1 /* 2 * Chromium OS cros_ec driver 3 * 4 * Copyright (c) 2012 The Chromium OS Authors. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 */ 8 9 /* 10 * This is the interface to the Chrome OS EC. It provides keyboard functions, 11 * power control and battery management. Quite a few other functions are 12 * provided to enable the EC software to be updated, talk to the EC's I2C bus 13 * and store a small amount of data in a memory which persists while the EC 14 * is not reset. 15 */ 16 17 #include <common.h> 18 #include <command.h> 19 #include <dm.h> 20 #include <i2c.h> 21 #include <cros_ec.h> 22 #include <fdtdec.h> 23 #include <malloc.h> 24 #include <spi.h> 25 #include <asm/errno.h> 26 #include <asm/io.h> 27 #include <asm-generic/gpio.h> 28 #include <dm/device-internal.h> 29 #include <dm/uclass-internal.h> 30 31 #ifdef DEBUG_TRACE 32 #define debug_trace(fmt, b...) debug(fmt, #b) 33 #else 34 #define debug_trace(fmt, b...) 35 #endif 36 37 enum { 38 /* Timeout waiting for a flash erase command to complete */ 39 CROS_EC_CMD_TIMEOUT_MS = 5000, 40 /* Timeout waiting for a synchronous hash to be recomputed */ 41 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, 42 }; 43 44 DECLARE_GLOBAL_DATA_PTR; 45 46 /* Note: depends on enum ec_current_image */ 47 static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"}; 48 49 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) 50 { 51 #ifdef DEBUG 52 int i; 53 54 printf("%s: ", name); 55 if (cmd != -1) 56 printf("cmd=%#x: ", cmd); 57 for (i = 0; i < len; i++) 58 printf("%02x ", data[i]); 59 printf("\n"); 60 #endif 61 } 62 63 /* 64 * Calculate a simple 8-bit checksum of a data block 65 * 66 * @param data Data block to checksum 67 * @param size Size of data block in bytes 68 * @return checksum value (0 to 255) 69 */ 70 int cros_ec_calc_checksum(const uint8_t *data, int size) 71 { 72 int csum, i; 73 74 for (i = csum = 0; i < size; i++) 75 csum += data[i]; 76 return csum & 0xff; 77 } 78 79 /** 80 * Create a request packet for protocol version 3. 81 * 82 * The packet is stored in the device's internal output buffer. 83 * 84 * @param dev CROS-EC device 85 * @param cmd Command to send (EC_CMD_...) 86 * @param cmd_version Version of command to send (EC_VER_...) 87 * @param dout Output data (may be NULL If dout_len=0) 88 * @param dout_len Size of output data in bytes 89 * @return packet size in bytes, or <0 if error. 90 */ 91 static int create_proto3_request(struct cros_ec_dev *dev, 92 int cmd, int cmd_version, 93 const void *dout, int dout_len) 94 { 95 struct ec_host_request *rq = (struct ec_host_request *)dev->dout; 96 int out_bytes = dout_len + sizeof(*rq); 97 98 /* Fail if output size is too big */ 99 if (out_bytes > (int)sizeof(dev->dout)) { 100 debug("%s: Cannot send %d bytes\n", __func__, dout_len); 101 return -EC_RES_REQUEST_TRUNCATED; 102 } 103 104 /* Fill in request packet */ 105 rq->struct_version = EC_HOST_REQUEST_VERSION; 106 rq->checksum = 0; 107 rq->command = cmd; 108 rq->command_version = cmd_version; 109 rq->reserved = 0; 110 rq->data_len = dout_len; 111 112 /* Copy data after header */ 113 memcpy(rq + 1, dout, dout_len); 114 115 /* Write checksum field so the entire packet sums to 0 */ 116 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes)); 117 118 cros_ec_dump_data("out", cmd, dev->dout, out_bytes); 119 120 /* Return size of request packet */ 121 return out_bytes; 122 } 123 124 /** 125 * Prepare the device to receive a protocol version 3 response. 126 * 127 * @param dev CROS-EC device 128 * @param din_len Maximum size of response in bytes 129 * @return maximum expected number of bytes in response, or <0 if error. 130 */ 131 static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len) 132 { 133 int in_bytes = din_len + sizeof(struct ec_host_response); 134 135 /* Fail if input size is too big */ 136 if (in_bytes > (int)sizeof(dev->din)) { 137 debug("%s: Cannot receive %d bytes\n", __func__, din_len); 138 return -EC_RES_RESPONSE_TOO_BIG; 139 } 140 141 /* Return expected size of response packet */ 142 return in_bytes; 143 } 144 145 /** 146 * Handle a protocol version 3 response packet. 147 * 148 * The packet must already be stored in the device's internal input buffer. 149 * 150 * @param dev CROS-EC device 151 * @param dinp Returns pointer to response data 152 * @param din_len Maximum size of response in bytes 153 * @return number of bytes of response data, or <0 if error. Note that error 154 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they 155 * overlap!) 156 */ 157 static int handle_proto3_response(struct cros_ec_dev *dev, 158 uint8_t **dinp, int din_len) 159 { 160 struct ec_host_response *rs = (struct ec_host_response *)dev->din; 161 int in_bytes; 162 int csum; 163 164 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs)); 165 166 /* Check input data */ 167 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) { 168 debug("%s: EC response version mismatch\n", __func__); 169 return -EC_RES_INVALID_RESPONSE; 170 } 171 172 if (rs->reserved) { 173 debug("%s: EC response reserved != 0\n", __func__); 174 return -EC_RES_INVALID_RESPONSE; 175 } 176 177 if (rs->data_len > din_len) { 178 debug("%s: EC returned too much data\n", __func__); 179 return -EC_RES_RESPONSE_TOO_BIG; 180 } 181 182 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len); 183 184 /* Update in_bytes to actual data size */ 185 in_bytes = sizeof(*rs) + rs->data_len; 186 187 /* Verify checksum */ 188 csum = cros_ec_calc_checksum(dev->din, in_bytes); 189 if (csum) { 190 debug("%s: EC response checksum invalid: 0x%02x\n", __func__, 191 csum); 192 return -EC_RES_INVALID_CHECKSUM; 193 } 194 195 /* Return error result, if any */ 196 if (rs->result) 197 return -(int)rs->result; 198 199 /* If we're still here, set response data pointer and return length */ 200 *dinp = (uint8_t *)(rs + 1); 201 202 return rs->data_len; 203 } 204 205 static int send_command_proto3(struct cros_ec_dev *dev, 206 int cmd, int cmd_version, 207 const void *dout, int dout_len, 208 uint8_t **dinp, int din_len) 209 { 210 struct dm_cros_ec_ops *ops; 211 int out_bytes, in_bytes; 212 int rv; 213 214 /* Create request packet */ 215 out_bytes = create_proto3_request(dev, cmd, cmd_version, 216 dout, dout_len); 217 if (out_bytes < 0) 218 return out_bytes; 219 220 /* Prepare response buffer */ 221 in_bytes = prepare_proto3_response_buffer(dev, din_len); 222 if (in_bytes < 0) 223 return in_bytes; 224 225 ops = dm_cros_ec_get_ops(dev->dev); 226 rv = ops->packet ? ops->packet(dev->dev, out_bytes, in_bytes) : -ENOSYS; 227 if (rv < 0) 228 return rv; 229 230 /* Process the response */ 231 return handle_proto3_response(dev, dinp, din_len); 232 } 233 234 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 235 const void *dout, int dout_len, 236 uint8_t **dinp, int din_len) 237 { 238 struct dm_cros_ec_ops *ops; 239 int ret = -1; 240 241 /* Handle protocol version 3 support */ 242 if (dev->protocol_version == 3) { 243 return send_command_proto3(dev, cmd, cmd_version, 244 dout, dout_len, dinp, din_len); 245 } 246 247 ops = dm_cros_ec_get_ops(dev->dev); 248 ret = ops->command(dev->dev, cmd, cmd_version, 249 (const uint8_t *)dout, dout_len, dinp, din_len); 250 251 return ret; 252 } 253 254 /** 255 * Send a command to the CROS-EC device and return the reply. 256 * 257 * The device's internal input/output buffers are used. 258 * 259 * @param dev CROS-EC device 260 * @param cmd Command to send (EC_CMD_...) 261 * @param cmd_version Version of command to send (EC_VER_...) 262 * @param dout Output data (may be NULL If dout_len=0) 263 * @param dout_len Size of output data in bytes 264 * @param dinp Response data (may be NULL If din_len=0). 265 * If not NULL, it will be updated to point to the data 266 * and will always be double word aligned (64-bits) 267 * @param din_len Maximum size of response in bytes 268 * @return number of bytes in response, or -ve on error 269 */ 270 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd, 271 int cmd_version, const void *dout, int dout_len, uint8_t **dinp, 272 int din_len) 273 { 274 uint8_t *din = NULL; 275 int len; 276 277 len = send_command(dev, cmd, cmd_version, dout, dout_len, 278 &din, din_len); 279 280 /* If the command doesn't complete, wait a while */ 281 if (len == -EC_RES_IN_PROGRESS) { 282 struct ec_response_get_comms_status *resp = NULL; 283 ulong start; 284 285 /* Wait for command to complete */ 286 start = get_timer(0); 287 do { 288 int ret; 289 290 mdelay(50); /* Insert some reasonable delay */ 291 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0, 292 NULL, 0, 293 (uint8_t **)&resp, sizeof(*resp)); 294 if (ret < 0) 295 return ret; 296 297 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { 298 debug("%s: Command %#02x timeout\n", 299 __func__, cmd); 300 return -EC_RES_TIMEOUT; 301 } 302 } while (resp->flags & EC_COMMS_STATUS_PROCESSING); 303 304 /* OK it completed, so read the status response */ 305 /* not sure why it was 0 for the last argument */ 306 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0, 307 NULL, 0, &din, din_len); 308 } 309 310 debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, 311 dinp ? *dinp : NULL); 312 if (dinp) { 313 /* If we have any data to return, it must be 64bit-aligned */ 314 assert(len <= 0 || !((uintptr_t)din & 7)); 315 *dinp = din; 316 } 317 318 return len; 319 } 320 321 /** 322 * Send a command to the CROS-EC device and return the reply. 323 * 324 * The device's internal input/output buffers are used. 325 * 326 * @param dev CROS-EC device 327 * @param cmd Command to send (EC_CMD_...) 328 * @param cmd_version Version of command to send (EC_VER_...) 329 * @param dout Output data (may be NULL If dout_len=0) 330 * @param dout_len Size of output data in bytes 331 * @param din Response data (may be NULL If din_len=0). 332 * It not NULL, it is a place for ec_command() to copy the 333 * data to. 334 * @param din_len Maximum size of response in bytes 335 * @return number of bytes in response, or -ve on error 336 */ 337 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 338 const void *dout, int dout_len, 339 void *din, int din_len) 340 { 341 uint8_t *in_buffer; 342 int len; 343 344 assert((din_len == 0) || din); 345 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, 346 &in_buffer, din_len); 347 if (len > 0) { 348 /* 349 * If we were asked to put it somewhere, do so, otherwise just 350 * disregard the result. 351 */ 352 if (din && in_buffer) { 353 assert(len <= din_len); 354 memmove(din, in_buffer, len); 355 } 356 } 357 return len; 358 } 359 360 int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan) 361 { 362 if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan, 363 sizeof(scan->data)) != sizeof(scan->data)) 364 return -1; 365 366 return 0; 367 } 368 369 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen) 370 { 371 struct ec_response_get_version *r; 372 373 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 374 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 375 return -1; 376 377 if (maxlen > (int)sizeof(r->version_string_ro)) 378 maxlen = sizeof(r->version_string_ro); 379 380 switch (r->current_image) { 381 case EC_IMAGE_RO: 382 memcpy(id, r->version_string_ro, maxlen); 383 break; 384 case EC_IMAGE_RW: 385 memcpy(id, r->version_string_rw, maxlen); 386 break; 387 default: 388 return -1; 389 } 390 391 id[maxlen - 1] = '\0'; 392 return 0; 393 } 394 395 int cros_ec_read_version(struct cros_ec_dev *dev, 396 struct ec_response_get_version **versionp) 397 { 398 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 399 (uint8_t **)versionp, sizeof(**versionp)) 400 != sizeof(**versionp)) 401 return -1; 402 403 return 0; 404 } 405 406 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp) 407 { 408 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, 409 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0) 410 return -1; 411 412 return 0; 413 } 414 415 int cros_ec_read_current_image(struct cros_ec_dev *dev, 416 enum ec_current_image *image) 417 { 418 struct ec_response_get_version *r; 419 420 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 421 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 422 return -1; 423 424 *image = r->current_image; 425 return 0; 426 } 427 428 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev, 429 struct ec_response_vboot_hash *hash) 430 { 431 struct ec_params_vboot_hash p; 432 ulong start; 433 434 start = get_timer(0); 435 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { 436 mdelay(50); /* Insert some reasonable delay */ 437 438 p.cmd = EC_VBOOT_HASH_GET; 439 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 440 hash, sizeof(*hash)) < 0) 441 return -1; 442 443 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { 444 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); 445 return -EC_RES_TIMEOUT; 446 } 447 } 448 return 0; 449 } 450 451 452 int cros_ec_read_hash(struct cros_ec_dev *dev, 453 struct ec_response_vboot_hash *hash) 454 { 455 struct ec_params_vboot_hash p; 456 int rv; 457 458 p.cmd = EC_VBOOT_HASH_GET; 459 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 460 hash, sizeof(*hash)) < 0) 461 return -1; 462 463 /* If the EC is busy calculating the hash, fidget until it's done. */ 464 rv = cros_ec_wait_on_hash_done(dev, hash); 465 if (rv) 466 return rv; 467 468 /* If the hash is valid, we're done. Otherwise, we have to kick it off 469 * again and wait for it to complete. Note that we explicitly assume 470 * that hashing zero bytes is always wrong, even though that would 471 * produce a valid hash value. */ 472 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) 473 return 0; 474 475 debug("%s: No valid hash (status=%d size=%d). Compute one...\n", 476 __func__, hash->status, hash->size); 477 478 p.cmd = EC_VBOOT_HASH_START; 479 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 480 p.nonce_size = 0; 481 p.offset = EC_VBOOT_HASH_OFFSET_RW; 482 483 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 484 hash, sizeof(*hash)) < 0) 485 return -1; 486 487 rv = cros_ec_wait_on_hash_done(dev, hash); 488 if (rv) 489 return rv; 490 491 debug("%s: hash done\n", __func__); 492 493 return 0; 494 } 495 496 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev) 497 { 498 struct ec_params_vboot_hash p; 499 struct ec_response_vboot_hash *hash; 500 501 /* We don't have an explict command for the EC to discard its current 502 * hash value, so we'll just tell it to calculate one that we know is 503 * wrong (we claim that hashing zero bytes is always invalid). 504 */ 505 p.cmd = EC_VBOOT_HASH_RECALC; 506 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 507 p.nonce_size = 0; 508 p.offset = 0; 509 p.size = 0; 510 511 debug("%s:\n", __func__); 512 513 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 514 (uint8_t **)&hash, sizeof(*hash)) < 0) 515 return -1; 516 517 /* No need to wait for it to finish */ 518 return 0; 519 } 520 521 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd, 522 uint8_t flags) 523 { 524 struct ec_params_reboot_ec p; 525 526 p.cmd = cmd; 527 p.flags = flags; 528 529 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) 530 < 0) 531 return -1; 532 533 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { 534 /* 535 * EC reboot will take place immediately so delay to allow it 536 * to complete. Note that some reboot types (EC_REBOOT_COLD) 537 * will reboot the AP as well, in which case we won't actually 538 * get to this point. 539 */ 540 /* 541 * TODO(rspangler@chromium.org): Would be nice if we had a 542 * better way to determine when the reboot is complete. Could 543 * we poll a memory-mapped LPC value? 544 */ 545 udelay(50000); 546 } 547 548 return 0; 549 } 550 551 int cros_ec_interrupt_pending(struct cros_ec_dev *dev) 552 { 553 /* no interrupt support : always poll */ 554 if (!dm_gpio_is_valid(&dev->ec_int)) 555 return -ENOENT; 556 557 return dm_gpio_get_value(&dev->ec_int); 558 } 559 560 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info) 561 { 562 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info, 563 sizeof(*info)) != sizeof(*info)) 564 return -1; 565 566 return 0; 567 } 568 569 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr) 570 { 571 struct ec_response_host_event_mask *resp; 572 573 /* 574 * Use the B copy of the event flags, because the main copy is already 575 * used by ACPI/SMI. 576 */ 577 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, 578 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp)) 579 return -1; 580 581 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) 582 return -1; 583 584 *events_ptr = resp->mask; 585 return 0; 586 } 587 588 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events) 589 { 590 struct ec_params_host_event_mask params; 591 592 params.mask = events; 593 594 /* 595 * Use the B copy of the event flags, so it affects the data returned 596 * by cros_ec_get_host_events(). 597 */ 598 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, 599 ¶ms, sizeof(params), NULL, 0) < 0) 600 return -1; 601 602 return 0; 603 } 604 605 int cros_ec_flash_protect(struct cros_ec_dev *dev, 606 uint32_t set_mask, uint32_t set_flags, 607 struct ec_response_flash_protect *resp) 608 { 609 struct ec_params_flash_protect params; 610 611 params.mask = set_mask; 612 params.flags = set_flags; 613 614 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, 615 ¶ms, sizeof(params), 616 resp, sizeof(*resp)) != sizeof(*resp)) 617 return -1; 618 619 return 0; 620 } 621 622 static int cros_ec_check_version(struct cros_ec_dev *dev) 623 { 624 struct ec_params_hello req; 625 struct ec_response_hello *resp; 626 627 struct dm_cros_ec_ops *ops; 628 int ret; 629 630 ops = dm_cros_ec_get_ops(dev->dev); 631 if (ops->check_version) { 632 ret = ops->check_version(dev->dev); 633 if (ret) 634 return ret; 635 } 636 637 /* 638 * TODO(sjg@chromium.org). 639 * There is a strange oddity here with the EC. We could just ignore 640 * the response, i.e. pass the last two parameters as NULL and 0. 641 * In this case we won't read back very many bytes from the EC. 642 * On the I2C bus the EC gets upset about this and will try to send 643 * the bytes anyway. This means that we will have to wait for that 644 * to complete before continuing with a new EC command. 645 * 646 * This problem is probably unique to the I2C bus. 647 * 648 * So for now, just read all the data anyway. 649 */ 650 651 /* Try sending a version 3 packet */ 652 dev->protocol_version = 3; 653 req.in_data = 0; 654 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 655 (uint8_t **)&resp, sizeof(*resp)) > 0) { 656 return 0; 657 } 658 659 /* Try sending a version 2 packet */ 660 dev->protocol_version = 2; 661 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 662 (uint8_t **)&resp, sizeof(*resp)) > 0) { 663 return 0; 664 } 665 666 /* 667 * Fail if we're still here, since the EC doesn't understand any 668 * protcol version we speak. Version 1 interface without command 669 * version is no longer supported, and we don't know about any new 670 * protocol versions. 671 */ 672 dev->protocol_version = 0; 673 printf("%s: ERROR: old EC interface not supported\n", __func__); 674 return -1; 675 } 676 677 int cros_ec_test(struct cros_ec_dev *dev) 678 { 679 struct ec_params_hello req; 680 struct ec_response_hello *resp; 681 682 req.in_data = 0x12345678; 683 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 684 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { 685 printf("ec_command_inptr() returned error\n"); 686 return -1; 687 } 688 if (resp->out_data != req.in_data + 0x01020304) { 689 printf("Received invalid handshake %x\n", resp->out_data); 690 return -1; 691 } 692 693 return 0; 694 } 695 696 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region, 697 uint32_t *offset, uint32_t *size) 698 { 699 struct ec_params_flash_region_info p; 700 struct ec_response_flash_region_info *r; 701 int ret; 702 703 p.region = region; 704 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, 705 EC_VER_FLASH_REGION_INFO, 706 &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); 707 if (ret != sizeof(*r)) 708 return -1; 709 710 if (offset) 711 *offset = r->offset; 712 if (size) 713 *size = r->size; 714 715 return 0; 716 } 717 718 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size) 719 { 720 struct ec_params_flash_erase p; 721 722 p.offset = offset; 723 p.size = size; 724 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), 725 NULL, 0); 726 } 727 728 /** 729 * Write a single block to the flash 730 * 731 * Write a block of data to the EC flash. The size must not exceed the flash 732 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 733 * 734 * The offset starts at 0. You can obtain the region information from 735 * cros_ec_flash_offset() to find out where to write for a particular region. 736 * 737 * Attempting to write to the region where the EC is currently running from 738 * will result in an error. 739 * 740 * @param dev CROS-EC device 741 * @param data Pointer to data buffer to write 742 * @param offset Offset within flash to write to. 743 * @param size Number of bytes to write 744 * @return 0 if ok, -1 on error 745 */ 746 static int cros_ec_flash_write_block(struct cros_ec_dev *dev, 747 const uint8_t *data, uint32_t offset, uint32_t size) 748 { 749 struct ec_params_flash_write p; 750 751 p.offset = offset; 752 p.size = size; 753 assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE); 754 memcpy(&p + 1, data, p.size); 755 756 return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, 757 &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1; 758 } 759 760 /** 761 * Return optimal flash write burst size 762 */ 763 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev) 764 { 765 return EC_FLASH_WRITE_VER0_SIZE; 766 } 767 768 /** 769 * Check if a block of data is erased (all 0xff) 770 * 771 * This function is useful when dealing with flash, for checking whether a 772 * data block is erased and thus does not need to be programmed. 773 * 774 * @param data Pointer to data to check (must be word-aligned) 775 * @param size Number of bytes to check (must be word-aligned) 776 * @return 0 if erased, non-zero if any word is not erased 777 */ 778 static int cros_ec_data_is_erased(const uint32_t *data, int size) 779 { 780 assert(!(size & 3)); 781 size /= sizeof(uint32_t); 782 for (; size > 0; size -= 4, data++) 783 if (*data != -1U) 784 return 0; 785 786 return 1; 787 } 788 789 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data, 790 uint32_t offset, uint32_t size) 791 { 792 uint32_t burst = cros_ec_flash_write_burst_size(dev); 793 uint32_t end, off; 794 int ret; 795 796 /* 797 * TODO: round up to the nearest multiple of write size. Can get away 798 * without that on link right now because its write size is 4 bytes. 799 */ 800 end = offset + size; 801 for (off = offset; off < end; off += burst, data += burst) { 802 uint32_t todo; 803 804 /* If the data is empty, there is no point in programming it */ 805 todo = min(end - off, burst); 806 if (dev->optimise_flash_write && 807 cros_ec_data_is_erased((uint32_t *)data, todo)) 808 continue; 809 810 ret = cros_ec_flash_write_block(dev, data, off, todo); 811 if (ret) 812 return ret; 813 } 814 815 return 0; 816 } 817 818 /** 819 * Read a single block from the flash 820 * 821 * Read a block of data from the EC flash. The size must not exceed the flash 822 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 823 * 824 * The offset starts at 0. You can obtain the region information from 825 * cros_ec_flash_offset() to find out where to read for a particular region. 826 * 827 * @param dev CROS-EC device 828 * @param data Pointer to data buffer to read into 829 * @param offset Offset within flash to read from 830 * @param size Number of bytes to read 831 * @return 0 if ok, -1 on error 832 */ 833 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data, 834 uint32_t offset, uint32_t size) 835 { 836 struct ec_params_flash_read p; 837 838 p.offset = offset; 839 p.size = size; 840 841 return ec_command(dev, EC_CMD_FLASH_READ, 0, 842 &p, sizeof(p), data, size) >= 0 ? 0 : -1; 843 } 844 845 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset, 846 uint32_t size) 847 { 848 uint32_t burst = cros_ec_flash_write_burst_size(dev); 849 uint32_t end, off; 850 int ret; 851 852 end = offset + size; 853 for (off = offset; off < end; off += burst, data += burst) { 854 ret = cros_ec_flash_read_block(dev, data, off, 855 min(end - off, burst)); 856 if (ret) 857 return ret; 858 } 859 860 return 0; 861 } 862 863 int cros_ec_flash_update_rw(struct cros_ec_dev *dev, 864 const uint8_t *image, int image_size) 865 { 866 uint32_t rw_offset, rw_size; 867 int ret; 868 869 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size)) 870 return -1; 871 if (image_size > (int)rw_size) 872 return -1; 873 874 /* Invalidate the existing hash, just in case the AP reboots 875 * unexpectedly during the update. If that happened, the EC RW firmware 876 * would be invalid, but the EC would still have the original hash. 877 */ 878 ret = cros_ec_invalidate_hash(dev); 879 if (ret) 880 return ret; 881 882 /* 883 * Erase the entire RW section, so that the EC doesn't see any garbage 884 * past the new image if it's smaller than the current image. 885 * 886 * TODO: could optimize this to erase just the current image, since 887 * presumably everything past that is 0xff's. But would still need to 888 * round up to the nearest multiple of erase size. 889 */ 890 ret = cros_ec_flash_erase(dev, rw_offset, rw_size); 891 if (ret) 892 return ret; 893 894 /* Write the image */ 895 ret = cros_ec_flash_write(dev, image, rw_offset, image_size); 896 if (ret) 897 return ret; 898 899 return 0; 900 } 901 902 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block) 903 { 904 struct ec_params_vbnvcontext p; 905 int len; 906 907 p.op = EC_VBNV_CONTEXT_OP_READ; 908 909 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 910 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE); 911 if (len < EC_VBNV_BLOCK_SIZE) 912 return -1; 913 914 return 0; 915 } 916 917 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block) 918 { 919 struct ec_params_vbnvcontext p; 920 int len; 921 922 p.op = EC_VBNV_CONTEXT_OP_WRITE; 923 memcpy(p.block, block, sizeof(p.block)); 924 925 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 926 &p, sizeof(p), NULL, 0); 927 if (len < 0) 928 return -1; 929 930 return 0; 931 } 932 933 int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state) 934 { 935 struct ec_params_ldo_set params; 936 937 params.index = index; 938 params.state = state; 939 940 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, 941 ¶ms, sizeof(params), 942 NULL, 0)) 943 return -1; 944 945 return 0; 946 } 947 948 int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state) 949 { 950 struct ec_params_ldo_get params; 951 struct ec_response_ldo_get *resp; 952 953 params.index = index; 954 955 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, 956 ¶ms, sizeof(params), 957 (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp)) 958 return -1; 959 960 *state = resp->state; 961 962 return 0; 963 } 964 965 int cros_ec_register(struct udevice *dev) 966 { 967 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 968 const void *blob = gd->fdt_blob; 969 int node = dev->of_offset; 970 char id[MSG_BYTES]; 971 972 cdev->dev = dev; 973 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int, 974 GPIOD_IS_IN); 975 cdev->optimise_flash_write = fdtdec_get_bool(blob, node, 976 "optimise-flash-write"); 977 978 if (cros_ec_check_version(cdev)) { 979 debug("%s: Could not detect CROS-EC version\n", __func__); 980 return -CROS_EC_ERR_CHECK_VERSION; 981 } 982 983 if (cros_ec_read_id(cdev, id, sizeof(id))) { 984 debug("%s: Could not read KBC ID\n", __func__); 985 return -CROS_EC_ERR_READ_ID; 986 } 987 988 /* Remember this device for use by the cros_ec command */ 989 debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id); 990 991 return 0; 992 } 993 994 int cros_ec_decode_region(int argc, char * const argv[]) 995 { 996 if (argc > 0) { 997 if (0 == strcmp(*argv, "rw")) 998 return EC_FLASH_REGION_RW; 999 else if (0 == strcmp(*argv, "ro")) 1000 return EC_FLASH_REGION_RO; 1001 1002 debug("%s: Invalid region '%s'\n", __func__, *argv); 1003 } else { 1004 debug("%s: Missing region parameter\n", __func__); 1005 } 1006 1007 return -1; 1008 } 1009 1010 int cros_ec_decode_ec_flash(const void *blob, int node, 1011 struct fdt_cros_ec *config) 1012 { 1013 int flash_node; 1014 1015 flash_node = fdt_subnode_offset(blob, node, "flash"); 1016 if (flash_node < 0) { 1017 debug("Failed to find flash node\n"); 1018 return -1; 1019 } 1020 1021 if (fdtdec_read_fmap_entry(blob, flash_node, "flash", 1022 &config->flash)) { 1023 debug("Failed to decode flash node in chrome-ec'\n"); 1024 return -1; 1025 } 1026 1027 config->flash_erase_value = fdtdec_get_int(blob, flash_node, 1028 "erase-value", -1); 1029 for (node = fdt_first_subnode(blob, flash_node); node >= 0; 1030 node = fdt_next_subnode(blob, node)) { 1031 const char *name = fdt_get_name(blob, node, NULL); 1032 enum ec_flash_region region; 1033 1034 if (0 == strcmp(name, "ro")) { 1035 region = EC_FLASH_REGION_RO; 1036 } else if (0 == strcmp(name, "rw")) { 1037 region = EC_FLASH_REGION_RW; 1038 } else if (0 == strcmp(name, "wp-ro")) { 1039 region = EC_FLASH_REGION_WP_RO; 1040 } else { 1041 debug("Unknown EC flash region name '%s'\n", name); 1042 return -1; 1043 } 1044 1045 if (fdtdec_read_fmap_entry(blob, node, "reg", 1046 &config->region[region])) { 1047 debug("Failed to decode flash region in chrome-ec'\n"); 1048 return -1; 1049 } 1050 } 1051 1052 return 0; 1053 } 1054 1055 int cros_ec_i2c_xfer(struct cros_ec_dev *dev, uchar chip, uint addr, 1056 int alen, uchar *buffer, int len, int is_read) 1057 { 1058 union { 1059 struct ec_params_i2c_passthru p; 1060 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1061 } params; 1062 union { 1063 struct ec_response_i2c_passthru r; 1064 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1065 } response; 1066 struct ec_params_i2c_passthru *p = ¶ms.p; 1067 struct ec_response_i2c_passthru *r = &response.r; 1068 struct ec_params_i2c_passthru_msg *msg = p->msg; 1069 uint8_t *pdata; 1070 int read_len, write_len; 1071 int size; 1072 int rv; 1073 1074 p->port = 0; 1075 1076 if (alen != 1) { 1077 printf("Unsupported address length %d\n", alen); 1078 return -1; 1079 } 1080 if (is_read) { 1081 read_len = len; 1082 write_len = alen; 1083 p->num_msgs = 2; 1084 } else { 1085 read_len = 0; 1086 write_len = alen + len; 1087 p->num_msgs = 1; 1088 } 1089 1090 size = sizeof(*p) + p->num_msgs * sizeof(*msg); 1091 if (size + write_len > sizeof(params)) { 1092 puts("Params too large for buffer\n"); 1093 return -1; 1094 } 1095 if (sizeof(*r) + read_len > sizeof(response)) { 1096 puts("Read length too big for buffer\n"); 1097 return -1; 1098 } 1099 1100 /* Create a message to write the register address and optional data */ 1101 pdata = (uint8_t *)p + size; 1102 msg->addr_flags = chip; 1103 msg->len = write_len; 1104 pdata[0] = addr; 1105 if (!is_read) 1106 memcpy(pdata + 1, buffer, len); 1107 msg++; 1108 1109 if (read_len) { 1110 msg->addr_flags = chip | EC_I2C_FLAG_READ; 1111 msg->len = read_len; 1112 } 1113 1114 rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, size + write_len, 1115 r, sizeof(*r) + read_len); 1116 if (rv < 0) 1117 return rv; 1118 1119 /* Parse response */ 1120 if (r->i2c_status & EC_I2C_STATUS_ERROR) { 1121 printf("Transfer failed with status=0x%x\n", r->i2c_status); 1122 return -1; 1123 } 1124 1125 if (rv < sizeof(*r) + read_len) { 1126 puts("Truncated read response\n"); 1127 return -1; 1128 } 1129 1130 if (read_len) 1131 memcpy(buffer, r->data, read_len); 1132 1133 return 0; 1134 } 1135 1136 #ifdef CONFIG_CMD_CROS_EC 1137 1138 /** 1139 * Perform a flash read or write command 1140 * 1141 * @param dev CROS-EC device to read/write 1142 * @param is_write 1 do to a write, 0 to do a read 1143 * @param argc Number of arguments 1144 * @param argv Arguments (2 is region, 3 is address) 1145 * @return 0 for ok, 1 for a usage error or -ve for ec command error 1146 * (negative EC_RES_...) 1147 */ 1148 static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc, 1149 char * const argv[]) 1150 { 1151 uint32_t offset, size = -1U, region_size; 1152 unsigned long addr; 1153 char *endp; 1154 int region; 1155 int ret; 1156 1157 region = cros_ec_decode_region(argc - 2, argv + 2); 1158 if (region == -1) 1159 return 1; 1160 if (argc < 4) 1161 return 1; 1162 addr = simple_strtoul(argv[3], &endp, 16); 1163 if (*argv[3] == 0 || *endp != 0) 1164 return 1; 1165 if (argc > 4) { 1166 size = simple_strtoul(argv[4], &endp, 16); 1167 if (*argv[4] == 0 || *endp != 0) 1168 return 1; 1169 } 1170 1171 ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size); 1172 if (ret) { 1173 debug("%s: Could not read region info\n", __func__); 1174 return ret; 1175 } 1176 if (size == -1U) 1177 size = region_size; 1178 1179 ret = is_write ? 1180 cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) : 1181 cros_ec_flash_read(dev, (uint8_t *)addr, offset, size); 1182 if (ret) { 1183 debug("%s: Could not %s region\n", __func__, 1184 is_write ? "write" : "read"); 1185 return ret; 1186 } 1187 1188 return 0; 1189 } 1190 1191 /** 1192 * get_alen() - Small parser helper function to get address length 1193 * 1194 * Returns the address length. 1195 */ 1196 static uint get_alen(char *arg) 1197 { 1198 int j; 1199 int alen; 1200 1201 alen = 1; 1202 for (j = 0; j < 8; j++) { 1203 if (arg[j] == '.') { 1204 alen = arg[j+1] - '0'; 1205 break; 1206 } else if (arg[j] == '\0') { 1207 break; 1208 } 1209 } 1210 return alen; 1211 } 1212 1213 #define DISP_LINE_LEN 16 1214 1215 /* 1216 * TODO(sjg@chromium.org): This code copied almost verbatim from cmd_i2c.c 1217 * so we can remove it later. 1218 */ 1219 static int cros_ec_i2c_md(struct cros_ec_dev *dev, int flag, int argc, 1220 char * const argv[]) 1221 { 1222 u_char chip; 1223 uint addr, alen, length = 0x10; 1224 int j, nbytes, linebytes; 1225 1226 if (argc < 2) 1227 return CMD_RET_USAGE; 1228 1229 if (1 || (flag & CMD_FLAG_REPEAT) == 0) { 1230 /* 1231 * New command specified. 1232 */ 1233 1234 /* 1235 * I2C chip address 1236 */ 1237 chip = simple_strtoul(argv[0], NULL, 16); 1238 1239 /* 1240 * I2C data address within the chip. This can be 1 or 1241 * 2 bytes long. Some day it might be 3 bytes long :-). 1242 */ 1243 addr = simple_strtoul(argv[1], NULL, 16); 1244 alen = get_alen(argv[1]); 1245 if (alen > 3) 1246 return CMD_RET_USAGE; 1247 1248 /* 1249 * If another parameter, it is the length to display. 1250 * Length is the number of objects, not number of bytes. 1251 */ 1252 if (argc > 2) 1253 length = simple_strtoul(argv[2], NULL, 16); 1254 } 1255 1256 /* 1257 * Print the lines. 1258 * 1259 * We buffer all read data, so we can make sure data is read only 1260 * once. 1261 */ 1262 nbytes = length; 1263 do { 1264 unsigned char linebuf[DISP_LINE_LEN]; 1265 unsigned char *cp; 1266 1267 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes; 1268 1269 if (cros_ec_i2c_xfer(dev, chip, addr, alen, linebuf, linebytes, 1270 1)) 1271 puts("Error reading the chip.\n"); 1272 else { 1273 printf("%04x:", addr); 1274 cp = linebuf; 1275 for (j = 0; j < linebytes; j++) { 1276 printf(" %02x", *cp++); 1277 addr++; 1278 } 1279 puts(" "); 1280 cp = linebuf; 1281 for (j = 0; j < linebytes; j++) { 1282 if ((*cp < 0x20) || (*cp > 0x7e)) 1283 puts("."); 1284 else 1285 printf("%c", *cp); 1286 cp++; 1287 } 1288 putc('\n'); 1289 } 1290 nbytes -= linebytes; 1291 } while (nbytes > 0); 1292 1293 return 0; 1294 } 1295 1296 static int cros_ec_i2c_mw(struct cros_ec_dev *dev, int flag, int argc, 1297 char * const argv[]) 1298 { 1299 uchar chip; 1300 ulong addr; 1301 uint alen; 1302 uchar byte; 1303 int count; 1304 1305 if ((argc < 3) || (argc > 4)) 1306 return CMD_RET_USAGE; 1307 1308 /* 1309 * Chip is always specified. 1310 */ 1311 chip = simple_strtoul(argv[0], NULL, 16); 1312 1313 /* 1314 * Address is always specified. 1315 */ 1316 addr = simple_strtoul(argv[1], NULL, 16); 1317 alen = get_alen(argv[1]); 1318 if (alen > 3) 1319 return CMD_RET_USAGE; 1320 1321 /* 1322 * Value to write is always specified. 1323 */ 1324 byte = simple_strtoul(argv[2], NULL, 16); 1325 1326 /* 1327 * Optional count 1328 */ 1329 if (argc == 4) 1330 count = simple_strtoul(argv[3], NULL, 16); 1331 else 1332 count = 1; 1333 1334 while (count-- > 0) { 1335 if (cros_ec_i2c_xfer(dev, chip, addr++, alen, &byte, 1, 0)) 1336 puts("Error writing the chip.\n"); 1337 /* 1338 * Wait for the write to complete. The write can take 1339 * up to 10mSec (we allow a little more time). 1340 */ 1341 /* 1342 * No write delay with FRAM devices. 1343 */ 1344 #if !defined(CONFIG_SYS_I2C_FRAM) 1345 udelay(11000); 1346 #endif 1347 } 1348 1349 return 0; 1350 } 1351 1352 /* Temporary code until we have driver model and can use the i2c command */ 1353 static int cros_ec_i2c_passthrough(struct cros_ec_dev *dev, int flag, 1354 int argc, char * const argv[]) 1355 { 1356 const char *cmd; 1357 1358 if (argc < 1) 1359 return CMD_RET_USAGE; 1360 cmd = *argv++; 1361 argc--; 1362 if (0 == strcmp("md", cmd)) 1363 cros_ec_i2c_md(dev, flag, argc, argv); 1364 else if (0 == strcmp("mw", cmd)) 1365 cros_ec_i2c_mw(dev, flag, argc, argv); 1366 else 1367 return CMD_RET_USAGE; 1368 1369 return 0; 1370 } 1371 1372 static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) 1373 { 1374 struct cros_ec_dev *dev; 1375 struct udevice *udev; 1376 const char *cmd; 1377 int ret = 0; 1378 1379 if (argc < 2) 1380 return CMD_RET_USAGE; 1381 1382 cmd = argv[1]; 1383 if (0 == strcmp("init", cmd)) { 1384 /* Remove any existing device */ 1385 ret = uclass_find_device(UCLASS_CROS_EC, 0, &udev); 1386 if (!ret) 1387 device_remove(udev); 1388 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev); 1389 if (ret) { 1390 printf("Could not init cros_ec device (err %d)\n", ret); 1391 return 1; 1392 } 1393 return 0; 1394 } 1395 1396 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev); 1397 if (ret) { 1398 printf("Cannot get cros-ec device (err=%d)\n", ret); 1399 return 1; 1400 } 1401 dev = dev_get_uclass_priv(udev); 1402 if (0 == strcmp("id", cmd)) { 1403 char id[MSG_BYTES]; 1404 1405 if (cros_ec_read_id(dev, id, sizeof(id))) { 1406 debug("%s: Could not read KBC ID\n", __func__); 1407 return 1; 1408 } 1409 printf("%s\n", id); 1410 } else if (0 == strcmp("info", cmd)) { 1411 struct ec_response_mkbp_info info; 1412 1413 if (cros_ec_info(dev, &info)) { 1414 debug("%s: Could not read KBC info\n", __func__); 1415 return 1; 1416 } 1417 printf("rows = %u\n", info.rows); 1418 printf("cols = %u\n", info.cols); 1419 printf("switches = %#x\n", info.switches); 1420 } else if (0 == strcmp("curimage", cmd)) { 1421 enum ec_current_image image; 1422 1423 if (cros_ec_read_current_image(dev, &image)) { 1424 debug("%s: Could not read KBC image\n", __func__); 1425 return 1; 1426 } 1427 printf("%d\n", image); 1428 } else if (0 == strcmp("hash", cmd)) { 1429 struct ec_response_vboot_hash hash; 1430 int i; 1431 1432 if (cros_ec_read_hash(dev, &hash)) { 1433 debug("%s: Could not read KBC hash\n", __func__); 1434 return 1; 1435 } 1436 1437 if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256) 1438 printf("type: SHA-256\n"); 1439 else 1440 printf("type: %d\n", hash.hash_type); 1441 1442 printf("offset: 0x%08x\n", hash.offset); 1443 printf("size: 0x%08x\n", hash.size); 1444 1445 printf("digest: "); 1446 for (i = 0; i < hash.digest_size; i++) 1447 printf("%02x", hash.hash_digest[i]); 1448 printf("\n"); 1449 } else if (0 == strcmp("reboot", cmd)) { 1450 int region; 1451 enum ec_reboot_cmd cmd; 1452 1453 if (argc >= 3 && !strcmp(argv[2], "cold")) 1454 cmd = EC_REBOOT_COLD; 1455 else { 1456 region = cros_ec_decode_region(argc - 2, argv + 2); 1457 if (region == EC_FLASH_REGION_RO) 1458 cmd = EC_REBOOT_JUMP_RO; 1459 else if (region == EC_FLASH_REGION_RW) 1460 cmd = EC_REBOOT_JUMP_RW; 1461 else 1462 return CMD_RET_USAGE; 1463 } 1464 1465 if (cros_ec_reboot(dev, cmd, 0)) { 1466 debug("%s: Could not reboot KBC\n", __func__); 1467 return 1; 1468 } 1469 } else if (0 == strcmp("events", cmd)) { 1470 uint32_t events; 1471 1472 if (cros_ec_get_host_events(dev, &events)) { 1473 debug("%s: Could not read host events\n", __func__); 1474 return 1; 1475 } 1476 printf("0x%08x\n", events); 1477 } else if (0 == strcmp("clrevents", cmd)) { 1478 uint32_t events = 0x7fffffff; 1479 1480 if (argc >= 3) 1481 events = simple_strtol(argv[2], NULL, 0); 1482 1483 if (cros_ec_clear_host_events(dev, events)) { 1484 debug("%s: Could not clear host events\n", __func__); 1485 return 1; 1486 } 1487 } else if (0 == strcmp("read", cmd)) { 1488 ret = do_read_write(dev, 0, argc, argv); 1489 if (ret > 0) 1490 return CMD_RET_USAGE; 1491 } else if (0 == strcmp("write", cmd)) { 1492 ret = do_read_write(dev, 1, argc, argv); 1493 if (ret > 0) 1494 return CMD_RET_USAGE; 1495 } else if (0 == strcmp("erase", cmd)) { 1496 int region = cros_ec_decode_region(argc - 2, argv + 2); 1497 uint32_t offset, size; 1498 1499 if (region == -1) 1500 return CMD_RET_USAGE; 1501 if (cros_ec_flash_offset(dev, region, &offset, &size)) { 1502 debug("%s: Could not read region info\n", __func__); 1503 ret = -1; 1504 } else { 1505 ret = cros_ec_flash_erase(dev, offset, size); 1506 if (ret) { 1507 debug("%s: Could not erase region\n", 1508 __func__); 1509 } 1510 } 1511 } else if (0 == strcmp("regioninfo", cmd)) { 1512 int region = cros_ec_decode_region(argc - 2, argv + 2); 1513 uint32_t offset, size; 1514 1515 if (region == -1) 1516 return CMD_RET_USAGE; 1517 ret = cros_ec_flash_offset(dev, region, &offset, &size); 1518 if (ret) { 1519 debug("%s: Could not read region info\n", __func__); 1520 } else { 1521 printf("Region: %s\n", region == EC_FLASH_REGION_RO ? 1522 "RO" : "RW"); 1523 printf("Offset: %x\n", offset); 1524 printf("Size: %x\n", size); 1525 } 1526 } else if (0 == strcmp("vbnvcontext", cmd)) { 1527 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1528 char buf[3]; 1529 int i, len; 1530 unsigned long result; 1531 1532 if (argc <= 2) { 1533 ret = cros_ec_read_vbnvcontext(dev, block); 1534 if (!ret) { 1535 printf("vbnv_block: "); 1536 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) 1537 printf("%02x", block[i]); 1538 putc('\n'); 1539 } 1540 } else { 1541 /* 1542 * TODO(clchiou): Move this to a utility function as 1543 * cmd_spi might want to call it. 1544 */ 1545 memset(block, 0, EC_VBNV_BLOCK_SIZE); 1546 len = strlen(argv[2]); 1547 buf[2] = '\0'; 1548 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) { 1549 if (i * 2 >= len) 1550 break; 1551 buf[0] = argv[2][i * 2]; 1552 if (i * 2 + 1 >= len) 1553 buf[1] = '0'; 1554 else 1555 buf[1] = argv[2][i * 2 + 1]; 1556 strict_strtoul(buf, 16, &result); 1557 block[i] = result; 1558 } 1559 ret = cros_ec_write_vbnvcontext(dev, block); 1560 } 1561 if (ret) { 1562 debug("%s: Could not %s VbNvContext\n", __func__, 1563 argc <= 2 ? "read" : "write"); 1564 } 1565 } else if (0 == strcmp("test", cmd)) { 1566 int result = cros_ec_test(dev); 1567 1568 if (result) 1569 printf("Test failed with error %d\n", result); 1570 else 1571 puts("Test passed\n"); 1572 } else if (0 == strcmp("version", cmd)) { 1573 struct ec_response_get_version *p; 1574 char *build_string; 1575 1576 ret = cros_ec_read_version(dev, &p); 1577 if (!ret) { 1578 /* Print versions */ 1579 printf("RO version: %1.*s\n", 1580 (int)sizeof(p->version_string_ro), 1581 p->version_string_ro); 1582 printf("RW version: %1.*s\n", 1583 (int)sizeof(p->version_string_rw), 1584 p->version_string_rw); 1585 printf("Firmware copy: %s\n", 1586 (p->current_image < 1587 ARRAY_SIZE(ec_current_image_name) ? 1588 ec_current_image_name[p->current_image] : 1589 "?")); 1590 ret = cros_ec_read_build_info(dev, &build_string); 1591 if (!ret) 1592 printf("Build info: %s\n", build_string); 1593 } 1594 } else if (0 == strcmp("ldo", cmd)) { 1595 uint8_t index, state; 1596 char *endp; 1597 1598 if (argc < 3) 1599 return CMD_RET_USAGE; 1600 index = simple_strtoul(argv[2], &endp, 10); 1601 if (*argv[2] == 0 || *endp != 0) 1602 return CMD_RET_USAGE; 1603 if (argc > 3) { 1604 state = simple_strtoul(argv[3], &endp, 10); 1605 if (*argv[3] == 0 || *endp != 0) 1606 return CMD_RET_USAGE; 1607 ret = cros_ec_set_ldo(dev, index, state); 1608 } else { 1609 ret = cros_ec_get_ldo(dev, index, &state); 1610 if (!ret) { 1611 printf("LDO%d: %s\n", index, 1612 state == EC_LDO_STATE_ON ? 1613 "on" : "off"); 1614 } 1615 } 1616 1617 if (ret) { 1618 debug("%s: Could not access LDO%d\n", __func__, index); 1619 return ret; 1620 } 1621 } else if (0 == strcmp("i2c", cmd)) { 1622 ret = cros_ec_i2c_passthrough(dev, flag, argc - 2, argv + 2); 1623 } else { 1624 return CMD_RET_USAGE; 1625 } 1626 1627 if (ret < 0) { 1628 printf("Error: CROS-EC command failed (error %d)\n", ret); 1629 ret = 1; 1630 } 1631 1632 return ret; 1633 } 1634 1635 U_BOOT_CMD( 1636 crosec, 6, 1, do_cros_ec, 1637 "CROS-EC utility command", 1638 "init Re-init CROS-EC (done on startup automatically)\n" 1639 "crosec id Read CROS-EC ID\n" 1640 "crosec info Read CROS-EC info\n" 1641 "crosec curimage Read CROS-EC current image\n" 1642 "crosec hash Read CROS-EC hash\n" 1643 "crosec reboot [rw | ro | cold] Reboot CROS-EC\n" 1644 "crosec events Read CROS-EC host events\n" 1645 "crosec clrevents [mask] Clear CROS-EC host events\n" 1646 "crosec regioninfo <ro|rw> Read image info\n" 1647 "crosec erase <ro|rw> Erase EC image\n" 1648 "crosec read <ro|rw> <addr> [<size>] Read EC image\n" 1649 "crosec write <ro|rw> <addr> [<size>] Write EC image\n" 1650 "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n" 1651 "crosec ldo <idx> [<state>] Switch/Read LDO state\n" 1652 "crosec test run tests on cros_ec\n" 1653 "crosec version Read CROS-EC version\n" 1654 "crosec i2c md chip address[.0, .1, .2] [# of objects] - read from I2C passthru\n" 1655 "crosec i2c mw chip address[.0, .1, .2] value [count] - write to I2C passthru (fill)" 1656 ); 1657 #endif 1658 1659 UCLASS_DRIVER(cros_ec) = { 1660 .id = UCLASS_CROS_EC, 1661 .name = "cros_ec", 1662 .per_device_auto_alloc_size = sizeof(struct cros_ec_dev), 1663 }; 1664