1 /* 2 * Chromium OS cros_ec driver 3 * 4 * Copyright (c) 2012 The Chromium OS Authors. 5 * See file CREDITS for list of people who contributed to this 6 * project. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of 11 * the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 21 * MA 02111-1307 USA 22 */ 23 24 /* 25 * The Matrix Keyboard Protocol driver handles talking to the keyboard 26 * controller chip. Mostly this is for keyboard functions, but some other 27 * things have slipped in, so we provide generic services to talk to the 28 * KBC. 29 */ 30 31 #include <common.h> 32 #include <command.h> 33 #include <i2c.h> 34 #include <cros_ec.h> 35 #include <fdtdec.h> 36 #include <malloc.h> 37 #include <spi.h> 38 #include <asm/io.h> 39 #include <asm-generic/gpio.h> 40 41 #ifdef DEBUG_TRACE 42 #define debug_trace(fmt, b...) debug(fmt, #b) 43 #else 44 #define debug_trace(fmt, b...) 45 #endif 46 47 enum { 48 /* Timeout waiting for a flash erase command to complete */ 49 CROS_EC_CMD_TIMEOUT_MS = 5000, 50 /* Timeout waiting for a synchronous hash to be recomputed */ 51 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, 52 }; 53 54 static struct cros_ec_dev static_dev, *last_dev; 55 56 DECLARE_GLOBAL_DATA_PTR; 57 58 /* Note: depends on enum ec_current_image */ 59 static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"}; 60 61 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) 62 { 63 #ifdef DEBUG 64 int i; 65 66 printf("%s: ", name); 67 if (cmd != -1) 68 printf("cmd=%#x: ", cmd); 69 for (i = 0; i < len; i++) 70 printf("%02x ", data[i]); 71 printf("\n"); 72 #endif 73 } 74 75 /* 76 * Calculate a simple 8-bit checksum of a data block 77 * 78 * @param data Data block to checksum 79 * @param size Size of data block in bytes 80 * @return checksum value (0 to 255) 81 */ 82 int cros_ec_calc_checksum(const uint8_t *data, int size) 83 { 84 int csum, i; 85 86 for (i = csum = 0; i < size; i++) 87 csum += data[i]; 88 return csum & 0xff; 89 } 90 91 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 92 const void *dout, int dout_len, 93 uint8_t **dinp, int din_len) 94 { 95 int ret; 96 97 switch (dev->interface) { 98 #ifdef CONFIG_CROS_EC_SPI 99 case CROS_EC_IF_SPI: 100 ret = cros_ec_spi_command(dev, cmd, cmd_version, 101 (const uint8_t *)dout, dout_len, 102 dinp, din_len); 103 break; 104 #endif 105 #ifdef CONFIG_CROS_EC_I2C 106 case CROS_EC_IF_I2C: 107 ret = cros_ec_i2c_command(dev, cmd, cmd_version, 108 (const uint8_t *)dout, dout_len, 109 dinp, din_len); 110 break; 111 #endif 112 #ifdef CONFIG_CROS_EC_LPC 113 case CROS_EC_IF_LPC: 114 ret = cros_ec_lpc_command(dev, cmd, cmd_version, 115 (const uint8_t *)dout, dout_len, 116 dinp, din_len); 117 break; 118 #endif 119 case CROS_EC_IF_NONE: 120 default: 121 ret = -1; 122 } 123 124 return ret; 125 } 126 127 /** 128 * Send a command to the CROS-EC device and return the reply. 129 * 130 * The device's internal input/output buffers are used. 131 * 132 * @param dev CROS-EC device 133 * @param cmd Command to send (EC_CMD_...) 134 * @param cmd_version Version of command to send (EC_VER_...) 135 * @param dout Output data (may be NULL If dout_len=0) 136 * @param dout_len Size of output data in bytes 137 * @param dinp Response data (may be NULL If din_len=0). 138 * If not NULL, it will be updated to point to the data 139 * and will always be double word aligned (64-bits) 140 * @param din_len Maximum size of response in bytes 141 * @return number of bytes in response, or -1 on error 142 */ 143 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd, 144 int cmd_version, const void *dout, int dout_len, uint8_t **dinp, 145 int din_len) 146 { 147 uint8_t *din; 148 int len; 149 150 if (cmd_version != 0 && !dev->cmd_version_is_supported) { 151 debug("%s: Command version >0 unsupported\n", __func__); 152 return -1; 153 } 154 len = send_command(dev, cmd, cmd_version, dout, dout_len, 155 &din, din_len); 156 157 /* If the command doesn't complete, wait a while */ 158 if (len == -EC_RES_IN_PROGRESS) { 159 struct ec_response_get_comms_status *resp; 160 ulong start; 161 162 /* Wait for command to complete */ 163 start = get_timer(0); 164 do { 165 int ret; 166 167 mdelay(50); /* Insert some reasonable delay */ 168 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0, 169 NULL, 0, 170 (uint8_t **)&resp, sizeof(*resp)); 171 if (ret < 0) 172 return ret; 173 174 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { 175 debug("%s: Command %#02x timeout\n", 176 __func__, cmd); 177 return -EC_RES_TIMEOUT; 178 } 179 } while (resp->flags & EC_COMMS_STATUS_PROCESSING); 180 181 /* OK it completed, so read the status response */ 182 /* not sure why it was 0 for the last argument */ 183 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0, 184 NULL, 0, &din, din_len); 185 } 186 187 debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, *dinp); 188 if (dinp) { 189 /* If we have any data to return, it must be 64bit-aligned */ 190 assert(len <= 0 || !((uintptr_t)din & 7)); 191 *dinp = din; 192 } 193 194 return len; 195 } 196 197 /** 198 * Send a command to the CROS-EC device and return the reply. 199 * 200 * The device's internal input/output buffers are used. 201 * 202 * @param dev CROS-EC device 203 * @param cmd Command to send (EC_CMD_...) 204 * @param cmd_version Version of command to send (EC_VER_...) 205 * @param dout Output data (may be NULL If dout_len=0) 206 * @param dout_len Size of output data in bytes 207 * @param din Response data (may be NULL If din_len=0). 208 * It not NULL, it is a place for ec_command() to copy the 209 * data to. 210 * @param din_len Maximum size of response in bytes 211 * @return number of bytes in response, or -1 on error 212 */ 213 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 214 const void *dout, int dout_len, 215 void *din, int din_len) 216 { 217 uint8_t *in_buffer; 218 int len; 219 220 assert((din_len == 0) || din); 221 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, 222 &in_buffer, din_len); 223 if (len > 0) { 224 /* 225 * If we were asked to put it somewhere, do so, otherwise just 226 * disregard the result. 227 */ 228 if (din && in_buffer) { 229 assert(len <= din_len); 230 memmove(din, in_buffer, len); 231 } 232 } 233 return len; 234 } 235 236 int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan) 237 { 238 if (ec_command(dev, EC_CMD_CROS_EC_STATE, 0, NULL, 0, scan, 239 sizeof(scan->data)) < sizeof(scan->data)) 240 return -1; 241 242 return 0; 243 } 244 245 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen) 246 { 247 struct ec_response_get_version *r; 248 249 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 250 (uint8_t **)&r, sizeof(*r)) < sizeof(*r)) 251 return -1; 252 253 if (maxlen > sizeof(r->version_string_ro)) 254 maxlen = sizeof(r->version_string_ro); 255 256 switch (r->current_image) { 257 case EC_IMAGE_RO: 258 memcpy(id, r->version_string_ro, maxlen); 259 break; 260 case EC_IMAGE_RW: 261 memcpy(id, r->version_string_rw, maxlen); 262 break; 263 default: 264 return -1; 265 } 266 267 id[maxlen - 1] = '\0'; 268 return 0; 269 } 270 271 int cros_ec_read_version(struct cros_ec_dev *dev, 272 struct ec_response_get_version **versionp) 273 { 274 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 275 (uint8_t **)versionp, sizeof(**versionp)) 276 < sizeof(**versionp)) 277 return -1; 278 279 return 0; 280 } 281 282 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp) 283 { 284 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, 285 (uint8_t **)strp, EC_HOST_PARAM_SIZE) < 0) 286 return -1; 287 288 return 0; 289 } 290 291 int cros_ec_read_current_image(struct cros_ec_dev *dev, 292 enum ec_current_image *image) 293 { 294 struct ec_response_get_version *r; 295 296 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 297 (uint8_t **)&r, sizeof(*r)) < sizeof(*r)) 298 return -1; 299 300 *image = r->current_image; 301 return 0; 302 } 303 304 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev, 305 struct ec_response_vboot_hash *hash) 306 { 307 struct ec_params_vboot_hash p; 308 ulong start; 309 310 start = get_timer(0); 311 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { 312 mdelay(50); /* Insert some reasonable delay */ 313 314 p.cmd = EC_VBOOT_HASH_GET; 315 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 316 hash, sizeof(*hash)) < 0) 317 return -1; 318 319 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { 320 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); 321 return -EC_RES_TIMEOUT; 322 } 323 } 324 return 0; 325 } 326 327 328 int cros_ec_read_hash(struct cros_ec_dev *dev, 329 struct ec_response_vboot_hash *hash) 330 { 331 struct ec_params_vboot_hash p; 332 int rv; 333 334 p.cmd = EC_VBOOT_HASH_GET; 335 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 336 hash, sizeof(*hash)) < 0) 337 return -1; 338 339 /* If the EC is busy calculating the hash, fidget until it's done. */ 340 rv = cros_ec_wait_on_hash_done(dev, hash); 341 if (rv) 342 return rv; 343 344 /* If the hash is valid, we're done. Otherwise, we have to kick it off 345 * again and wait for it to complete. Note that we explicitly assume 346 * that hashing zero bytes is always wrong, even though that would 347 * produce a valid hash value. */ 348 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) 349 return 0; 350 351 debug("%s: No valid hash (status=%d size=%d). Compute one...\n", 352 __func__, hash->status, hash->size); 353 354 p.cmd = EC_VBOOT_HASH_RECALC; 355 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 356 p.nonce_size = 0; 357 p.offset = EC_VBOOT_HASH_OFFSET_RW; 358 359 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 360 hash, sizeof(*hash)) < 0) 361 return -1; 362 363 rv = cros_ec_wait_on_hash_done(dev, hash); 364 if (rv) 365 return rv; 366 367 debug("%s: hash done\n", __func__); 368 369 return 0; 370 } 371 372 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev) 373 { 374 struct ec_params_vboot_hash p; 375 struct ec_response_vboot_hash *hash; 376 377 /* We don't have an explict command for the EC to discard its current 378 * hash value, so we'll just tell it to calculate one that we know is 379 * wrong (we claim that hashing zero bytes is always invalid). 380 */ 381 p.cmd = EC_VBOOT_HASH_RECALC; 382 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 383 p.nonce_size = 0; 384 p.offset = 0; 385 p.size = 0; 386 387 debug("%s:\n", __func__); 388 389 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 390 (uint8_t **)&hash, sizeof(*hash)) < 0) 391 return -1; 392 393 /* No need to wait for it to finish */ 394 return 0; 395 } 396 397 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd, 398 uint8_t flags) 399 { 400 struct ec_params_reboot_ec p; 401 402 p.cmd = cmd; 403 p.flags = flags; 404 405 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) 406 < 0) 407 return -1; 408 409 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { 410 /* 411 * EC reboot will take place immediately so delay to allow it 412 * to complete. Note that some reboot types (EC_REBOOT_COLD) 413 * will reboot the AP as well, in which case we won't actually 414 * get to this point. 415 */ 416 /* 417 * TODO(rspangler@chromium.org): Would be nice if we had a 418 * better way to determine when the reboot is complete. Could 419 * we poll a memory-mapped LPC value? 420 */ 421 udelay(50000); 422 } 423 424 return 0; 425 } 426 427 int cros_ec_interrupt_pending(struct cros_ec_dev *dev) 428 { 429 /* no interrupt support : always poll */ 430 if (!fdt_gpio_isvalid(&dev->ec_int)) 431 return 1; 432 433 return !gpio_get_value(dev->ec_int.gpio); 434 } 435 436 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_cros_ec_info *info) 437 { 438 if (ec_command(dev, EC_CMD_CROS_EC_INFO, 0, NULL, 0, info, 439 sizeof(*info)) < sizeof(*info)) 440 return -1; 441 442 return 0; 443 } 444 445 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr) 446 { 447 struct ec_response_host_event_mask *resp; 448 449 /* 450 * Use the B copy of the event flags, because the main copy is already 451 * used by ACPI/SMI. 452 */ 453 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, 454 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) 455 return -1; 456 457 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) 458 return -1; 459 460 *events_ptr = resp->mask; 461 return 0; 462 } 463 464 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events) 465 { 466 struct ec_params_host_event_mask params; 467 468 params.mask = events; 469 470 /* 471 * Use the B copy of the event flags, so it affects the data returned 472 * by cros_ec_get_host_events(). 473 */ 474 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, 475 ¶ms, sizeof(params), NULL, 0) < 0) 476 return -1; 477 478 return 0; 479 } 480 481 int cros_ec_flash_protect(struct cros_ec_dev *dev, 482 uint32_t set_mask, uint32_t set_flags, 483 struct ec_response_flash_protect *resp) 484 { 485 struct ec_params_flash_protect params; 486 487 params.mask = set_mask; 488 params.flags = set_flags; 489 490 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, 491 ¶ms, sizeof(params), 492 resp, sizeof(*resp)) < sizeof(*resp)) 493 return -1; 494 495 return 0; 496 } 497 498 static int cros_ec_check_version(struct cros_ec_dev *dev) 499 { 500 struct ec_params_hello req; 501 struct ec_response_hello *resp; 502 503 #ifdef CONFIG_CROS_EC_LPC 504 /* LPC has its own way of doing this */ 505 if (dev->interface == CROS_EC_IF_LPC) 506 return cros_ec_lpc_check_version(dev); 507 #endif 508 509 /* 510 * TODO(sjg@chromium.org). 511 * There is a strange oddity here with the EC. We could just ignore 512 * the response, i.e. pass the last two parameters as NULL and 0. 513 * In this case we won't read back very many bytes from the EC. 514 * On the I2C bus the EC gets upset about this and will try to send 515 * the bytes anyway. This means that we will have to wait for that 516 * to complete before continuing with a new EC command. 517 * 518 * This problem is probably unique to the I2C bus. 519 * 520 * So for now, just read all the data anyway. 521 */ 522 dev->cmd_version_is_supported = 1; 523 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 524 (uint8_t **)&resp, sizeof(*resp)) > 0) { 525 /* It appears to understand new version commands */ 526 dev->cmd_version_is_supported = 1; 527 } else { 528 dev->cmd_version_is_supported = 0; 529 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, 530 sizeof(req), (uint8_t **)&resp, 531 sizeof(*resp)) < 0) { 532 debug("%s: Failed both old and new command style\n", 533 __func__); 534 return -1; 535 } 536 } 537 538 return 0; 539 } 540 541 int cros_ec_test(struct cros_ec_dev *dev) 542 { 543 struct ec_params_hello req; 544 struct ec_response_hello *resp; 545 546 req.in_data = 0x12345678; 547 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 548 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { 549 printf("ec_command_inptr() returned error\n"); 550 return -1; 551 } 552 if (resp->out_data != req.in_data + 0x01020304) { 553 printf("Received invalid handshake %x\n", resp->out_data); 554 return -1; 555 } 556 557 return 0; 558 } 559 560 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region, 561 uint32_t *offset, uint32_t *size) 562 { 563 struct ec_params_flash_region_info p; 564 struct ec_response_flash_region_info *r; 565 int ret; 566 567 p.region = region; 568 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, 569 EC_VER_FLASH_REGION_INFO, 570 &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); 571 if (ret != sizeof(*r)) 572 return -1; 573 574 if (offset) 575 *offset = r->offset; 576 if (size) 577 *size = r->size; 578 579 return 0; 580 } 581 582 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size) 583 { 584 struct ec_params_flash_erase p; 585 586 p.offset = offset; 587 p.size = size; 588 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), 589 NULL, 0); 590 } 591 592 /** 593 * Write a single block to the flash 594 * 595 * Write a block of data to the EC flash. The size must not exceed the flash 596 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 597 * 598 * The offset starts at 0. You can obtain the region information from 599 * cros_ec_flash_offset() to find out where to write for a particular region. 600 * 601 * Attempting to write to the region where the EC is currently running from 602 * will result in an error. 603 * 604 * @param dev CROS-EC device 605 * @param data Pointer to data buffer to write 606 * @param offset Offset within flash to write to. 607 * @param size Number of bytes to write 608 * @return 0 if ok, -1 on error 609 */ 610 static int cros_ec_flash_write_block(struct cros_ec_dev *dev, 611 const uint8_t *data, uint32_t offset, uint32_t size) 612 { 613 struct ec_params_flash_write p; 614 615 p.offset = offset; 616 p.size = size; 617 assert(data && p.size <= sizeof(p.data)); 618 memcpy(p.data, data, p.size); 619 620 return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, 621 &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1; 622 } 623 624 /** 625 * Return optimal flash write burst size 626 */ 627 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev) 628 { 629 struct ec_params_flash_write p; 630 return sizeof(p.data); 631 } 632 633 /** 634 * Check if a block of data is erased (all 0xff) 635 * 636 * This function is useful when dealing with flash, for checking whether a 637 * data block is erased and thus does not need to be programmed. 638 * 639 * @param data Pointer to data to check (must be word-aligned) 640 * @param size Number of bytes to check (must be word-aligned) 641 * @return 0 if erased, non-zero if any word is not erased 642 */ 643 static int cros_ec_data_is_erased(const uint32_t *data, int size) 644 { 645 assert(!(size & 3)); 646 size /= sizeof(uint32_t); 647 for (; size > 0; size -= 4, data++) 648 if (*data != -1U) 649 return 0; 650 651 return 1; 652 } 653 654 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data, 655 uint32_t offset, uint32_t size) 656 { 657 uint32_t burst = cros_ec_flash_write_burst_size(dev); 658 uint32_t end, off; 659 int ret; 660 661 /* 662 * TODO: round up to the nearest multiple of write size. Can get away 663 * without that on link right now because its write size is 4 bytes. 664 */ 665 end = offset + size; 666 for (off = offset; off < end; off += burst, data += burst) { 667 uint32_t todo; 668 669 /* If the data is empty, there is no point in programming it */ 670 todo = min(end - off, burst); 671 if (dev->optimise_flash_write && 672 cros_ec_data_is_erased((uint32_t *)data, todo)) 673 continue; 674 675 ret = cros_ec_flash_write_block(dev, data, off, todo); 676 if (ret) 677 return ret; 678 } 679 680 return 0; 681 } 682 683 /** 684 * Read a single block from the flash 685 * 686 * Read a block of data from the EC flash. The size must not exceed the flash 687 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 688 * 689 * The offset starts at 0. You can obtain the region information from 690 * cros_ec_flash_offset() to find out where to read for a particular region. 691 * 692 * @param dev CROS-EC device 693 * @param data Pointer to data buffer to read into 694 * @param offset Offset within flash to read from 695 * @param size Number of bytes to read 696 * @return 0 if ok, -1 on error 697 */ 698 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data, 699 uint32_t offset, uint32_t size) 700 { 701 struct ec_params_flash_read p; 702 703 p.offset = offset; 704 p.size = size; 705 706 return ec_command(dev, EC_CMD_FLASH_READ, 0, 707 &p, sizeof(p), data, size) >= 0 ? 0 : -1; 708 } 709 710 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset, 711 uint32_t size) 712 { 713 uint32_t burst = cros_ec_flash_write_burst_size(dev); 714 uint32_t end, off; 715 int ret; 716 717 end = offset + size; 718 for (off = offset; off < end; off += burst, data += burst) { 719 ret = cros_ec_flash_read_block(dev, data, off, 720 min(end - off, burst)); 721 if (ret) 722 return ret; 723 } 724 725 return 0; 726 } 727 728 int cros_ec_flash_update_rw(struct cros_ec_dev *dev, 729 const uint8_t *image, int image_size) 730 { 731 uint32_t rw_offset, rw_size; 732 int ret; 733 734 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size)) 735 return -1; 736 if (image_size > rw_size) 737 return -1; 738 739 /* Invalidate the existing hash, just in case the AP reboots 740 * unexpectedly during the update. If that happened, the EC RW firmware 741 * would be invalid, but the EC would still have the original hash. 742 */ 743 ret = cros_ec_invalidate_hash(dev); 744 if (ret) 745 return ret; 746 747 /* 748 * Erase the entire RW section, so that the EC doesn't see any garbage 749 * past the new image if it's smaller than the current image. 750 * 751 * TODO: could optimize this to erase just the current image, since 752 * presumably everything past that is 0xff's. But would still need to 753 * round up to the nearest multiple of erase size. 754 */ 755 ret = cros_ec_flash_erase(dev, rw_offset, rw_size); 756 if (ret) 757 return ret; 758 759 /* Write the image */ 760 ret = cros_ec_flash_write(dev, image, rw_offset, image_size); 761 if (ret) 762 return ret; 763 764 return 0; 765 } 766 767 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block) 768 { 769 struct ec_params_vbnvcontext p; 770 int len; 771 772 p.op = EC_VBNV_CONTEXT_OP_READ; 773 774 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 775 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE); 776 if (len < EC_VBNV_BLOCK_SIZE) 777 return -1; 778 779 return 0; 780 } 781 782 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block) 783 { 784 struct ec_params_vbnvcontext p; 785 int len; 786 787 p.op = EC_VBNV_CONTEXT_OP_WRITE; 788 memcpy(p.block, block, sizeof(p.block)); 789 790 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 791 &p, sizeof(p), NULL, 0); 792 if (len < 0) 793 return -1; 794 795 return 0; 796 } 797 798 int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state) 799 { 800 struct ec_params_ldo_set params; 801 802 params.index = index; 803 params.state = state; 804 805 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, 806 ¶ms, sizeof(params), 807 NULL, 0)) 808 return -1; 809 810 return 0; 811 } 812 813 int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state) 814 { 815 struct ec_params_ldo_get params; 816 struct ec_response_ldo_get *resp; 817 818 params.index = index; 819 820 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, 821 ¶ms, sizeof(params), 822 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) 823 return -1; 824 825 *state = resp->state; 826 827 return 0; 828 } 829 830 /** 831 * Decode MBKP details from the device tree and allocate a suitable device. 832 * 833 * @param blob Device tree blob 834 * @param node Node to decode from 835 * @param devp Returns a pointer to the new allocated device 836 * @return 0 if ok, -1 on error 837 */ 838 static int cros_ec_decode_fdt(const void *blob, int node, 839 struct cros_ec_dev **devp) 840 { 841 enum fdt_compat_id compat; 842 struct cros_ec_dev *dev; 843 int parent; 844 845 /* See what type of parent we are inside (this is expensive) */ 846 parent = fdt_parent_offset(blob, node); 847 if (parent < 0) { 848 debug("%s: Cannot find node parent\n", __func__); 849 return -1; 850 } 851 852 dev = &static_dev; 853 dev->node = node; 854 dev->parent_node = parent; 855 856 compat = fdtdec_lookup(blob, parent); 857 switch (compat) { 858 #ifdef CONFIG_CROS_EC_SPI 859 case COMPAT_SAMSUNG_EXYNOS_SPI: 860 dev->interface = CROS_EC_IF_SPI; 861 if (cros_ec_spi_decode_fdt(dev, blob)) 862 return -1; 863 break; 864 #endif 865 #ifdef CONFIG_CROS_EC_I2C 866 case COMPAT_SAMSUNG_S3C2440_I2C: 867 dev->interface = CROS_EC_IF_I2C; 868 if (cros_ec_i2c_decode_fdt(dev, blob)) 869 return -1; 870 break; 871 #endif 872 #ifdef CONFIG_CROS_EC_LPC 873 case COMPAT_INTEL_LPC: 874 dev->interface = CROS_EC_IF_LPC; 875 break; 876 #endif 877 default: 878 debug("%s: Unknown compat id %d\n", __func__, compat); 879 return -1; 880 } 881 882 fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int); 883 dev->optimise_flash_write = fdtdec_get_bool(blob, node, 884 "optimise-flash-write"); 885 *devp = dev; 886 887 return 0; 888 } 889 890 int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp) 891 { 892 char id[MSG_BYTES]; 893 struct cros_ec_dev *dev; 894 int node = 0; 895 896 *cros_ecp = NULL; 897 do { 898 node = fdtdec_next_compatible(blob, node, 899 COMPAT_GOOGLE_CROS_EC); 900 if (node < 0) { 901 debug("%s: Node not found\n", __func__); 902 return 0; 903 } 904 } while (!fdtdec_get_is_enabled(blob, node)); 905 906 if (cros_ec_decode_fdt(blob, node, &dev)) { 907 debug("%s: Failed to decode device.\n", __func__); 908 return -CROS_EC_ERR_FDT_DECODE; 909 } 910 911 switch (dev->interface) { 912 #ifdef CONFIG_CROS_EC_SPI 913 case CROS_EC_IF_SPI: 914 if (cros_ec_spi_init(dev, blob)) { 915 debug("%s: Could not setup SPI interface\n", __func__); 916 return -CROS_EC_ERR_DEV_INIT; 917 } 918 break; 919 #endif 920 #ifdef CONFIG_CROS_EC_I2C 921 case CROS_EC_IF_I2C: 922 if (cros_ec_i2c_init(dev, blob)) 923 return -CROS_EC_ERR_DEV_INIT; 924 break; 925 #endif 926 #ifdef CONFIG_CROS_EC_LPC 927 case CROS_EC_IF_LPC: 928 if (cros_ec_lpc_init(dev, blob)) 929 return -CROS_EC_ERR_DEV_INIT; 930 break; 931 #endif 932 case CROS_EC_IF_NONE: 933 default: 934 return 0; 935 } 936 937 /* we will poll the EC interrupt line */ 938 fdtdec_setup_gpio(&dev->ec_int); 939 if (fdt_gpio_isvalid(&dev->ec_int)) 940 gpio_direction_input(dev->ec_int.gpio); 941 942 if (cros_ec_check_version(dev)) { 943 debug("%s: Could not detect CROS-EC version\n", __func__); 944 return -CROS_EC_ERR_CHECK_VERSION; 945 } 946 947 if (cros_ec_read_id(dev, id, sizeof(id))) { 948 debug("%s: Could not read KBC ID\n", __func__); 949 return -CROS_EC_ERR_READ_ID; 950 } 951 952 /* Remember this device for use by the cros_ec command */ 953 last_dev = *cros_ecp = dev; 954 debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id); 955 956 return 0; 957 } 958 959 #ifdef CONFIG_CMD_CROS_EC 960 int cros_ec_decode_region(int argc, char * const argv[]) 961 { 962 if (argc > 0) { 963 if (0 == strcmp(*argv, "rw")) 964 return EC_FLASH_REGION_RW; 965 else if (0 == strcmp(*argv, "ro")) 966 return EC_FLASH_REGION_RO; 967 968 debug("%s: Invalid region '%s'\n", __func__, *argv); 969 } else { 970 debug("%s: Missing region parameter\n", __func__); 971 } 972 973 return -1; 974 } 975 976 /** 977 * Perform a flash read or write command 978 * 979 * @param dev CROS-EC device to read/write 980 * @param is_write 1 do to a write, 0 to do a read 981 * @param argc Number of arguments 982 * @param argv Arguments (2 is region, 3 is address) 983 * @return 0 for ok, 1 for a usage error or -ve for ec command error 984 * (negative EC_RES_...) 985 */ 986 static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc, 987 char * const argv[]) 988 { 989 uint32_t offset, size = -1U, region_size; 990 unsigned long addr; 991 char *endp; 992 int region; 993 int ret; 994 995 region = cros_ec_decode_region(argc - 2, argv + 2); 996 if (region == -1) 997 return 1; 998 if (argc < 4) 999 return 1; 1000 addr = simple_strtoul(argv[3], &endp, 16); 1001 if (*argv[3] == 0 || *endp != 0) 1002 return 1; 1003 if (argc > 4) { 1004 size = simple_strtoul(argv[4], &endp, 16); 1005 if (*argv[4] == 0 || *endp != 0) 1006 return 1; 1007 } 1008 1009 ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size); 1010 if (ret) { 1011 debug("%s: Could not read region info\n", __func__); 1012 return ret; 1013 } 1014 if (size == -1U) 1015 size = region_size; 1016 1017 ret = is_write ? 1018 cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) : 1019 cros_ec_flash_read(dev, (uint8_t *)addr, offset, size); 1020 if (ret) { 1021 debug("%s: Could not %s region\n", __func__, 1022 is_write ? "write" : "read"); 1023 return ret; 1024 } 1025 1026 return 0; 1027 } 1028 1029 static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) 1030 { 1031 struct cros_ec_dev *dev = last_dev; 1032 const char *cmd; 1033 int ret = 0; 1034 1035 if (argc < 2) 1036 return CMD_RET_USAGE; 1037 1038 cmd = argv[1]; 1039 if (0 == strcmp("init", cmd)) { 1040 ret = cros_ec_init(gd->fdt_blob, &dev); 1041 if (ret) { 1042 printf("Could not init cros_ec device (err %d)\n", ret); 1043 return 1; 1044 } 1045 return 0; 1046 } 1047 1048 /* Just use the last allocated device; there should be only one */ 1049 if (!last_dev) { 1050 printf("No CROS-EC device available\n"); 1051 return 1; 1052 } 1053 if (0 == strcmp("id", cmd)) { 1054 char id[MSG_BYTES]; 1055 1056 if (cros_ec_read_id(dev, id, sizeof(id))) { 1057 debug("%s: Could not read KBC ID\n", __func__); 1058 return 1; 1059 } 1060 printf("%s\n", id); 1061 } else if (0 == strcmp("info", cmd)) { 1062 struct ec_response_cros_ec_info info; 1063 1064 if (cros_ec_info(dev, &info)) { 1065 debug("%s: Could not read KBC info\n", __func__); 1066 return 1; 1067 } 1068 printf("rows = %u\n", info.rows); 1069 printf("cols = %u\n", info.cols); 1070 printf("switches = %#x\n", info.switches); 1071 } else if (0 == strcmp("curimage", cmd)) { 1072 enum ec_current_image image; 1073 1074 if (cros_ec_read_current_image(dev, &image)) { 1075 debug("%s: Could not read KBC image\n", __func__); 1076 return 1; 1077 } 1078 printf("%d\n", image); 1079 } else if (0 == strcmp("hash", cmd)) { 1080 struct ec_response_vboot_hash hash; 1081 int i; 1082 1083 if (cros_ec_read_hash(dev, &hash)) { 1084 debug("%s: Could not read KBC hash\n", __func__); 1085 return 1; 1086 } 1087 1088 if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256) 1089 printf("type: SHA-256\n"); 1090 else 1091 printf("type: %d\n", hash.hash_type); 1092 1093 printf("offset: 0x%08x\n", hash.offset); 1094 printf("size: 0x%08x\n", hash.size); 1095 1096 printf("digest: "); 1097 for (i = 0; i < hash.digest_size; i++) 1098 printf("%02x", hash.hash_digest[i]); 1099 printf("\n"); 1100 } else if (0 == strcmp("reboot", cmd)) { 1101 int region; 1102 enum ec_reboot_cmd cmd; 1103 1104 if (argc >= 3 && !strcmp(argv[2], "cold")) 1105 cmd = EC_REBOOT_COLD; 1106 else { 1107 region = cros_ec_decode_region(argc - 2, argv + 2); 1108 if (region == EC_FLASH_REGION_RO) 1109 cmd = EC_REBOOT_JUMP_RO; 1110 else if (region == EC_FLASH_REGION_RW) 1111 cmd = EC_REBOOT_JUMP_RW; 1112 else 1113 return CMD_RET_USAGE; 1114 } 1115 1116 if (cros_ec_reboot(dev, cmd, 0)) { 1117 debug("%s: Could not reboot KBC\n", __func__); 1118 return 1; 1119 } 1120 } else if (0 == strcmp("events", cmd)) { 1121 uint32_t events; 1122 1123 if (cros_ec_get_host_events(dev, &events)) { 1124 debug("%s: Could not read host events\n", __func__); 1125 return 1; 1126 } 1127 printf("0x%08x\n", events); 1128 } else if (0 == strcmp("clrevents", cmd)) { 1129 uint32_t events = 0x7fffffff; 1130 1131 if (argc >= 3) 1132 events = simple_strtol(argv[2], NULL, 0); 1133 1134 if (cros_ec_clear_host_events(dev, events)) { 1135 debug("%s: Could not clear host events\n", __func__); 1136 return 1; 1137 } 1138 } else if (0 == strcmp("read", cmd)) { 1139 ret = do_read_write(dev, 0, argc, argv); 1140 if (ret > 0) 1141 return CMD_RET_USAGE; 1142 } else if (0 == strcmp("write", cmd)) { 1143 ret = do_read_write(dev, 1, argc, argv); 1144 if (ret > 0) 1145 return CMD_RET_USAGE; 1146 } else if (0 == strcmp("erase", cmd)) { 1147 int region = cros_ec_decode_region(argc - 2, argv + 2); 1148 uint32_t offset, size; 1149 1150 if (region == -1) 1151 return CMD_RET_USAGE; 1152 if (cros_ec_flash_offset(dev, region, &offset, &size)) { 1153 debug("%s: Could not read region info\n", __func__); 1154 ret = -1; 1155 } else { 1156 ret = cros_ec_flash_erase(dev, offset, size); 1157 if (ret) { 1158 debug("%s: Could not erase region\n", 1159 __func__); 1160 } 1161 } 1162 } else if (0 == strcmp("regioninfo", cmd)) { 1163 int region = cros_ec_decode_region(argc - 2, argv + 2); 1164 uint32_t offset, size; 1165 1166 if (region == -1) 1167 return CMD_RET_USAGE; 1168 ret = cros_ec_flash_offset(dev, region, &offset, &size); 1169 if (ret) { 1170 debug("%s: Could not read region info\n", __func__); 1171 } else { 1172 printf("Region: %s\n", region == EC_FLASH_REGION_RO ? 1173 "RO" : "RW"); 1174 printf("Offset: %x\n", offset); 1175 printf("Size: %x\n", size); 1176 } 1177 } else if (0 == strcmp("vbnvcontext", cmd)) { 1178 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1179 char buf[3]; 1180 int i, len; 1181 unsigned long result; 1182 1183 if (argc <= 2) { 1184 ret = cros_ec_read_vbnvcontext(dev, block); 1185 if (!ret) { 1186 printf("vbnv_block: "); 1187 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) 1188 printf("%02x", block[i]); 1189 putc('\n'); 1190 } 1191 } else { 1192 /* 1193 * TODO(clchiou): Move this to a utility function as 1194 * cmd_spi might want to call it. 1195 */ 1196 memset(block, 0, EC_VBNV_BLOCK_SIZE); 1197 len = strlen(argv[2]); 1198 buf[2] = '\0'; 1199 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) { 1200 if (i * 2 >= len) 1201 break; 1202 buf[0] = argv[2][i * 2]; 1203 if (i * 2 + 1 >= len) 1204 buf[1] = '0'; 1205 else 1206 buf[1] = argv[2][i * 2 + 1]; 1207 strict_strtoul(buf, 16, &result); 1208 block[i] = result; 1209 } 1210 ret = cros_ec_write_vbnvcontext(dev, block); 1211 } 1212 if (ret) { 1213 debug("%s: Could not %s VbNvContext\n", __func__, 1214 argc <= 2 ? "read" : "write"); 1215 } 1216 } else if (0 == strcmp("test", cmd)) { 1217 int result = cros_ec_test(dev); 1218 1219 if (result) 1220 printf("Test failed with error %d\n", result); 1221 else 1222 puts("Test passed\n"); 1223 } else if (0 == strcmp("version", cmd)) { 1224 struct ec_response_get_version *p; 1225 char *build_string; 1226 1227 ret = cros_ec_read_version(dev, &p); 1228 if (!ret) { 1229 /* Print versions */ 1230 printf("RO version: %1.*s\n", 1231 sizeof(p->version_string_ro), 1232 p->version_string_ro); 1233 printf("RW version: %1.*s\n", 1234 sizeof(p->version_string_rw), 1235 p->version_string_rw); 1236 printf("Firmware copy: %s\n", 1237 (p->current_image < 1238 ARRAY_SIZE(ec_current_image_name) ? 1239 ec_current_image_name[p->current_image] : 1240 "?")); 1241 ret = cros_ec_read_build_info(dev, &build_string); 1242 if (!ret) 1243 printf("Build info: %s\n", build_string); 1244 } 1245 } else if (0 == strcmp("ldo", cmd)) { 1246 uint8_t index, state; 1247 char *endp; 1248 1249 if (argc < 3) 1250 return CMD_RET_USAGE; 1251 index = simple_strtoul(argv[2], &endp, 10); 1252 if (*argv[2] == 0 || *endp != 0) 1253 return CMD_RET_USAGE; 1254 if (argc > 3) { 1255 state = simple_strtoul(argv[3], &endp, 10); 1256 if (*argv[3] == 0 || *endp != 0) 1257 return CMD_RET_USAGE; 1258 ret = cros_ec_set_ldo(dev, index, state); 1259 } else { 1260 ret = cros_ec_get_ldo(dev, index, &state); 1261 if (!ret) { 1262 printf("LDO%d: %s\n", index, 1263 state == EC_LDO_STATE_ON ? 1264 "on" : "off"); 1265 } 1266 } 1267 1268 if (ret) { 1269 debug("%s: Could not access LDO%d\n", __func__, index); 1270 return ret; 1271 } 1272 } else { 1273 return CMD_RET_USAGE; 1274 } 1275 1276 if (ret < 0) { 1277 printf("Error: CROS-EC command failed (error %d)\n", ret); 1278 ret = 1; 1279 } 1280 1281 return ret; 1282 } 1283 1284 U_BOOT_CMD( 1285 crosec, 5, 1, do_cros_ec, 1286 "CROS-EC utility command", 1287 "init Re-init CROS-EC (done on startup automatically)\n" 1288 "crosec id Read CROS-EC ID\n" 1289 "crosec info Read CROS-EC info\n" 1290 "crosec curimage Read CROS-EC current image\n" 1291 "crosec hash Read CROS-EC hash\n" 1292 "crosec reboot [rw | ro | cold] Reboot CROS-EC\n" 1293 "crosec events Read CROS-EC host events\n" 1294 "crosec clrevents [mask] Clear CROS-EC host events\n" 1295 "crosec regioninfo <ro|rw> Read image info\n" 1296 "crosec erase <ro|rw> Erase EC image\n" 1297 "crosec read <ro|rw> <addr> [<size>] Read EC image\n" 1298 "crosec write <ro|rw> <addr> [<size>] Write EC image\n" 1299 "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n" 1300 "crosec ldo <idx> [<state>] Switch/Read LDO state\n" 1301 "crosec test run tests on cros_ec\n" 1302 "crosec version Read CROS-EC version" 1303 ); 1304 #endif 1305