 } else if (0 == strcmp("reboot", cmd)) { 1266 int region; 1267 enum ec_reboot_cmd cmd; 1268 1269 if (argc >= 3 && !strcmp(argv[2], "cold")) 1270 cmd = EC_REBOOT_COLD; 1271 else { 1272 region = cros_ec_decode_region(argc - 2, argv + 2); 1273 if (region == EC_FLASH_REGION_RO) 1274 cmd = EC_REBOOT_JUMP_RO; 1275 else if (region == EC_FLASH_REGION_RW) 1276 cmd = EC_REBOOT_JUMP_RW; 1277 else 1278 return CMD_RET_USAGE; 1279 } 1280 1281 if (cros_ec_reboot(dev, cmd, 0)) { 1282 debug("%s: Could not reboot KBC\n", __func__); 1283 return 1; 1284 } 1285 } else if (0 == strcmp("events", cmd)) { 1286 uint32_t events; 1287 1288 if (cros_ec_get_host_events(dev, &events)) { 1289 debug("%s: Could not read host events\n", __func__); 1290 return 1; 1291 } 1292 printf("0x%08x\n", events); 1293 } else if (0 == strcmp("clrevents", cmd)) { 1294 uint32_t events = 0x7fffffff; 1295 1296 if (argc >= 3) 1297 events = simple_strtol(argv[2], NULL, 0); 1298 1299 if (cros_ec_clear_host_events(dev, events)) { 1300 debug("%s: Could not clear host events\n", __func__); 1301 return 1; 1302 } 1303 } else if (0 == strcmp("read", cmd)) { 1304 ret = do_read_write(dev, 0, argc, argv); 1305 if (ret > 0) 1306 return CMD_RET_USAGE; 1307 } else if (0 == strcmp("write", cmd)) { 1308 ret = do_read_write(dev, 1, argc, argv); 1309 if (ret > 0) 1310 return CMD_RET_USAGE; 1311 } else if (0 == strcmp("erase", cmd)) { 1312 int region = cros_ec_decode_region(argc - 2, argv + 2); 1313 uint32_t offset, size; 1314 1315 if (region == -1) 1316 return CMD_RET_USAGE; 1317 if (cros_ec_flash_offset(dev, region, &offset, &size)) { 1318 debug("%s: Could not read region info\n", __func__); 1319 ret = -1; 1320 } else { 1321 ret = cros_ec_flash_erase(dev, offset, size); 1322 if (ret) { 1323 debug("%s: Could not erase region\n", 1324 __func__); 1325 } 1326 } 1327 } else if (0 == strcmp("regioninfo", cmd)) { 1328 int region = cros_ec_decode_region(argc - 2, argv + 2); 1329 uint32_t offset, size; 1330 1331 if (region == -1) 1332 return CMD_RET_USAGE; 1333 ret = cros_ec_flash_offset(dev, region, &offset, &size); 1334 if (ret) { 1335 debug("%s: Could not read region info\n", __func__); 1336 } else { 1337 printf("Region: %s\n", region == EC_FLASH_REGION_RO ? 1338 "RO" : "RW"); 1339 printf("Offset: %x\n", offset); 1340 printf("Size: %x\n", size); 1341 } 1342 } else if (0 == strcmp("vbnvcontext", cmd)) { 1343 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1344 char buf[3]; 1345 int i, len; 1346 unsigned long result; 1347 1348 if (argc <= 2) { 1349 ret = cros_ec_read_vbnvcontext(dev, block); 1350 if (!ret) { 1351 printf("vbnv_block: "); 1352 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) 1353 printf("%02x", block[i]); 1354 putc('\n'); 1355 } 1356 } else { 1357 /* 1358 * TODO(clchiou): Move this to a utility function as 1359 * cmd_spi might want to call it. 1360 */ 1361 memset(block, 0, EC_VBNV_BLOCK_SIZE); 1362 len = strlen(argv[2]); 1363 buf[2] = '\0'; 1364 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) { 1365 if (i * 2 >= len) 1366 break; 1367 buf[0] = argv[2][i * 2]; 1368 if (i * 2 + 1 >= len) 1369 buf[1] = '0'; 1370 else 1371 buf[1] = argv[2][i * 2 + 1]; 1372 strict_strtoul(buf, 16, &result); 1373 block[i] = result; 1374 } 1375 ret = cros_ec_write_vbnvcontext(dev, block); 1376 } 1377 if (ret) { 1378 debug("%s: Could not %s VbNvContext\n", __func__, 1379 argc <= 2 ? "read" : "write"); 1380 } 1381 } else if (0 == strcmp("test", cmd)) { 1382 int result = cros_ec_test(dev); 1383 1384 if (result) 1385 printf("Test failed with error %d\n", result); 1386 else 1387 puts("Test passed\n"); 1388 } else if (0 == strcmp("version", cmd)) { 1389 struct ec_response_get_version *p; 1390 char *build_string; 1391 1392 ret = cros_ec_read_version(dev, &p); 1393 if (!ret) { 1394 /* Print versions */ 1395 printf("RO version: %1.*s\n", 1396 (int)sizeof(p->version_string_ro), 1397 p->version_string_ro); 1398 printf("RW version: %1.*s\n", 1399 (int)sizeof(p->version_string_rw), 1400 p->version_string_rw); 1401 printf("Firmware copy: %s\n", 1402 (p->current_image < 1403 ARRAY_SIZE(ec_current_image_name) ? 1404 ec_current_image_name[p->current_image] : 1405 "?")); 1406 ret = cros_ec_read_build_info(dev, &build_string); 1407 if (!ret) 1408 printf("Build info: %s\n", build_string); 1409 } 1410 } else if (0 == strcmp("ldo", cmd)) { 1411 uint8_t index, state; 1412 char *endp; 1413 1414 if (argc < 3) 1415 return CMD_RET_USAGE; 1416 index = simple_strtoul(argv[2], &endp, 10); 1417 if (*argv[2] == 0 || *endp != 0) 1418 return CMD_RET_USAGE; 1419 if (argc > 3) { 1420 state = simple_strtoul(argv[3], &endp, 10); 1421 if (*argv[3] == 0 || *endp != 0) 1422 return CMD_RET_USAGE; 1423 ret = cros_ec_set_ldo(udev, index, state); 1424 } else { 1425 ret = cros_ec_get_ldo(udev, index, &state); 1426 if (!ret) { 1427 printf("LDO%d: %s\n", index, 1428 state == EC_LDO_STATE_ON ? 1429 "on" : "off"); 1430 } 1431 } 1432 1433 if (ret) { 1434 debug("%s: Could not access LDO%d\n", __func__, index); 1435 return ret; 1436 } 1437 } else { 1438 return CMD_RET_USAGE; 1439 } 1440 1441 if (ret < 0) { 1442 printf("Error: CROS-EC command failed (error %d)\n", ret); 1443 ret = 1; 1444 } 1445 1446 return ret; 1447 } 1448 1449 int cros_ec_post_bind(struct udevice *dev) 1450 { 1451 /* Scan for available EC devices (e.g. I2C tunnel) */ 1452 return dm_scan_fdt_node(dev, gd->fdt_blob, dev->of_offset, false); 1453 } 1454 1455 U_BOOT_CMD( 1456 crosec, 6, 1, do_cros_ec, 1457 "CROS-EC utility command", 1458 "init Re-init CROS-EC (done on startup automatically)\n" 1459 "crosec id Read CROS-EC ID\n" 1460 "crosec info Read CROS-EC info\n" 1461 "crosec curimage Read CROS-EC current image\n" 1462 "crosec hash Read CROS-EC hash\n" 1463 "crosec reboot [rw | ro | cold] Reboot CROS-EC\n" 1464 "crosec events Read CROS-EC host events\n" 1465 "crosec clrevents [mask] Clear CROS-EC host events\n" 1466 "crosec regioninfo <ro|rw> Read image info\n" 1467 "crosec erase <ro|rw> Erase EC image\n" 1468 "crosec read <ro|rw> <addr> [<size>] Read EC image\n" 1469 "crosec write <ro|rw> <addr> [<size>] Write EC image\n" 1470 "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n" 1471 "crosec ldo <idx> [<state>] Switch/Read LDO state\n" 1472 "crosec test run tests on cros_ec\n" 1473 "crosec version Read CROS-EC version" 1474 ); 1475 #endif 1476 1477 UCLASS_DRIVER(cros_ec) = { 1478 .id = UCLASS_CROS_EC, 1479 .name = "cros_ec", 1480 .per_device_auto_alloc_size = sizeof(struct cros_ec_dev), 1481 .post_bind = cros_ec_post_bind, 1482 }; 1483