1 /* 2 * Chromium OS cros_ec driver 3 * 4 * Copyright (c) 2012 The Chromium OS Authors. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 */ 8 9 /* 10 * This is the interface to the Chrome OS EC. It provides keyboard functions, 11 * power control and battery management. Quite a few other functions are 12 * provided to enable the EC software to be updated, talk to the EC's I2C bus 13 * and store a small amount of data in a memory which persists while the EC 14 * is not reset. 15 */ 16 17 #include <common.h> 18 #include <command.h> 19 #include <i2c.h> 20 #include <cros_ec.h> 21 #include <fdtdec.h> 22 #include <malloc.h> 23 #include <spi.h> 24 #include <asm/errno.h> 25 #include <asm/io.h> 26 #include <asm-generic/gpio.h> 27 28 #ifdef DEBUG_TRACE 29 #define debug_trace(fmt, b...) debug(fmt, #b) 30 #else 31 #define debug_trace(fmt, b...) 32 #endif 33 34 enum { 35 /* Timeout waiting for a flash erase command to complete */ 36 CROS_EC_CMD_TIMEOUT_MS = 5000, 37 /* Timeout waiting for a synchronous hash to be recomputed */ 38 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, 39 }; 40 41 static struct cros_ec_dev static_dev, *last_dev; 42 43 DECLARE_GLOBAL_DATA_PTR; 44 45 /* Note: depends on enum ec_current_image */ 46 static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"}; 47 48 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) 49 { 50 #ifdef DEBUG 51 int i; 52 53 printf("%s: ", name); 54 if (cmd != -1) 55 printf("cmd=%#x: ", cmd); 56 for (i = 0; i < len; i++) 57 printf("%02x ", data[i]); 58 printf("\n"); 59 #endif 60 } 61 62 /* 63 * Calculate a simple 8-bit checksum of a data block 64 * 65 * @param data Data block to checksum 66 * @param size Size of data block in bytes 67 * @return checksum value (0 to 255) 68 */ 69 int cros_ec_calc_checksum(const uint8_t *data, int size) 70 { 71 int csum, i; 72 73 for (i = csum = 0; i < size; i++) 74 csum += data[i]; 75 return csum & 0xff; 76 } 77 78 /** 79 * Create a request packet for protocol version 3. 80 * 81 * The packet is stored in the device's internal output buffer. 82 * 83 * @param dev CROS-EC device 84 * @param cmd Command to send (EC_CMD_...) 85 * @param cmd_version Version of command to send (EC_VER_...) 86 * @param dout Output data (may be NULL If dout_len=0) 87 * @param dout_len Size of output data in bytes 88 * @return packet size in bytes, or <0 if error. 89 */ 90 static int create_proto3_request(struct cros_ec_dev *dev, 91 int cmd, int cmd_version, 92 const void *dout, int dout_len) 93 { 94 struct ec_host_request *rq = (struct ec_host_request *)dev->dout; 95 int out_bytes = dout_len + sizeof(*rq); 96 97 /* Fail if output size is too big */ 98 if (out_bytes > (int)sizeof(dev->dout)) { 99 debug("%s: Cannot send %d bytes\n", __func__, dout_len); 100 return -EC_RES_REQUEST_TRUNCATED; 101 } 102 103 /* Fill in request packet */ 104 rq->struct_version = EC_HOST_REQUEST_VERSION; 105 rq->checksum = 0; 106 rq->command = cmd; 107 rq->command_version = cmd_version; 108 rq->reserved = 0; 109 rq->data_len = dout_len; 110 111 /* Copy data after header */ 112 memcpy(rq + 1, dout, dout_len); 113 114 /* Write checksum field so the entire packet sums to 0 */ 115 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes)); 116 117 cros_ec_dump_data("out", cmd, dev->dout, out_bytes); 118 119 /* Return size of request packet */ 120 return out_bytes; 121 } 122 123 /** 124 * Prepare the device to receive a protocol version 3 response. 125 * 126 * @param dev CROS-EC device 127 * @param din_len Maximum size of response in bytes 128 * @return maximum expected number of bytes in response, or <0 if error. 129 */ 130 static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len) 131 { 132 int in_bytes = din_len + sizeof(struct ec_host_response); 133 134 /* Fail if input size is too big */ 135 if (in_bytes > (int)sizeof(dev->din)) { 136 debug("%s: Cannot receive %d bytes\n", __func__, din_len); 137 return -EC_RES_RESPONSE_TOO_BIG; 138 } 139 140 /* Return expected size of response packet */ 141 return in_bytes; 142 } 143 144 /** 145 * Handle a protocol version 3 response packet. 146 * 147 * The packet must already be stored in the device's internal input buffer. 148 * 149 * @param dev CROS-EC device 150 * @param dinp Returns pointer to response data 151 * @param din_len Maximum size of response in bytes 152 * @return number of bytes of response data, or <0 if error 153 */ 154 static int handle_proto3_response(struct cros_ec_dev *dev, 155 uint8_t **dinp, int din_len) 156 { 157 struct ec_host_response *rs = (struct ec_host_response *)dev->din; 158 int in_bytes; 159 int csum; 160 161 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs)); 162 163 /* Check input data */ 164 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) { 165 debug("%s: EC response version mismatch\n", __func__); 166 return -EC_RES_INVALID_RESPONSE; 167 } 168 169 if (rs->reserved) { 170 debug("%s: EC response reserved != 0\n", __func__); 171 return -EC_RES_INVALID_RESPONSE; 172 } 173 174 if (rs->data_len > din_len) { 175 debug("%s: EC returned too much data\n", __func__); 176 return -EC_RES_RESPONSE_TOO_BIG; 177 } 178 179 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len); 180 181 /* Update in_bytes to actual data size */ 182 in_bytes = sizeof(*rs) + rs->data_len; 183 184 /* Verify checksum */ 185 csum = cros_ec_calc_checksum(dev->din, in_bytes); 186 if (csum) { 187 debug("%s: EC response checksum invalid: 0x%02x\n", __func__, 188 csum); 189 return -EC_RES_INVALID_CHECKSUM; 190 } 191 192 /* Return error result, if any */ 193 if (rs->result) 194 return -(int)rs->result; 195 196 /* If we're still here, set response data pointer and return length */ 197 *dinp = (uint8_t *)(rs + 1); 198 199 return rs->data_len; 200 } 201 202 static int send_command_proto3(struct cros_ec_dev *dev, 203 int cmd, int cmd_version, 204 const void *dout, int dout_len, 205 uint8_t **dinp, int din_len) 206 { 207 int out_bytes, in_bytes; 208 int rv; 209 210 /* Create request packet */ 211 out_bytes = create_proto3_request(dev, cmd, cmd_version, 212 dout, dout_len); 213 if (out_bytes < 0) 214 return out_bytes; 215 216 /* Prepare response buffer */ 217 in_bytes = prepare_proto3_response_buffer(dev, din_len); 218 if (in_bytes < 0) 219 return in_bytes; 220 221 switch (dev->interface) { 222 #ifdef CONFIG_CROS_EC_SPI 223 case CROS_EC_IF_SPI: 224 rv = cros_ec_spi_packet(dev, out_bytes, in_bytes); 225 break; 226 #endif 227 #ifdef CONFIG_CROS_EC_SANDBOX 228 case CROS_EC_IF_SANDBOX: 229 rv = cros_ec_sandbox_packet(dev, out_bytes, in_bytes); 230 break; 231 #endif 232 case CROS_EC_IF_NONE: 233 /* TODO: support protocol 3 for LPC, I2C; for now fall through */ 234 default: 235 debug("%s: Unsupported interface\n", __func__); 236 rv = -1; 237 } 238 if (rv < 0) 239 return rv; 240 241 /* Process the response */ 242 return handle_proto3_response(dev, dinp, din_len); 243 } 244 245 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 246 const void *dout, int dout_len, 247 uint8_t **dinp, int din_len) 248 { 249 int ret = -1; 250 251 /* Handle protocol version 3 support */ 252 if (dev->protocol_version == 3) { 253 return send_command_proto3(dev, cmd, cmd_version, 254 dout, dout_len, dinp, din_len); 255 } 256 257 switch (dev->interface) { 258 #ifdef CONFIG_CROS_EC_SPI 259 case CROS_EC_IF_SPI: 260 ret = cros_ec_spi_command(dev, cmd, cmd_version, 261 (const uint8_t *)dout, dout_len, 262 dinp, din_len); 263 break; 264 #endif 265 #ifdef CONFIG_CROS_EC_I2C 266 case CROS_EC_IF_I2C: 267 ret = cros_ec_i2c_command(dev, cmd, cmd_version, 268 (const uint8_t *)dout, dout_len, 269 dinp, din_len); 270 break; 271 #endif 272 #ifdef CONFIG_CROS_EC_LPC 273 case CROS_EC_IF_LPC: 274 ret = cros_ec_lpc_command(dev, cmd, cmd_version, 275 (const uint8_t *)dout, dout_len, 276 dinp, din_len); 277 break; 278 #endif 279 case CROS_EC_IF_NONE: 280 default: 281 ret = -1; 282 } 283 284 return ret; 285 } 286 287 /** 288 * Send a command to the CROS-EC device and return the reply. 289 * 290 * The device's internal input/output buffers are used. 291 * 292 * @param dev CROS-EC device 293 * @param cmd Command to send (EC_CMD_...) 294 * @param cmd_version Version of command to send (EC_VER_...) 295 * @param dout Output data (may be NULL If dout_len=0) 296 * @param dout_len Size of output data in bytes 297 * @param dinp Response data (may be NULL If din_len=0). 298 * If not NULL, it will be updated to point to the data 299 * and will always be double word aligned (64-bits) 300 * @param din_len Maximum size of response in bytes 301 * @return number of bytes in response, or -1 on error 302 */ 303 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd, 304 int cmd_version, const void *dout, int dout_len, uint8_t **dinp, 305 int din_len) 306 { 307 uint8_t *din = NULL; 308 int len; 309 310 len = send_command(dev, cmd, cmd_version, dout, dout_len, 311 &din, din_len); 312 313 /* If the command doesn't complete, wait a while */ 314 if (len == -EC_RES_IN_PROGRESS) { 315 struct ec_response_get_comms_status *resp = NULL; 316 ulong start; 317 318 /* Wait for command to complete */ 319 start = get_timer(0); 320 do { 321 int ret; 322 323 mdelay(50); /* Insert some reasonable delay */ 324 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0, 325 NULL, 0, 326 (uint8_t **)&resp, sizeof(*resp)); 327 if (ret < 0) 328 return ret; 329 330 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { 331 debug("%s: Command %#02x timeout\n", 332 __func__, cmd); 333 return -EC_RES_TIMEOUT; 334 } 335 } while (resp->flags & EC_COMMS_STATUS_PROCESSING); 336 337 /* OK it completed, so read the status response */ 338 /* not sure why it was 0 for the last argument */ 339 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0, 340 NULL, 0, &din, din_len); 341 } 342 343 debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, 344 dinp ? *dinp : NULL); 345 if (dinp) { 346 /* If we have any data to return, it must be 64bit-aligned */ 347 assert(len <= 0 || !((uintptr_t)din & 7)); 348 *dinp = din; 349 } 350 351 return len; 352 } 353 354 /** 355 * Send a command to the CROS-EC device and return the reply. 356 * 357 * The device's internal input/output buffers are used. 358 * 359 * @param dev CROS-EC device 360 * @param cmd Command to send (EC_CMD_...) 361 * @param cmd_version Version of command to send (EC_VER_...) 362 * @param dout Output data (may be NULL If dout_len=0) 363 * @param dout_len Size of output data in bytes 364 * @param din Response data (may be NULL If din_len=0). 365 * It not NULL, it is a place for ec_command() to copy the 366 * data to. 367 * @param din_len Maximum size of response in bytes 368 * @return number of bytes in response, or -1 on error 369 */ 370 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 371 const void *dout, int dout_len, 372 void *din, int din_len) 373 { 374 uint8_t *in_buffer; 375 int len; 376 377 assert((din_len == 0) || din); 378 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, 379 &in_buffer, din_len); 380 if (len > 0) { 381 /* 382 * If we were asked to put it somewhere, do so, otherwise just 383 * disregard the result. 384 */ 385 if (din && in_buffer) { 386 assert(len <= din_len); 387 memmove(din, in_buffer, len); 388 } 389 } 390 return len; 391 } 392 393 int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan) 394 { 395 if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan, 396 sizeof(scan->data)) != sizeof(scan->data)) 397 return -1; 398 399 return 0; 400 } 401 402 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen) 403 { 404 struct ec_response_get_version *r; 405 406 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 407 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 408 return -1; 409 410 if (maxlen > (int)sizeof(r->version_string_ro)) 411 maxlen = sizeof(r->version_string_ro); 412 413 switch (r->current_image) { 414 case EC_IMAGE_RO: 415 memcpy(id, r->version_string_ro, maxlen); 416 break; 417 case EC_IMAGE_RW: 418 memcpy(id, r->version_string_rw, maxlen); 419 break; 420 default: 421 return -1; 422 } 423 424 id[maxlen - 1] = '\0'; 425 return 0; 426 } 427 428 int cros_ec_read_version(struct cros_ec_dev *dev, 429 struct ec_response_get_version **versionp) 430 { 431 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 432 (uint8_t **)versionp, sizeof(**versionp)) 433 != sizeof(**versionp)) 434 return -1; 435 436 return 0; 437 } 438 439 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp) 440 { 441 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, 442 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0) 443 return -1; 444 445 return 0; 446 } 447 448 int cros_ec_read_current_image(struct cros_ec_dev *dev, 449 enum ec_current_image *image) 450 { 451 struct ec_response_get_version *r; 452 453 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 454 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 455 return -1; 456 457 *image = r->current_image; 458 return 0; 459 } 460 461 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev, 462 struct ec_response_vboot_hash *hash) 463 { 464 struct ec_params_vboot_hash p; 465 ulong start; 466 467 start = get_timer(0); 468 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { 469 mdelay(50); /* Insert some reasonable delay */ 470 471 p.cmd = EC_VBOOT_HASH_GET; 472 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 473 hash, sizeof(*hash)) < 0) 474 return -1; 475 476 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { 477 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); 478 return -EC_RES_TIMEOUT; 479 } 480 } 481 return 0; 482 } 483 484 485 int cros_ec_read_hash(struct cros_ec_dev *dev, 486 struct ec_response_vboot_hash *hash) 487 { 488 struct ec_params_vboot_hash p; 489 int rv; 490 491 p.cmd = EC_VBOOT_HASH_GET; 492 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 493 hash, sizeof(*hash)) < 0) 494 return -1; 495 496 /* If the EC is busy calculating the hash, fidget until it's done. */ 497 rv = cros_ec_wait_on_hash_done(dev, hash); 498 if (rv) 499 return rv; 500 501 /* If the hash is valid, we're done. Otherwise, we have to kick it off 502 * again and wait for it to complete. Note that we explicitly assume 503 * that hashing zero bytes is always wrong, even though that would 504 * produce a valid hash value. */ 505 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) 506 return 0; 507 508 debug("%s: No valid hash (status=%d size=%d). Compute one...\n", 509 __func__, hash->status, hash->size); 510 511 p.cmd = EC_VBOOT_HASH_START; 512 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 513 p.nonce_size = 0; 514 p.offset = EC_VBOOT_HASH_OFFSET_RW; 515 516 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 517 hash, sizeof(*hash)) < 0) 518 return -1; 519 520 rv = cros_ec_wait_on_hash_done(dev, hash); 521 if (rv) 522 return rv; 523 524 debug("%s: hash done\n", __func__); 525 526 return 0; 527 } 528 529 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev) 530 { 531 struct ec_params_vboot_hash p; 532 struct ec_response_vboot_hash *hash; 533 534 /* We don't have an explict command for the EC to discard its current 535 * hash value, so we'll just tell it to calculate one that we know is 536 * wrong (we claim that hashing zero bytes is always invalid). 537 */ 538 p.cmd = EC_VBOOT_HASH_RECALC; 539 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 540 p.nonce_size = 0; 541 p.offset = 0; 542 p.size = 0; 543 544 debug("%s:\n", __func__); 545 546 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 547 (uint8_t **)&hash, sizeof(*hash)) < 0) 548 return -1; 549 550 /* No need to wait for it to finish */ 551 return 0; 552 } 553 554 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd, 555 uint8_t flags) 556 { 557 struct ec_params_reboot_ec p; 558 559 p.cmd = cmd; 560 p.flags = flags; 561 562 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) 563 < 0) 564 return -1; 565 566 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { 567 /* 568 * EC reboot will take place immediately so delay to allow it 569 * to complete. Note that some reboot types (EC_REBOOT_COLD) 570 * will reboot the AP as well, in which case we won't actually 571 * get to this point. 572 */ 573 /* 574 * TODO(rspangler@chromium.org): Would be nice if we had a 575 * better way to determine when the reboot is complete. Could 576 * we poll a memory-mapped LPC value? 577 */ 578 udelay(50000); 579 } 580 581 return 0; 582 } 583 584 int cros_ec_interrupt_pending(struct cros_ec_dev *dev) 585 { 586 /* no interrupt support : always poll */ 587 if (!fdt_gpio_isvalid(&dev->ec_int)) 588 return -ENOENT; 589 590 return !gpio_get_value(dev->ec_int.gpio); 591 } 592 593 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info) 594 { 595 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info, 596 sizeof(*info)) != sizeof(*info)) 597 return -1; 598 599 return 0; 600 } 601 602 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr) 603 { 604 struct ec_response_host_event_mask *resp; 605 606 /* 607 * Use the B copy of the event flags, because the main copy is already 608 * used by ACPI/SMI. 609 */ 610 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, 611 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp)) 612 return -1; 613 614 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) 615 return -1; 616 617 *events_ptr = resp->mask; 618 return 0; 619 } 620 621 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events) 622 { 623 struct ec_params_host_event_mask params; 624 625 params.mask = events; 626 627 /* 628 * Use the B copy of the event flags, so it affects the data returned 629 * by cros_ec_get_host_events(). 630 */ 631 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, 632 ¶ms, sizeof(params), NULL, 0) < 0) 633 return -1; 634 635 return 0; 636 } 637 638 int cros_ec_flash_protect(struct cros_ec_dev *dev, 639 uint32_t set_mask, uint32_t set_flags, 640 struct ec_response_flash_protect *resp) 641 { 642 struct ec_params_flash_protect params; 643 644 params.mask = set_mask; 645 params.flags = set_flags; 646 647 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, 648 ¶ms, sizeof(params), 649 resp, sizeof(*resp)) != sizeof(*resp)) 650 return -1; 651 652 return 0; 653 } 654 655 static int cros_ec_check_version(struct cros_ec_dev *dev) 656 { 657 struct ec_params_hello req; 658 struct ec_response_hello *resp; 659 660 #ifdef CONFIG_CROS_EC_LPC 661 /* LPC has its own way of doing this */ 662 if (dev->interface == CROS_EC_IF_LPC) 663 return cros_ec_lpc_check_version(dev); 664 #endif 665 666 /* 667 * TODO(sjg@chromium.org). 668 * There is a strange oddity here with the EC. We could just ignore 669 * the response, i.e. pass the last two parameters as NULL and 0. 670 * In this case we won't read back very many bytes from the EC. 671 * On the I2C bus the EC gets upset about this and will try to send 672 * the bytes anyway. This means that we will have to wait for that 673 * to complete before continuing with a new EC command. 674 * 675 * This problem is probably unique to the I2C bus. 676 * 677 * So for now, just read all the data anyway. 678 */ 679 680 /* Try sending a version 3 packet */ 681 dev->protocol_version = 3; 682 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 683 (uint8_t **)&resp, sizeof(*resp)) > 0) { 684 return 0; 685 } 686 687 /* Try sending a version 2 packet */ 688 dev->protocol_version = 2; 689 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 690 (uint8_t **)&resp, sizeof(*resp)) > 0) { 691 return 0; 692 } 693 694 /* 695 * Fail if we're still here, since the EC doesn't understand any 696 * protcol version we speak. Version 1 interface without command 697 * version is no longer supported, and we don't know about any new 698 * protocol versions. 699 */ 700 dev->protocol_version = 0; 701 printf("%s: ERROR: old EC interface not supported\n", __func__); 702 return -1; 703 } 704 705 int cros_ec_test(struct cros_ec_dev *dev) 706 { 707 struct ec_params_hello req; 708 struct ec_response_hello *resp; 709 710 req.in_data = 0x12345678; 711 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 712 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { 713 printf("ec_command_inptr() returned error\n"); 714 return -1; 715 } 716 if (resp->out_data != req.in_data + 0x01020304) { 717 printf("Received invalid handshake %x\n", resp->out_data); 718 return -1; 719 } 720 721 return 0; 722 } 723 724 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region, 725 uint32_t *offset, uint32_t *size) 726 { 727 struct ec_params_flash_region_info p; 728 struct ec_response_flash_region_info *r; 729 int ret; 730 731 p.region = region; 732 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, 733 EC_VER_FLASH_REGION_INFO, 734 &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); 735 if (ret != sizeof(*r)) 736 return -1; 737 738 if (offset) 739 *offset = r->offset; 740 if (size) 741 *size = r->size; 742 743 return 0; 744 } 745 746 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size) 747 { 748 struct ec_params_flash_erase p; 749 750 p.offset = offset; 751 p.size = size; 752 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), 753 NULL, 0); 754 } 755 756 /** 757 * Write a single block to the flash 758 * 759 * Write a block of data to the EC flash. The size must not exceed the flash 760 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 761 * 762 * The offset starts at 0. You can obtain the region information from 763 * cros_ec_flash_offset() to find out where to write for a particular region. 764 * 765 * Attempting to write to the region where the EC is currently running from 766 * will result in an error. 767 * 768 * @param dev CROS-EC device 769 * @param data Pointer to data buffer to write 770 * @param offset Offset within flash to write to. 771 * @param size Number of bytes to write 772 * @return 0 if ok, -1 on error 773 */ 774 static int cros_ec_flash_write_block(struct cros_ec_dev *dev, 775 const uint8_t *data, uint32_t offset, uint32_t size) 776 { 777 struct ec_params_flash_write p; 778 779 p.offset = offset; 780 p.size = size; 781 assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE); 782 memcpy(&p + 1, data, p.size); 783 784 return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, 785 &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1; 786 } 787 788 /** 789 * Return optimal flash write burst size 790 */ 791 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev) 792 { 793 return EC_FLASH_WRITE_VER0_SIZE; 794 } 795 796 /** 797 * Check if a block of data is erased (all 0xff) 798 * 799 * This function is useful when dealing with flash, for checking whether a 800 * data block is erased and thus does not need to be programmed. 801 * 802 * @param data Pointer to data to check (must be word-aligned) 803 * @param size Number of bytes to check (must be word-aligned) 804 * @return 0 if erased, non-zero if any word is not erased 805 */ 806 static int cros_ec_data_is_erased(const uint32_t *data, int size) 807 { 808 assert(!(size & 3)); 809 size /= sizeof(uint32_t); 810 for (; size > 0; size -= 4, data++) 811 if (*data != -1U) 812 return 0; 813 814 return 1; 815 } 816 817 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data, 818 uint32_t offset, uint32_t size) 819 { 820 uint32_t burst = cros_ec_flash_write_burst_size(dev); 821 uint32_t end, off; 822 int ret; 823 824 /* 825 * TODO: round up to the nearest multiple of write size. Can get away 826 * without that on link right now because its write size is 4 bytes. 827 */ 828 end = offset + size; 829 for (off = offset; off < end; off += burst, data += burst) { 830 uint32_t todo; 831 832 /* If the data is empty, there is no point in programming it */ 833 todo = min(end - off, burst); 834 if (dev->optimise_flash_write && 835 cros_ec_data_is_erased((uint32_t *)data, todo)) 836 continue; 837 838 ret = cros_ec_flash_write_block(dev, data, off, todo); 839 if (ret) 840 return ret; 841 } 842 843 return 0; 844 } 845 846 /** 847 * Read a single block from the flash 848 * 849 * Read a block of data from the EC flash. The size must not exceed the flash 850 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 851 * 852 * The offset starts at 0. You can obtain the region information from 853 * cros_ec_flash_offset() to find out where to read for a particular region. 854 * 855 * @param dev CROS-EC device 856 * @param data Pointer to data buffer to read into 857 * @param offset Offset within flash to read from 858 * @param size Number of bytes to read 859 * @return 0 if ok, -1 on error 860 */ 861 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data, 862 uint32_t offset, uint32_t size) 863 { 864 struct ec_params_flash_read p; 865 866 p.offset = offset; 867 p.size = size; 868 869 return ec_command(dev, EC_CMD_FLASH_READ, 0, 870 &p, sizeof(p), data, size) >= 0 ? 0 : -1; 871 } 872 873 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset, 874 uint32_t size) 875 { 876 uint32_t burst = cros_ec_flash_write_burst_size(dev); 877 uint32_t end, off; 878 int ret; 879 880 end = offset + size; 881 for (off = offset; off < end; off += burst, data += burst) { 882 ret = cros_ec_flash_read_block(dev, data, off, 883 min(end - off, burst)); 884 if (ret) 885 return ret; 886 } 887 888 return 0; 889 } 890 891 int cros_ec_flash_update_rw(struct cros_ec_dev *dev, 892 const uint8_t *image, int image_size) 893 { 894 uint32_t rw_offset, rw_size; 895 int ret; 896 897 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size)) 898 return -1; 899 if (image_size > (int)rw_size) 900 return -1; 901 902 /* Invalidate the existing hash, just in case the AP reboots 903 * unexpectedly during the update. If that happened, the EC RW firmware 904 * would be invalid, but the EC would still have the original hash. 905 */ 906 ret = cros_ec_invalidate_hash(dev); 907 if (ret) 908 return ret; 909 910 /* 911 * Erase the entire RW section, so that the EC doesn't see any garbage 912 * past the new image if it's smaller than the current image. 913 * 914 * TODO: could optimize this to erase just the current image, since 915 * presumably everything past that is 0xff's. But would still need to 916 * round up to the nearest multiple of erase size. 917 */ 918 ret = cros_ec_flash_erase(dev, rw_offset, rw_size); 919 if (ret) 920 return ret; 921 922 /* Write the image */ 923 ret = cros_ec_flash_write(dev, image, rw_offset, image_size); 924 if (ret) 925 return ret; 926 927 return 0; 928 } 929 930 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block) 931 { 932 struct ec_params_vbnvcontext p; 933 int len; 934 935 p.op = EC_VBNV_CONTEXT_OP_READ; 936 937 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 938 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE); 939 if (len < EC_VBNV_BLOCK_SIZE) 940 return -1; 941 942 return 0; 943 } 944 945 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block) 946 { 947 struct ec_params_vbnvcontext p; 948 int len; 949 950 p.op = EC_VBNV_CONTEXT_OP_WRITE; 951 memcpy(p.block, block, sizeof(p.block)); 952 953 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 954 &p, sizeof(p), NULL, 0); 955 if (len < 0) 956 return -1; 957 958 return 0; 959 } 960 961 int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state) 962 { 963 struct ec_params_ldo_set params; 964 965 params.index = index; 966 params.state = state; 967 968 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, 969 ¶ms, sizeof(params), 970 NULL, 0)) 971 return -1; 972 973 return 0; 974 } 975 976 int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state) 977 { 978 struct ec_params_ldo_get params; 979 struct ec_response_ldo_get *resp; 980 981 params.index = index; 982 983 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, 984 ¶ms, sizeof(params), 985 (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp)) 986 return -1; 987 988 *state = resp->state; 989 990 return 0; 991 } 992 993 /** 994 * Decode EC interface details from the device tree and allocate a suitable 995 * device. 996 * 997 * @param blob Device tree blob 998 * @param node Node to decode from 999 * @param devp Returns a pointer to the new allocated device 1000 * @return 0 if ok, -1 on error 1001 */ 1002 static int cros_ec_decode_fdt(const void *blob, int node, 1003 struct cros_ec_dev **devp) 1004 { 1005 enum fdt_compat_id compat; 1006 struct cros_ec_dev *dev; 1007 int parent; 1008 1009 /* See what type of parent we are inside (this is expensive) */ 1010 parent = fdt_parent_offset(blob, node); 1011 if (parent < 0) { 1012 debug("%s: Cannot find node parent\n", __func__); 1013 return -1; 1014 } 1015 1016 dev = &static_dev; 1017 dev->node = node; 1018 dev->parent_node = parent; 1019 1020 compat = fdtdec_lookup(blob, parent); 1021 switch (compat) { 1022 #ifdef CONFIG_CROS_EC_SPI 1023 case COMPAT_SAMSUNG_EXYNOS_SPI: 1024 dev->interface = CROS_EC_IF_SPI; 1025 if (cros_ec_spi_decode_fdt(dev, blob)) 1026 return -1; 1027 break; 1028 #endif 1029 #ifdef CONFIG_CROS_EC_I2C 1030 case COMPAT_SAMSUNG_S3C2440_I2C: 1031 dev->interface = CROS_EC_IF_I2C; 1032 if (cros_ec_i2c_decode_fdt(dev, blob)) 1033 return -1; 1034 break; 1035 #endif 1036 #ifdef CONFIG_CROS_EC_LPC 1037 case COMPAT_INTEL_LPC: 1038 dev->interface = CROS_EC_IF_LPC; 1039 break; 1040 #endif 1041 #ifdef CONFIG_CROS_EC_SANDBOX 1042 case COMPAT_SANDBOX_HOST_EMULATION: 1043 dev->interface = CROS_EC_IF_SANDBOX; 1044 break; 1045 #endif 1046 default: 1047 debug("%s: Unknown compat id %d\n", __func__, compat); 1048 return -1; 1049 } 1050 1051 fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int); 1052 dev->optimise_flash_write = fdtdec_get_bool(blob, node, 1053 "optimise-flash-write"); 1054 *devp = dev; 1055 1056 return 0; 1057 } 1058 1059 int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp) 1060 { 1061 char id[MSG_BYTES]; 1062 struct cros_ec_dev *dev; 1063 int node = 0; 1064 1065 *cros_ecp = NULL; 1066 do { 1067 node = fdtdec_next_compatible(blob, node, 1068 COMPAT_GOOGLE_CROS_EC); 1069 if (node < 0) { 1070 debug("%s: Node not found\n", __func__); 1071 return 0; 1072 } 1073 } while (!fdtdec_get_is_enabled(blob, node)); 1074 1075 if (cros_ec_decode_fdt(blob, node, &dev)) { 1076 debug("%s: Failed to decode device.\n", __func__); 1077 return -CROS_EC_ERR_FDT_DECODE; 1078 } 1079 1080 switch (dev->interface) { 1081 #ifdef CONFIG_CROS_EC_SPI 1082 case CROS_EC_IF_SPI: 1083 if (cros_ec_spi_init(dev, blob)) { 1084 debug("%s: Could not setup SPI interface\n", __func__); 1085 return -CROS_EC_ERR_DEV_INIT; 1086 } 1087 break; 1088 #endif 1089 #ifdef CONFIG_CROS_EC_I2C 1090 case CROS_EC_IF_I2C: 1091 if (cros_ec_i2c_init(dev, blob)) 1092 return -CROS_EC_ERR_DEV_INIT; 1093 break; 1094 #endif 1095 #ifdef CONFIG_CROS_EC_LPC 1096 case CROS_EC_IF_LPC: 1097 if (cros_ec_lpc_init(dev, blob)) 1098 return -CROS_EC_ERR_DEV_INIT; 1099 break; 1100 #endif 1101 #ifdef CONFIG_CROS_EC_SANDBOX 1102 case CROS_EC_IF_SANDBOX: 1103 if (cros_ec_sandbox_init(dev, blob)) 1104 return -CROS_EC_ERR_DEV_INIT; 1105 break; 1106 #endif 1107 case CROS_EC_IF_NONE: 1108 default: 1109 return 0; 1110 } 1111 1112 /* we will poll the EC interrupt line */ 1113 fdtdec_setup_gpio(&dev->ec_int); 1114 if (fdt_gpio_isvalid(&dev->ec_int)) 1115 gpio_direction_input(dev->ec_int.gpio); 1116 1117 if (cros_ec_check_version(dev)) { 1118 debug("%s: Could not detect CROS-EC version\n", __func__); 1119 return -CROS_EC_ERR_CHECK_VERSION; 1120 } 1121 1122 if (cros_ec_read_id(dev, id, sizeof(id))) { 1123 debug("%s: Could not read KBC ID\n", __func__); 1124 return -CROS_EC_ERR_READ_ID; 1125 } 1126 1127 /* Remember this device for use by the cros_ec command */ 1128 last_dev = *cros_ecp = dev; 1129 debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id); 1130 1131 return 0; 1132 } 1133 1134 int cros_ec_decode_region(int argc, char * const argv[]) 1135 { 1136 if (argc > 0) { 1137 if (0 == strcmp(*argv, "rw")) 1138 return EC_FLASH_REGION_RW; 1139 else if (0 == strcmp(*argv, "ro")) 1140 return EC_FLASH_REGION_RO; 1141 1142 debug("%s: Invalid region '%s'\n", __func__, *argv); 1143 } else { 1144 debug("%s: Missing region parameter\n", __func__); 1145 } 1146 1147 return -1; 1148 } 1149 1150 int cros_ec_decode_ec_flash(const void *blob, struct fdt_cros_ec *config) 1151 { 1152 int flash_node, node; 1153 1154 node = fdtdec_next_compatible(blob, 0, COMPAT_GOOGLE_CROS_EC); 1155 if (node < 0) { 1156 debug("Failed to find chrome-ec node'\n"); 1157 return -1; 1158 } 1159 1160 flash_node = fdt_subnode_offset(blob, node, "flash"); 1161 if (flash_node < 0) { 1162 debug("Failed to find flash node\n"); 1163 return -1; 1164 } 1165 1166 if (fdtdec_read_fmap_entry(blob, flash_node, "flash", 1167 &config->flash)) { 1168 debug("Failed to decode flash node in chrome-ec'\n"); 1169 return -1; 1170 } 1171 1172 config->flash_erase_value = fdtdec_get_int(blob, flash_node, 1173 "erase-value", -1); 1174 for (node = fdt_first_subnode(blob, flash_node); node >= 0; 1175 node = fdt_next_subnode(blob, node)) { 1176 const char *name = fdt_get_name(blob, node, NULL); 1177 enum ec_flash_region region; 1178 1179 if (0 == strcmp(name, "ro")) { 1180 region = EC_FLASH_REGION_RO; 1181 } else if (0 == strcmp(name, "rw")) { 1182 region = EC_FLASH_REGION_RW; 1183 } else if (0 == strcmp(name, "wp-ro")) { 1184 region = EC_FLASH_REGION_WP_RO; 1185 } else { 1186 debug("Unknown EC flash region name '%s'\n", name); 1187 return -1; 1188 } 1189 1190 if (fdtdec_read_fmap_entry(blob, node, "reg", 1191 &config->region[region])) { 1192 debug("Failed to decode flash region in chrome-ec'\n"); 1193 return -1; 1194 } 1195 } 1196 1197 return 0; 1198 } 1199 1200 int cros_ec_i2c_xfer(struct cros_ec_dev *dev, uchar chip, uint addr, 1201 int alen, uchar *buffer, int len, int is_read) 1202 { 1203 union { 1204 struct ec_params_i2c_passthru p; 1205 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1206 } params; 1207 union { 1208 struct ec_response_i2c_passthru r; 1209 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1210 } response; 1211 struct ec_params_i2c_passthru *p = ¶ms.p; 1212 struct ec_response_i2c_passthru *r = &response.r; 1213 struct ec_params_i2c_passthru_msg *msg = p->msg; 1214 uint8_t *pdata; 1215 int read_len, write_len; 1216 int size; 1217 int rv; 1218 1219 p->port = 0; 1220 1221 if (alen != 1) { 1222 printf("Unsupported address length %d\n", alen); 1223 return -1; 1224 } 1225 if (is_read) { 1226 read_len = len; 1227 write_len = alen; 1228 p->num_msgs = 2; 1229 } else { 1230 read_len = 0; 1231 write_len = alen + len; 1232 p->num_msgs = 1; 1233 } 1234 1235 size = sizeof(*p) + p->num_msgs * sizeof(*msg); 1236 if (size + write_len > sizeof(params)) { 1237 puts("Params too large for buffer\n"); 1238 return -1; 1239 } 1240 if (sizeof(*r) + read_len > sizeof(response)) { 1241 puts("Read length too big for buffer\n"); 1242 return -1; 1243 } 1244 1245 /* Create a message to write the register address and optional data */ 1246 pdata = (uint8_t *)p + size; 1247 msg->addr_flags = chip; 1248 msg->len = write_len; 1249 pdata[0] = addr; 1250 if (!is_read) 1251 memcpy(pdata + 1, buffer, len); 1252 msg++; 1253 1254 if (read_len) { 1255 msg->addr_flags = chip | EC_I2C_FLAG_READ; 1256 msg->len = read_len; 1257 } 1258 1259 rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, size + write_len, 1260 r, sizeof(*r) + read_len); 1261 if (rv < 0) 1262 return rv; 1263 1264 /* Parse response */ 1265 if (r->i2c_status & EC_I2C_STATUS_ERROR) { 1266 printf("Transfer failed with status=0x%x\n", r->i2c_status); 1267 return -1; 1268 } 1269 1270 if (rv < sizeof(*r) + read_len) { 1271 puts("Truncated read response\n"); 1272 return -1; 1273 } 1274 1275 if (read_len) 1276 memcpy(buffer, r->data, read_len); 1277 1278 return 0; 1279 } 1280 1281 #ifdef CONFIG_CMD_CROS_EC 1282 1283 /** 1284 * Perform a flash read or write command 1285 * 1286 * @param dev CROS-EC device to read/write 1287 * @param is_write 1 do to a write, 0 to do a read 1288 * @param argc Number of arguments 1289 * @param argv Arguments (2 is region, 3 is address) 1290 * @return 0 for ok, 1 for a usage error or -ve for ec command error 1291 * (negative EC_RES_...) 1292 */ 1293 static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc, 1294 char * const argv[]) 1295 { 1296 uint32_t offset, size = -1U, region_size; 1297 unsigned long addr; 1298 char *endp; 1299 int region; 1300 int ret; 1301 1302 region = cros_ec_decode_region(argc - 2, argv + 2); 1303 if (region == -1) 1304 return 1; 1305 if (argc < 4) 1306 return 1; 1307 addr = simple_strtoul(argv[3], &endp, 16); 1308 if (*argv[3] == 0 || *endp != 0) 1309 return 1; 1310 if (argc > 4) { 1311 size = simple_strtoul(argv[4], &endp, 16); 1312 if (*argv[4] == 0 || *endp != 0) 1313 return 1; 1314 } 1315 1316 ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size); 1317 if (ret) { 1318 debug("%s: Could not read region info\n", __func__); 1319 return ret; 1320 } 1321 if (size == -1U) 1322 size = region_size; 1323 1324 ret = is_write ? 1325 cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) : 1326 cros_ec_flash_read(dev, (uint8_t *)addr, offset, size); 1327 if (ret) { 1328 debug("%s: Could not %s region\n", __func__, 1329 is_write ? "write" : "read"); 1330 return ret; 1331 } 1332 1333 return 0; 1334 } 1335 1336 /** 1337 * get_alen() - Small parser helper function to get address length 1338 * 1339 * Returns the address length. 1340 */ 1341 static uint get_alen(char *arg) 1342 { 1343 int j; 1344 int alen; 1345 1346 alen = 1; 1347 for (j = 0; j < 8; j++) { 1348 if (arg[j] == '.') { 1349 alen = arg[j+1] - '0'; 1350 break; 1351 } else if (arg[j] == '\0') { 1352 break; 1353 } 1354 } 1355 return alen; 1356 } 1357 1358 #define DISP_LINE_LEN 16 1359 1360 /* 1361 * TODO(sjg@chromium.org): This code copied almost verbatim from cmd_i2c.c 1362 * so we can remove it later. 1363 */ 1364 static int cros_ec_i2c_md(struct cros_ec_dev *dev, int flag, int argc, 1365 char * const argv[]) 1366 { 1367 u_char chip; 1368 uint addr, alen, length = 0x10; 1369 int j, nbytes, linebytes; 1370 1371 if (argc < 2) 1372 return CMD_RET_USAGE; 1373 1374 if (1 || (flag & CMD_FLAG_REPEAT) == 0) { 1375 /* 1376 * New command specified. 1377 */ 1378 1379 /* 1380 * I2C chip address 1381 */ 1382 chip = simple_strtoul(argv[0], NULL, 16); 1383 1384 /* 1385 * I2C data address within the chip. This can be 1 or 1386 * 2 bytes long. Some day it might be 3 bytes long :-). 1387 */ 1388 addr = simple_strtoul(argv[1], NULL, 16); 1389 alen = get_alen(argv[1]); 1390 if (alen > 3) 1391 return CMD_RET_USAGE; 1392 1393 /* 1394 * If another parameter, it is the length to display. 1395 * Length is the number of objects, not number of bytes. 1396 */ 1397 if (argc > 2) 1398 length = simple_strtoul(argv[2], NULL, 16); 1399 } 1400 1401 /* 1402 * Print the lines. 1403 * 1404 * We buffer all read data, so we can make sure data is read only 1405 * once. 1406 */ 1407 nbytes = length; 1408 do { 1409 unsigned char linebuf[DISP_LINE_LEN]; 1410 unsigned char *cp; 1411 1412 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes; 1413 1414 if (cros_ec_i2c_xfer(dev, chip, addr, alen, linebuf, linebytes, 1415 1)) 1416 puts("Error reading the chip.\n"); 1417 else { 1418 printf("%04x:", addr); 1419 cp = linebuf; 1420 for (j = 0; j < linebytes; j++) { 1421 printf(" %02x", *cp++); 1422 addr++; 1423 } 1424 puts(" "); 1425 cp = linebuf; 1426 for (j = 0; j < linebytes; j++) { 1427 if ((*cp < 0x20) || (*cp > 0x7e)) 1428 puts("."); 1429 else 1430 printf("%c", *cp); 1431 cp++; 1432 } 1433 putc('\n'); 1434 } 1435 nbytes -= linebytes; 1436 } while (nbytes > 0); 1437 1438 return 0; 1439 } 1440 1441 static int cros_ec_i2c_mw(struct cros_ec_dev *dev, int flag, int argc, 1442 char * const argv[]) 1443 { 1444 uchar chip; 1445 ulong addr; 1446 uint alen; 1447 uchar byte; 1448 int count; 1449 1450 if ((argc < 3) || (argc > 4)) 1451 return CMD_RET_USAGE; 1452 1453 /* 1454 * Chip is always specified. 1455 */ 1456 chip = simple_strtoul(argv[0], NULL, 16); 1457 1458 /* 1459 * Address is always specified. 1460 */ 1461 addr = simple_strtoul(argv[1], NULL, 16); 1462 alen = get_alen(argv[1]); 1463 if (alen > 3) 1464 return CMD_RET_USAGE; 1465 1466 /* 1467 * Value to write is always specified. 1468 */ 1469 byte = simple_strtoul(argv[2], NULL, 16); 1470 1471 /* 1472 * Optional count 1473 */ 1474 if (argc == 4) 1475 count = simple_strtoul(argv[3], NULL, 16); 1476 else 1477 count = 1; 1478 1479 while (count-- > 0) { 1480 if (cros_ec_i2c_xfer(dev, chip, addr++, alen, &byte, 1, 0)) 1481 puts("Error writing the chip.\n"); 1482 /* 1483 * Wait for the write to complete. The write can take 1484 * up to 10mSec (we allow a little more time). 1485 */ 1486 /* 1487 * No write delay with FRAM devices. 1488 */ 1489 #if !defined(CONFIG_SYS_I2C_FRAM) 1490 udelay(11000); 1491 #endif 1492 } 1493 1494 return 0; 1495 } 1496 1497 /* Temporary code until we have driver model and can use the i2c command */ 1498 static int cros_ec_i2c_passthrough(struct cros_ec_dev *dev, int flag, 1499 int argc, char * const argv[]) 1500 { 1501 const char *cmd; 1502 1503 if (argc < 1) 1504 return CMD_RET_USAGE; 1505 cmd = *argv++; 1506 argc--; 1507 if (0 == strcmp("md", cmd)) 1508 cros_ec_i2c_md(dev, flag, argc, argv); 1509 else if (0 == strcmp("mw", cmd)) 1510 cros_ec_i2c_mw(dev, flag, argc, argv); 1511 else 1512 return CMD_RET_USAGE; 1513 1514 return 0; 1515 } 1516 1517 static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) 1518 { 1519 struct cros_ec_dev *dev = last_dev; 1520 const char *cmd; 1521 int ret = 0; 1522 1523 if (argc < 2) 1524 return CMD_RET_USAGE; 1525 1526 cmd = argv[1]; 1527 if (0 == strcmp("init", cmd)) { 1528 ret = cros_ec_init(gd->fdt_blob, &dev); 1529 if (ret) { 1530 printf("Could not init cros_ec device (err %d)\n", ret); 1531 return 1; 1532 } 1533 return 0; 1534 } 1535 1536 /* Just use the last allocated device; there should be only one */ 1537 if (!last_dev) { 1538 printf("No CROS-EC device available\n"); 1539 return 1; 1540 } 1541 if (0 == strcmp("id", cmd)) { 1542 char id[MSG_BYTES]; 1543 1544 if (cros_ec_read_id(dev, id, sizeof(id))) { 1545 debug("%s: Could not read KBC ID\n", __func__); 1546 return 1; 1547 } 1548 printf("%s\n", id); 1549 } else if (0 == strcmp("info", cmd)) { 1550 struct ec_response_mkbp_info info; 1551 1552 if (cros_ec_info(dev, &info)) { 1553 debug("%s: Could not read KBC info\n", __func__); 1554 return 1; 1555 } 1556 printf("rows = %u\n", info.rows); 1557 printf("cols = %u\n", info.cols); 1558 printf("switches = %#x\n", info.switches); 1559 } else if (0 == strcmp("curimage", cmd)) { 1560 enum ec_current_image image; 1561 1562 if (cros_ec_read_current_image(dev, &image)) { 1563 debug("%s: Could not read KBC image\n", __func__); 1564 return 1; 1565 } 1566 printf("%d\n", image); 1567 } else if (0 == strcmp("hash", cmd)) { 1568 struct ec_response_vboot_hash hash; 1569 int i; 1570 1571 if (cros_ec_read_hash(dev, &hash)) { 1572 debug("%s: Could not read KBC hash\n", __func__); 1573 return 1; 1574 } 1575 1576 if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256) 1577 printf("type: SHA-256\n"); 1578 else 1579 printf("type: %d\n", hash.hash_type); 1580 1581 printf("offset: 0x%08x\n", hash.offset); 1582 printf("size: 0x%08x\n", hash.size); 1583 1584 printf("digest: "); 1585 for (i = 0; i < hash.digest_size; i++) 1586 printf("%02x", hash.hash_digest[i]); 1587 printf("\n"); 1588 } else if (0 == strcmp("reboot", cmd)) { 1589 int region; 1590 enum ec_reboot_cmd cmd; 1591 1592 if (argc >= 3 && !strcmp(argv[2], "cold")) 1593 cmd = EC_REBOOT_COLD; 1594 else { 1595 region = cros_ec_decode_region(argc - 2, argv + 2); 1596 if (region == EC_FLASH_REGION_RO) 1597 cmd = EC_REBOOT_JUMP_RO; 1598 else if (region == EC_FLASH_REGION_RW) 1599 cmd = EC_REBOOT_JUMP_RW; 1600 else 1601 return CMD_RET_USAGE; 1602 } 1603 1604 if (cros_ec_reboot(dev, cmd, 0)) { 1605 debug("%s: Could not reboot KBC\n", __func__); 1606 return 1; 1607 } 1608 } else if (0 == strcmp("events", cmd)) { 1609 uint32_t events; 1610 1611 if (cros_ec_get_host_events(dev, &events)) { 1612 debug("%s: Could not read host events\n", __func__); 1613 return 1; 1614 } 1615 printf("0x%08x\n", events); 1616 } else if (0 == strcmp("clrevents", cmd)) { 1617 uint32_t events = 0x7fffffff; 1618 1619 if (argc >= 3) 1620 events = simple_strtol(argv[2], NULL, 0); 1621 1622 if (cros_ec_clear_host_events(dev, events)) { 1623 debug("%s: Could not clear host events\n", __func__); 1624 return 1; 1625 } 1626 } else if (0 == strcmp("read", cmd)) { 1627 ret = do_read_write(dev, 0, argc, argv); 1628 if (ret > 0) 1629 return CMD_RET_USAGE; 1630 } else if (0 == strcmp("write", cmd)) { 1631 ret = do_read_write(dev, 1, argc, argv); 1632 if (ret > 0) 1633 return CMD_RET_USAGE; 1634 } else if (0 == strcmp("erase", cmd)) { 1635 int region = cros_ec_decode_region(argc - 2, argv + 2); 1636 uint32_t offset, size; 1637 1638 if (region == -1) 1639 return CMD_RET_USAGE; 1640 if (cros_ec_flash_offset(dev, region, &offset, &size)) { 1641 debug("%s: Could not read region info\n", __func__); 1642 ret = -1; 1643 } else { 1644 ret = cros_ec_flash_erase(dev, offset, size); 1645 if (ret) { 1646 debug("%s: Could not erase region\n", 1647 __func__); 1648 } 1649 } 1650 } else if (0 == strcmp("regioninfo", cmd)) { 1651 int region = cros_ec_decode_region(argc - 2, argv + 2); 1652 uint32_t offset, size; 1653 1654 if (region == -1) 1655 return CMD_RET_USAGE; 1656 ret = cros_ec_flash_offset(dev, region, &offset, &size); 1657 if (ret) { 1658 debug("%s: Could not read region info\n", __func__); 1659 } else { 1660 printf("Region: %s\n", region == EC_FLASH_REGION_RO ? 1661 "RO" : "RW"); 1662 printf("Offset: %x\n", offset); 1663 printf("Size: %x\n", size); 1664 } 1665 } else if (0 == strcmp("vbnvcontext", cmd)) { 1666 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1667 char buf[3]; 1668 int i, len; 1669 unsigned long result; 1670 1671 if (argc <= 2) { 1672 ret = cros_ec_read_vbnvcontext(dev, block); 1673 if (!ret) { 1674 printf("vbnv_block: "); 1675 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) 1676 printf("%02x", block[i]); 1677 putc('\n'); 1678 } 1679 } else { 1680 /* 1681 * TODO(clchiou): Move this to a utility function as 1682 * cmd_spi might want to call it. 1683 */ 1684 memset(block, 0, EC_VBNV_BLOCK_SIZE); 1685 len = strlen(argv[2]); 1686 buf[2] = '\0'; 1687 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) { 1688 if (i * 2 >= len) 1689 break; 1690 buf[0] = argv[2][i * 2]; 1691 if (i * 2 + 1 >= len) 1692 buf[1] = '0'; 1693 else 1694 buf[1] = argv[2][i * 2 + 1]; 1695 strict_strtoul(buf, 16, &result); 1696 block[i] = result; 1697 } 1698 ret = cros_ec_write_vbnvcontext(dev, block); 1699 } 1700 if (ret) { 1701 debug("%s: Could not %s VbNvContext\n", __func__, 1702 argc <= 2 ? "read" : "write"); 1703 } 1704 } else if (0 == strcmp("test", cmd)) { 1705 int result = cros_ec_test(dev); 1706 1707 if (result) 1708 printf("Test failed with error %d\n", result); 1709 else 1710 puts("Test passed\n"); 1711 } else if (0 == strcmp("version", cmd)) { 1712 struct ec_response_get_version *p; 1713 char *build_string; 1714 1715 ret = cros_ec_read_version(dev, &p); 1716 if (!ret) { 1717 /* Print versions */ 1718 printf("RO version: %1.*s\n", 1719 (int)sizeof(p->version_string_ro), 1720 p->version_string_ro); 1721 printf("RW version: %1.*s\n", 1722 (int)sizeof(p->version_string_rw), 1723 p->version_string_rw); 1724 printf("Firmware copy: %s\n", 1725 (p->current_image < 1726 ARRAY_SIZE(ec_current_image_name) ? 1727 ec_current_image_name[p->current_image] : 1728 "?")); 1729 ret = cros_ec_read_build_info(dev, &build_string); 1730 if (!ret) 1731 printf("Build info: %s\n", build_string); 1732 } 1733 } else if (0 == strcmp("ldo", cmd)) { 1734 uint8_t index, state; 1735 char *endp; 1736 1737 if (argc < 3) 1738 return CMD_RET_USAGE; 1739 index = simple_strtoul(argv[2], &endp, 10); 1740 if (*argv[2] == 0 || *endp != 0) 1741 return CMD_RET_USAGE; 1742 if (argc > 3) { 1743 state = simple_strtoul(argv[3], &endp, 10); 1744 if (*argv[3] == 0 || *endp != 0) 1745 return CMD_RET_USAGE; 1746 ret = cros_ec_set_ldo(dev, index, state); 1747 } else { 1748 ret = cros_ec_get_ldo(dev, index, &state); 1749 if (!ret) { 1750 printf("LDO%d: %s\n", index, 1751 state == EC_LDO_STATE_ON ? 1752 "on" : "off"); 1753 } 1754 } 1755 1756 if (ret) { 1757 debug("%s: Could not access LDO%d\n", __func__, index); 1758 return ret; 1759 } 1760 } else if (0 == strcmp("i2c", cmd)) { 1761 ret = cros_ec_i2c_passthrough(dev, flag, argc - 2, argv + 2); 1762 } else { 1763 return CMD_RET_USAGE; 1764 } 1765 1766 if (ret < 0) { 1767 printf("Error: CROS-EC command failed (error %d)\n", ret); 1768 ret = 1; 1769 } 1770 1771 return ret; 1772 } 1773 1774 U_BOOT_CMD( 1775 crosec, 6, 1, do_cros_ec, 1776 "CROS-EC utility command", 1777 "init Re-init CROS-EC (done on startup automatically)\n" 1778 "crosec id Read CROS-EC ID\n" 1779 "crosec info Read CROS-EC info\n" 1780 "crosec curimage Read CROS-EC current image\n" 1781 "crosec hash Read CROS-EC hash\n" 1782 "crosec reboot [rw | ro | cold] Reboot CROS-EC\n" 1783 "crosec events Read CROS-EC host events\n" 1784 "crosec clrevents [mask] Clear CROS-EC host events\n" 1785 "crosec regioninfo <ro|rw> Read image info\n" 1786 "crosec erase <ro|rw> Erase EC image\n" 1787 "crosec read <ro|rw> <addr> [<size>] Read EC image\n" 1788 "crosec write <ro|rw> <addr> [<size>] Write EC image\n" 1789 "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n" 1790 "crosec ldo <idx> [<state>] Switch/Read LDO state\n" 1791 "crosec test run tests on cros_ec\n" 1792 "crosec version Read CROS-EC version\n" 1793 "crosec i2c md chip address[.0, .1, .2] [# of objects] - read from I2C passthru\n" 1794 "crosec i2c mw chip address[.0, .1, .2] value [count] - write to I2C passthru (fill)" 1795 ); 1796 #endif 1797