1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Chromium OS cros_ec driver 4 * 5 * Copyright (c) 2012 The Chromium OS Authors. 6 */ 7 8 /* 9 * This is the interface to the Chrome OS EC. It provides keyboard functions, 10 * power control and battery management. Quite a few other functions are 11 * provided to enable the EC software to be updated, talk to the EC's I2C bus 12 * and store a small amount of data in a memory which persists while the EC 13 * is not reset. 14 */ 15 16 #define LOG_CATEGORY UCLASS_CROS_EC 17 18 #include <common.h> 19 #include <command.h> 20 #include <dm.h> 21 #include <i2c.h> 22 #include <cros_ec.h> 23 #include <fdtdec.h> 24 #include <malloc.h> 25 #include <spi.h> 26 #include <linux/errno.h> 27 #include <asm/io.h> 28 #include <asm-generic/gpio.h> 29 #include <dm/device-internal.h> 30 #include <dm/of_extra.h> 31 #include <dm/uclass-internal.h> 32 33 #ifdef DEBUG_TRACE 34 #define debug_trace(fmt, b...) debug(fmt, #b) 35 #else 36 #define debug_trace(fmt, b...) 37 #endif 38 39 enum { 40 /* Timeout waiting for a flash erase command to complete */ 41 CROS_EC_CMD_TIMEOUT_MS = 5000, 42 /* Timeout waiting for a synchronous hash to be recomputed */ 43 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, 44 }; 45 46 #define INVALID_HCMD 0xFF 47 48 /* 49 * Map UHEPI masks to non UHEPI commands in order to support old EC FW 50 * which does not support UHEPI command. 51 */ 52 static const struct { 53 u8 set_cmd; 54 u8 clear_cmd; 55 u8 get_cmd; 56 } event_map[] = { 57 [EC_HOST_EVENT_MAIN] = { 58 INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR, 59 INVALID_HCMD, 60 }, 61 [EC_HOST_EVENT_B] = { 62 INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR_B, 63 EC_CMD_HOST_EVENT_GET_B, 64 }, 65 [EC_HOST_EVENT_SCI_MASK] = { 66 EC_CMD_HOST_EVENT_SET_SCI_MASK, INVALID_HCMD, 67 EC_CMD_HOST_EVENT_GET_SCI_MASK, 68 }, 69 [EC_HOST_EVENT_SMI_MASK] = { 70 EC_CMD_HOST_EVENT_SET_SMI_MASK, INVALID_HCMD, 71 EC_CMD_HOST_EVENT_GET_SMI_MASK, 72 }, 73 [EC_HOST_EVENT_ALWAYS_REPORT_MASK] = { 74 INVALID_HCMD, INVALID_HCMD, INVALID_HCMD, 75 }, 76 [EC_HOST_EVENT_ACTIVE_WAKE_MASK] = { 77 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, 78 EC_CMD_HOST_EVENT_GET_WAKE_MASK, 79 }, 80 [EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX] = { 81 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, 82 EC_CMD_HOST_EVENT_GET_WAKE_MASK, 83 }, 84 [EC_HOST_EVENT_LAZY_WAKE_MASK_S3] = { 85 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, 86 EC_CMD_HOST_EVENT_GET_WAKE_MASK, 87 }, 88 [EC_HOST_EVENT_LAZY_WAKE_MASK_S5] = { 89 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, 90 EC_CMD_HOST_EVENT_GET_WAKE_MASK, 91 }, 92 }; 93 94 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) 95 { 96 #ifdef DEBUG 97 int i; 98 99 printf("%s: ", name); 100 if (cmd != -1) 101 printf("cmd=%#x: ", cmd); 102 for (i = 0; i < len; i++) 103 printf("%02x ", data[i]); 104 printf("\n"); 105 #endif 106 } 107 108 /* 109 * Calculate a simple 8-bit checksum of a data block 110 * 111 * @param data Data block to checksum 112 * @param size Size of data block in bytes 113 * @return checksum value (0 to 255) 114 */ 115 int cros_ec_calc_checksum(const uint8_t *data, int size) 116 { 117 int csum, i; 118 119 for (i = csum = 0; i < size; i++) 120 csum += data[i]; 121 return csum & 0xff; 122 } 123 124 /** 125 * Create a request packet for protocol version 3. 126 * 127 * The packet is stored in the device's internal output buffer. 128 * 129 * @param dev CROS-EC device 130 * @param cmd Command to send (EC_CMD_...) 131 * @param cmd_version Version of command to send (EC_VER_...) 132 * @param dout Output data (may be NULL If dout_len=0) 133 * @param dout_len Size of output data in bytes 134 * @return packet size in bytes, or <0 if error. 135 */ 136 static int create_proto3_request(struct cros_ec_dev *cdev, 137 int cmd, int cmd_version, 138 const void *dout, int dout_len) 139 { 140 struct ec_host_request *rq = (struct ec_host_request *)cdev->dout; 141 int out_bytes = dout_len + sizeof(*rq); 142 143 /* Fail if output size is too big */ 144 if (out_bytes > (int)sizeof(cdev->dout)) { 145 debug("%s: Cannot send %d bytes\n", __func__, dout_len); 146 return -EC_RES_REQUEST_TRUNCATED; 147 } 148 149 /* Fill in request packet */ 150 rq->struct_version = EC_HOST_REQUEST_VERSION; 151 rq->checksum = 0; 152 rq->command = cmd; 153 rq->command_version = cmd_version; 154 rq->reserved = 0; 155 rq->data_len = dout_len; 156 157 /* Copy data after header */ 158 memcpy(rq + 1, dout, dout_len); 159 160 /* Write checksum field so the entire packet sums to 0 */ 161 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes)); 162 163 cros_ec_dump_data("out", cmd, cdev->dout, out_bytes); 164 165 /* Return size of request packet */ 166 return out_bytes; 167 } 168 169 /** 170 * Prepare the device to receive a protocol version 3 response. 171 * 172 * @param dev CROS-EC device 173 * @param din_len Maximum size of response in bytes 174 * @return maximum expected number of bytes in response, or <0 if error. 175 */ 176 static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len) 177 { 178 int in_bytes = din_len + sizeof(struct ec_host_response); 179 180 /* Fail if input size is too big */ 181 if (in_bytes > (int)sizeof(cdev->din)) { 182 debug("%s: Cannot receive %d bytes\n", __func__, din_len); 183 return -EC_RES_RESPONSE_TOO_BIG; 184 } 185 186 /* Return expected size of response packet */ 187 return in_bytes; 188 } 189 190 /** 191 * Handle a protocol version 3 response packet. 192 * 193 * The packet must already be stored in the device's internal input buffer. 194 * 195 * @param dev CROS-EC device 196 * @param dinp Returns pointer to response data 197 * @param din_len Maximum size of response in bytes 198 * @return number of bytes of response data, or <0 if error. Note that error 199 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they 200 * overlap!) 201 */ 202 static int handle_proto3_response(struct cros_ec_dev *dev, 203 uint8_t **dinp, int din_len) 204 { 205 struct ec_host_response *rs = (struct ec_host_response *)dev->din; 206 int in_bytes; 207 int csum; 208 209 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs)); 210 211 /* Check input data */ 212 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) { 213 debug("%s: EC response version mismatch\n", __func__); 214 return -EC_RES_INVALID_RESPONSE; 215 } 216 217 if (rs->reserved) { 218 debug("%s: EC response reserved != 0\n", __func__); 219 return -EC_RES_INVALID_RESPONSE; 220 } 221 222 if (rs->data_len > din_len) { 223 debug("%s: EC returned too much data\n", __func__); 224 return -EC_RES_RESPONSE_TOO_BIG; 225 } 226 227 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len); 228 229 /* Update in_bytes to actual data size */ 230 in_bytes = sizeof(*rs) + rs->data_len; 231 232 /* Verify checksum */ 233 csum = cros_ec_calc_checksum(dev->din, in_bytes); 234 if (csum) { 235 debug("%s: EC response checksum invalid: 0x%02x\n", __func__, 236 csum); 237 return -EC_RES_INVALID_CHECKSUM; 238 } 239 240 /* Return error result, if any */ 241 if (rs->result) 242 return -(int)rs->result; 243 244 /* If we're still here, set response data pointer and return length */ 245 *dinp = (uint8_t *)(rs + 1); 246 247 return rs->data_len; 248 } 249 250 static int send_command_proto3(struct cros_ec_dev *cdev, 251 int cmd, int cmd_version, 252 const void *dout, int dout_len, 253 uint8_t **dinp, int din_len) 254 { 255 struct dm_cros_ec_ops *ops; 256 int out_bytes, in_bytes; 257 int rv; 258 259 /* Create request packet */ 260 out_bytes = create_proto3_request(cdev, cmd, cmd_version, 261 dout, dout_len); 262 if (out_bytes < 0) 263 return out_bytes; 264 265 /* Prepare response buffer */ 266 in_bytes = prepare_proto3_response_buffer(cdev, din_len); 267 if (in_bytes < 0) 268 return in_bytes; 269 270 ops = dm_cros_ec_get_ops(cdev->dev); 271 rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) : 272 -ENOSYS; 273 if (rv < 0) 274 return rv; 275 276 /* Process the response */ 277 return handle_proto3_response(cdev, dinp, din_len); 278 } 279 280 static int send_command(struct cros_ec_dev *dev, uint cmd, int cmd_version, 281 const void *dout, int dout_len, 282 uint8_t **dinp, int din_len) 283 { 284 struct dm_cros_ec_ops *ops; 285 int ret = -1; 286 287 /* Handle protocol version 3 support */ 288 if (dev->protocol_version == 3) { 289 return send_command_proto3(dev, cmd, cmd_version, 290 dout, dout_len, dinp, din_len); 291 } 292 293 ops = dm_cros_ec_get_ops(dev->dev); 294 ret = ops->command(dev->dev, cmd, cmd_version, 295 (const uint8_t *)dout, dout_len, dinp, din_len); 296 297 return ret; 298 } 299 300 /** 301 * Send a command to the CROS-EC device and return the reply. 302 * 303 * The device's internal input/output buffers are used. 304 * 305 * @param dev CROS-EC device 306 * @param cmd Command to send (EC_CMD_...) 307 * @param cmd_version Version of command to send (EC_VER_...) 308 * @param dout Output data (may be NULL If dout_len=0) 309 * @param dout_len Size of output data in bytes 310 * @param dinp Response data (may be NULL If din_len=0). 311 * If not NULL, it will be updated to point to the data 312 * and will always be double word aligned (64-bits) 313 * @param din_len Maximum size of response in bytes 314 * @return number of bytes in response, or -ve on error 315 */ 316 static int ec_command_inptr(struct udevice *dev, uint8_t cmd, 317 int cmd_version, const void *dout, int dout_len, 318 uint8_t **dinp, int din_len) 319 { 320 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 321 uint8_t *din = NULL; 322 int len; 323 324 len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din, 325 din_len); 326 327 /* If the command doesn't complete, wait a while */ 328 if (len == -EC_RES_IN_PROGRESS) { 329 struct ec_response_get_comms_status *resp = NULL; 330 ulong start; 331 332 /* Wait for command to complete */ 333 start = get_timer(0); 334 do { 335 int ret; 336 337 mdelay(50); /* Insert some reasonable delay */ 338 ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0, 339 NULL, 0, 340 (uint8_t **)&resp, sizeof(*resp)); 341 if (ret < 0) 342 return ret; 343 344 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { 345 debug("%s: Command %#02x timeout\n", 346 __func__, cmd); 347 return -EC_RES_TIMEOUT; 348 } 349 } while (resp->flags & EC_COMMS_STATUS_PROCESSING); 350 351 /* OK it completed, so read the status response */ 352 /* not sure why it was 0 for the last argument */ 353 len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0, 354 &din, din_len); 355 } 356 357 debug("%s: len=%d, din=%p\n", __func__, len, din); 358 if (dinp) { 359 /* If we have any data to return, it must be 64bit-aligned */ 360 assert(len <= 0 || !((uintptr_t)din & 7)); 361 *dinp = din; 362 } 363 364 return len; 365 } 366 367 /** 368 * Send a command to the CROS-EC device and return the reply. 369 * 370 * The device's internal input/output buffers are used. 371 * 372 * @param dev CROS-EC device 373 * @param cmd Command to send (EC_CMD_...) 374 * @param cmd_version Version of command to send (EC_VER_...) 375 * @param dout Output data (may be NULL If dout_len=0) 376 * @param dout_len Size of output data in bytes 377 * @param din Response data (may be NULL If din_len=0). 378 * It not NULL, it is a place for ec_command() to copy the 379 * data to. 380 * @param din_len Maximum size of response in bytes 381 * @return number of bytes in response, or -ve on error 382 */ 383 static int ec_command(struct udevice *dev, uint cmd, int cmd_version, 384 const void *dout, int dout_len, 385 void *din, int din_len) 386 { 387 uint8_t *in_buffer; 388 int len; 389 390 assert((din_len == 0) || din); 391 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, 392 &in_buffer, din_len); 393 if (len > 0) { 394 /* 395 * If we were asked to put it somewhere, do so, otherwise just 396 * disregard the result. 397 */ 398 if (din && in_buffer) { 399 assert(len <= din_len); 400 memmove(din, in_buffer, len); 401 } 402 } 403 return len; 404 } 405 406 int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan) 407 { 408 if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan, 409 sizeof(scan->data)) != sizeof(scan->data)) 410 return -1; 411 412 return 0; 413 } 414 415 int cros_ec_read_id(struct udevice *dev, char *id, int maxlen) 416 { 417 struct ec_response_get_version *r; 418 int ret; 419 420 ret = ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 421 (uint8_t **)&r, sizeof(*r)); 422 if (ret != sizeof(*r)) { 423 log_err("Got rc %d, expected %d\n", ret, sizeof(*r)); 424 return -1; 425 } 426 427 if (maxlen > (int)sizeof(r->version_string_ro)) 428 maxlen = sizeof(r->version_string_ro); 429 430 switch (r->current_image) { 431 case EC_IMAGE_RO: 432 memcpy(id, r->version_string_ro, maxlen); 433 break; 434 case EC_IMAGE_RW: 435 memcpy(id, r->version_string_rw, maxlen); 436 break; 437 default: 438 log_err("Invalid EC image %d\n", r->current_image); 439 return -1; 440 } 441 442 id[maxlen - 1] = '\0'; 443 return 0; 444 } 445 446 int cros_ec_read_version(struct udevice *dev, 447 struct ec_response_get_version **versionp) 448 { 449 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 450 (uint8_t **)versionp, sizeof(**versionp)) 451 != sizeof(**versionp)) 452 return -1; 453 454 return 0; 455 } 456 457 int cros_ec_read_build_info(struct udevice *dev, char **strp) 458 { 459 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, 460 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0) 461 return -1; 462 463 return 0; 464 } 465 466 int cros_ec_read_current_image(struct udevice *dev, 467 enum ec_current_image *image) 468 { 469 struct ec_response_get_version *r; 470 471 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 472 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 473 return -1; 474 475 *image = r->current_image; 476 return 0; 477 } 478 479 static int cros_ec_wait_on_hash_done(struct udevice *dev, 480 struct ec_response_vboot_hash *hash) 481 { 482 struct ec_params_vboot_hash p; 483 ulong start; 484 485 start = get_timer(0); 486 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { 487 mdelay(50); /* Insert some reasonable delay */ 488 489 p.cmd = EC_VBOOT_HASH_GET; 490 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 491 hash, sizeof(*hash)) < 0) 492 return -1; 493 494 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { 495 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); 496 return -EC_RES_TIMEOUT; 497 } 498 } 499 return 0; 500 } 501 502 int cros_ec_read_hash(struct udevice *dev, uint hash_offset, 503 struct ec_response_vboot_hash *hash) 504 { 505 struct ec_params_vboot_hash p; 506 int rv; 507 508 p.cmd = EC_VBOOT_HASH_GET; 509 p.offset = hash_offset; 510 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 511 hash, sizeof(*hash)) < 0) 512 return -1; 513 514 /* If the EC is busy calculating the hash, fidget until it's done. */ 515 rv = cros_ec_wait_on_hash_done(dev, hash); 516 if (rv) 517 return rv; 518 519 /* If the hash is valid, we're done. Otherwise, we have to kick it off 520 * again and wait for it to complete. Note that we explicitly assume 521 * that hashing zero bytes is always wrong, even though that would 522 * produce a valid hash value. */ 523 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) 524 return 0; 525 526 debug("%s: No valid hash (status=%d size=%d). Compute one...\n", 527 __func__, hash->status, hash->size); 528 529 p.cmd = EC_VBOOT_HASH_START; 530 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 531 p.nonce_size = 0; 532 p.offset = hash_offset; 533 534 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 535 hash, sizeof(*hash)) < 0) 536 return -1; 537 538 rv = cros_ec_wait_on_hash_done(dev, hash); 539 if (rv) 540 return rv; 541 542 debug("%s: hash done\n", __func__); 543 544 return 0; 545 } 546 547 static int cros_ec_invalidate_hash(struct udevice *dev) 548 { 549 struct ec_params_vboot_hash p; 550 struct ec_response_vboot_hash *hash; 551 552 /* We don't have an explict command for the EC to discard its current 553 * hash value, so we'll just tell it to calculate one that we know is 554 * wrong (we claim that hashing zero bytes is always invalid). 555 */ 556 p.cmd = EC_VBOOT_HASH_RECALC; 557 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 558 p.nonce_size = 0; 559 p.offset = 0; 560 p.size = 0; 561 562 debug("%s:\n", __func__); 563 564 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 565 (uint8_t **)&hash, sizeof(*hash)) < 0) 566 return -1; 567 568 /* No need to wait for it to finish */ 569 return 0; 570 } 571 572 int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags) 573 { 574 struct ec_params_reboot_ec p; 575 576 p.cmd = cmd; 577 p.flags = flags; 578 579 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) 580 < 0) 581 return -1; 582 583 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { 584 /* 585 * EC reboot will take place immediately so delay to allow it 586 * to complete. Note that some reboot types (EC_REBOOT_COLD) 587 * will reboot the AP as well, in which case we won't actually 588 * get to this point. 589 */ 590 /* 591 * TODO(rspangler@chromium.org): Would be nice if we had a 592 * better way to determine when the reboot is complete. Could 593 * we poll a memory-mapped LPC value? 594 */ 595 udelay(50000); 596 } 597 598 return 0; 599 } 600 601 int cros_ec_interrupt_pending(struct udevice *dev) 602 { 603 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 604 605 /* no interrupt support : always poll */ 606 if (!dm_gpio_is_valid(&cdev->ec_int)) 607 return -ENOENT; 608 609 return dm_gpio_get_value(&cdev->ec_int); 610 } 611 612 int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info) 613 { 614 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info, 615 sizeof(*info)) != sizeof(*info)) 616 return -1; 617 618 return 0; 619 } 620 621 int cros_ec_get_event_mask(struct udevice *dev, uint type, uint32_t *mask) 622 { 623 struct ec_response_host_event_mask rsp; 624 int ret; 625 626 ret = ec_command(dev, type, 0, NULL, 0, &rsp, sizeof(rsp)); 627 if (ret < 0) 628 return ret; 629 else if (ret != sizeof(rsp)) 630 return -EINVAL; 631 632 *mask = rsp.mask; 633 634 return 0; 635 } 636 637 int cros_ec_set_event_mask(struct udevice *dev, uint type, uint32_t mask) 638 { 639 struct ec_params_host_event_mask req; 640 int ret; 641 642 req.mask = mask; 643 644 ret = ec_command(dev, type, 0, &req, sizeof(req), NULL, 0); 645 if (ret < 0) 646 return ret; 647 648 return 0; 649 } 650 651 int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr) 652 { 653 struct ec_response_host_event_mask *resp; 654 655 /* 656 * Use the B copy of the event flags, because the main copy is already 657 * used by ACPI/SMI. 658 */ 659 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, 660 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp)) 661 return -1; 662 663 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) 664 return -1; 665 666 *events_ptr = resp->mask; 667 return 0; 668 } 669 670 int cros_ec_clear_host_events(struct udevice *dev, uint32_t events) 671 { 672 struct ec_params_host_event_mask params; 673 674 params.mask = events; 675 676 /* 677 * Use the B copy of the event flags, so it affects the data returned 678 * by cros_ec_get_host_events(). 679 */ 680 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, 681 ¶ms, sizeof(params), NULL, 0) < 0) 682 return -1; 683 684 return 0; 685 } 686 687 int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask, 688 uint32_t set_flags, 689 struct ec_response_flash_protect *resp) 690 { 691 struct ec_params_flash_protect params; 692 693 params.mask = set_mask; 694 params.flags = set_flags; 695 696 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, 697 ¶ms, sizeof(params), 698 resp, sizeof(*resp)) != sizeof(*resp)) 699 return -1; 700 701 return 0; 702 } 703 704 int cros_ec_entering_mode(struct udevice *dev, int mode) 705 { 706 int rc; 707 708 rc = ec_command(dev, EC_CMD_ENTERING_MODE, 0, &mode, sizeof(mode), 709 NULL, 0); 710 if (rc) 711 return -1; 712 return 0; 713 } 714 715 static int cros_ec_check_version(struct udevice *dev) 716 { 717 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 718 struct ec_params_hello req; 719 struct ec_response_hello *resp; 720 721 struct dm_cros_ec_ops *ops; 722 int ret; 723 724 ops = dm_cros_ec_get_ops(dev); 725 if (ops->check_version) { 726 ret = ops->check_version(dev); 727 if (ret) 728 return ret; 729 } 730 731 /* 732 * TODO(sjg@chromium.org). 733 * There is a strange oddity here with the EC. We could just ignore 734 * the response, i.e. pass the last two parameters as NULL and 0. 735 * In this case we won't read back very many bytes from the EC. 736 * On the I2C bus the EC gets upset about this and will try to send 737 * the bytes anyway. This means that we will have to wait for that 738 * to complete before continuing with a new EC command. 739 * 740 * This problem is probably unique to the I2C bus. 741 * 742 * So for now, just read all the data anyway. 743 */ 744 745 /* Try sending a version 3 packet */ 746 cdev->protocol_version = 3; 747 req.in_data = 0; 748 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 749 (uint8_t **)&resp, sizeof(*resp)) > 0) 750 return 0; 751 752 /* Try sending a version 2 packet */ 753 cdev->protocol_version = 2; 754 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 755 (uint8_t **)&resp, sizeof(*resp)) > 0) 756 return 0; 757 758 /* 759 * Fail if we're still here, since the EC doesn't understand any 760 * protcol version we speak. Version 1 interface without command 761 * version is no longer supported, and we don't know about any new 762 * protocol versions. 763 */ 764 cdev->protocol_version = 0; 765 printf("%s: ERROR: old EC interface not supported\n", __func__); 766 return -1; 767 } 768 769 int cros_ec_test(struct udevice *dev) 770 { 771 struct ec_params_hello req; 772 struct ec_response_hello *resp; 773 774 req.in_data = 0x12345678; 775 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 776 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { 777 printf("ec_command_inptr() returned error\n"); 778 return -1; 779 } 780 if (resp->out_data != req.in_data + 0x01020304) { 781 printf("Received invalid handshake %x\n", resp->out_data); 782 return -1; 783 } 784 785 return 0; 786 } 787 788 int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region, 789 uint32_t *offset, uint32_t *size) 790 { 791 struct ec_params_flash_region_info p; 792 struct ec_response_flash_region_info *r; 793 int ret; 794 795 p.region = region; 796 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, 797 EC_VER_FLASH_REGION_INFO, 798 &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); 799 if (ret != sizeof(*r)) 800 return -1; 801 802 if (offset) 803 *offset = r->offset; 804 if (size) 805 *size = r->size; 806 807 return 0; 808 } 809 810 int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size) 811 { 812 struct ec_params_flash_erase p; 813 814 p.offset = offset; 815 p.size = size; 816 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), 817 NULL, 0); 818 } 819 820 /** 821 * Write a single block to the flash 822 * 823 * Write a block of data to the EC flash. The size must not exceed the flash 824 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 825 * 826 * The offset starts at 0. You can obtain the region information from 827 * cros_ec_flash_offset() to find out where to write for a particular region. 828 * 829 * Attempting to write to the region where the EC is currently running from 830 * will result in an error. 831 * 832 * @param dev CROS-EC device 833 * @param data Pointer to data buffer to write 834 * @param offset Offset within flash to write to. 835 * @param size Number of bytes to write 836 * @return 0 if ok, -1 on error 837 */ 838 static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data, 839 uint32_t offset, uint32_t size) 840 { 841 struct ec_params_flash_write *p; 842 int ret; 843 844 p = malloc(sizeof(*p) + size); 845 if (!p) 846 return -ENOMEM; 847 848 p->offset = offset; 849 p->size = size; 850 assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE); 851 memcpy(p + 1, data, p->size); 852 853 ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, 854 p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1; 855 856 free(p); 857 858 return ret; 859 } 860 861 /** 862 * Return optimal flash write burst size 863 */ 864 static int cros_ec_flash_write_burst_size(struct udevice *dev) 865 { 866 return EC_FLASH_WRITE_VER0_SIZE; 867 } 868 869 /** 870 * Check if a block of data is erased (all 0xff) 871 * 872 * This function is useful when dealing with flash, for checking whether a 873 * data block is erased and thus does not need to be programmed. 874 * 875 * @param data Pointer to data to check (must be word-aligned) 876 * @param size Number of bytes to check (must be word-aligned) 877 * @return 0 if erased, non-zero if any word is not erased 878 */ 879 static int cros_ec_data_is_erased(const uint32_t *data, int size) 880 { 881 assert(!(size & 3)); 882 size /= sizeof(uint32_t); 883 for (; size > 0; size -= 4, data++) 884 if (*data != -1U) 885 return 0; 886 887 return 1; 888 } 889 890 /** 891 * Read back flash parameters 892 * 893 * This function reads back parameters of the flash as reported by the EC 894 * 895 * @param dev Pointer to device 896 * @param info Pointer to output flash info struct 897 */ 898 int cros_ec_read_flashinfo(struct udevice *dev, 899 struct ec_response_flash_info *info) 900 { 901 int ret; 902 903 ret = ec_command(dev, EC_CMD_FLASH_INFO, 0, 904 NULL, 0, info, sizeof(*info)); 905 if (ret < 0) 906 return ret; 907 908 return ret < sizeof(*info) ? -1 : 0; 909 } 910 911 int cros_ec_flash_write(struct udevice *dev, const uint8_t *data, 912 uint32_t offset, uint32_t size) 913 { 914 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 915 uint32_t burst = cros_ec_flash_write_burst_size(dev); 916 uint32_t end, off; 917 int ret; 918 919 if (!burst) 920 return -EINVAL; 921 922 /* 923 * TODO: round up to the nearest multiple of write size. Can get away 924 * without that on link right now because its write size is 4 bytes. 925 */ 926 end = offset + size; 927 for (off = offset; off < end; off += burst, data += burst) { 928 uint32_t todo; 929 930 /* If the data is empty, there is no point in programming it */ 931 todo = min(end - off, burst); 932 if (cdev->optimise_flash_write && 933 cros_ec_data_is_erased((uint32_t *)data, todo)) 934 continue; 935 936 ret = cros_ec_flash_write_block(dev, data, off, todo); 937 if (ret) 938 return ret; 939 } 940 941 return 0; 942 } 943 944 /** 945 * Run verification on a slot 946 * 947 * @param me CrosEc instance 948 * @param region Region to run verification on 949 * @return 0 if success or not applicable. Non-zero if verification failed. 950 */ 951 int cros_ec_efs_verify(struct udevice *dev, enum ec_flash_region region) 952 { 953 struct ec_params_efs_verify p; 954 int rv; 955 956 log_info("EFS: EC is verifying updated image...\n"); 957 p.region = region; 958 959 rv = ec_command(dev, EC_CMD_EFS_VERIFY, 0, &p, sizeof(p), NULL, 0); 960 if (rv >= 0) { 961 log_info("EFS: Verification success\n"); 962 return 0; 963 } 964 if (rv == -EC_RES_INVALID_COMMAND) { 965 log_info("EFS: EC doesn't support EFS_VERIFY command\n"); 966 return 0; 967 } 968 log_info("EFS: Verification failed\n"); 969 970 return rv; 971 } 972 973 /** 974 * Read a single block from the flash 975 * 976 * Read a block of data from the EC flash. The size must not exceed the flash 977 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 978 * 979 * The offset starts at 0. You can obtain the region information from 980 * cros_ec_flash_offset() to find out where to read for a particular region. 981 * 982 * @param dev CROS-EC device 983 * @param data Pointer to data buffer to read into 984 * @param offset Offset within flash to read from 985 * @param size Number of bytes to read 986 * @return 0 if ok, -1 on error 987 */ 988 static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data, 989 uint32_t offset, uint32_t size) 990 { 991 struct ec_params_flash_read p; 992 993 p.offset = offset; 994 p.size = size; 995 996 return ec_command(dev, EC_CMD_FLASH_READ, 0, 997 &p, sizeof(p), data, size) >= 0 ? 0 : -1; 998 } 999 1000 int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset, 1001 uint32_t size) 1002 { 1003 uint32_t burst = cros_ec_flash_write_burst_size(dev); 1004 uint32_t end, off; 1005 int ret; 1006 1007 end = offset + size; 1008 for (off = offset; off < end; off += burst, data += burst) { 1009 ret = cros_ec_flash_read_block(dev, data, off, 1010 min(end - off, burst)); 1011 if (ret) 1012 return ret; 1013 } 1014 1015 return 0; 1016 } 1017 1018 int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image, 1019 int image_size) 1020 { 1021 uint32_t rw_offset, rw_size; 1022 int ret; 1023 1024 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset, 1025 &rw_size)) 1026 return -1; 1027 if (image_size > (int)rw_size) 1028 return -1; 1029 1030 /* Invalidate the existing hash, just in case the AP reboots 1031 * unexpectedly during the update. If that happened, the EC RW firmware 1032 * would be invalid, but the EC would still have the original hash. 1033 */ 1034 ret = cros_ec_invalidate_hash(dev); 1035 if (ret) 1036 return ret; 1037 1038 /* 1039 * Erase the entire RW section, so that the EC doesn't see any garbage 1040 * past the new image if it's smaller than the current image. 1041 * 1042 * TODO: could optimize this to erase just the current image, since 1043 * presumably everything past that is 0xff's. But would still need to 1044 * round up to the nearest multiple of erase size. 1045 */ 1046 ret = cros_ec_flash_erase(dev, rw_offset, rw_size); 1047 if (ret) 1048 return ret; 1049 1050 /* Write the image */ 1051 ret = cros_ec_flash_write(dev, image, rw_offset, image_size); 1052 if (ret) 1053 return ret; 1054 1055 return 0; 1056 } 1057 1058 int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size) 1059 { 1060 struct ec_params_vbnvcontext p; 1061 int len; 1062 1063 if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2) 1064 return -EINVAL; 1065 1066 p.op = EC_VBNV_CONTEXT_OP_READ; 1067 1068 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 1069 &p, sizeof(uint32_t) + size, block, size); 1070 if (len != size) { 1071 log_err("Expected %d bytes, got %d\n", size, len); 1072 return -EIO; 1073 } 1074 1075 return 0; 1076 } 1077 1078 int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size) 1079 { 1080 struct ec_params_vbnvcontext p; 1081 int len; 1082 1083 if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2) 1084 return -EINVAL; 1085 p.op = EC_VBNV_CONTEXT_OP_WRITE; 1086 memcpy(p.block, block, size); 1087 1088 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 1089 &p, sizeof(uint32_t) + size, NULL, 0); 1090 if (len < 0) 1091 return -1; 1092 1093 return 0; 1094 } 1095 1096 int cros_ec_battery_cutoff(struct udevice *dev, uint8_t flags) 1097 { 1098 struct ec_params_battery_cutoff p; 1099 int len; 1100 1101 p.flags = flags; 1102 len = ec_command(dev, EC_CMD_BATTERY_CUT_OFF, 1, &p, sizeof(p), 1103 NULL, 0); 1104 1105 if (len < 0) 1106 return -1; 1107 return 0; 1108 } 1109 1110 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state) 1111 { 1112 struct ec_params_ldo_set params; 1113 1114 params.index = index; 1115 params.state = state; 1116 1117 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, ¶ms, sizeof(params), 1118 NULL, 0)) 1119 return -1; 1120 1121 return 0; 1122 } 1123 1124 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state) 1125 { 1126 struct ec_params_ldo_get params; 1127 struct ec_response_ldo_get *resp; 1128 1129 params.index = index; 1130 1131 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, ¶ms, sizeof(params), 1132 (uint8_t **)&resp, sizeof(*resp)) != 1133 sizeof(*resp)) 1134 return -1; 1135 1136 *state = resp->state; 1137 1138 return 0; 1139 } 1140 1141 int cros_ec_register(struct udevice *dev) 1142 { 1143 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 1144 char id[MSG_BYTES]; 1145 1146 cdev->dev = dev; 1147 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int, 1148 GPIOD_IS_IN); 1149 cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write"); 1150 1151 if (cros_ec_check_version(dev)) { 1152 debug("%s: Could not detect CROS-EC version\n", __func__); 1153 return -CROS_EC_ERR_CHECK_VERSION; 1154 } 1155 1156 if (cros_ec_read_id(dev, id, sizeof(id))) { 1157 debug("%s: Could not read KBC ID\n", __func__); 1158 return -CROS_EC_ERR_READ_ID; 1159 } 1160 1161 /* Remember this device for use by the cros_ec command */ 1162 debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n", 1163 cdev->protocol_version, id); 1164 1165 return 0; 1166 } 1167 1168 int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config) 1169 { 1170 ofnode flash_node, node; 1171 1172 flash_node = dev_read_subnode(dev, "flash"); 1173 if (!ofnode_valid(flash_node)) { 1174 debug("Failed to find flash node\n"); 1175 return -1; 1176 } 1177 1178 if (ofnode_read_fmap_entry(flash_node, &config->flash)) { 1179 debug("Failed to decode flash node in chrome-ec\n"); 1180 return -1; 1181 } 1182 1183 config->flash_erase_value = ofnode_read_s32_default(flash_node, 1184 "erase-value", -1); 1185 ofnode_for_each_subnode(node, flash_node) { 1186 const char *name = ofnode_get_name(node); 1187 enum ec_flash_region region; 1188 1189 if (0 == strcmp(name, "ro")) { 1190 region = EC_FLASH_REGION_RO; 1191 } else if (0 == strcmp(name, "rw")) { 1192 region = EC_FLASH_REGION_ACTIVE; 1193 } else if (0 == strcmp(name, "wp-ro")) { 1194 region = EC_FLASH_REGION_WP_RO; 1195 } else { 1196 debug("Unknown EC flash region name '%s'\n", name); 1197 return -1; 1198 } 1199 1200 if (ofnode_read_fmap_entry(node, &config->region[region])) { 1201 debug("Failed to decode flash region in chrome-ec'\n"); 1202 return -1; 1203 } 1204 } 1205 1206 return 0; 1207 } 1208 1209 int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in, 1210 int nmsgs) 1211 { 1212 union { 1213 struct ec_params_i2c_passthru p; 1214 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1215 } params; 1216 union { 1217 struct ec_response_i2c_passthru r; 1218 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1219 } response; 1220 struct ec_params_i2c_passthru *p = ¶ms.p; 1221 struct ec_response_i2c_passthru *r = &response.r; 1222 struct ec_params_i2c_passthru_msg *msg; 1223 uint8_t *pdata, *read_ptr = NULL; 1224 int read_len; 1225 int size; 1226 int rv; 1227 int i; 1228 1229 p->port = port; 1230 1231 p->num_msgs = nmsgs; 1232 size = sizeof(*p) + p->num_msgs * sizeof(*msg); 1233 1234 /* Create a message to write the register address and optional data */ 1235 pdata = (uint8_t *)p + size; 1236 1237 read_len = 0; 1238 for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) { 1239 bool is_read = in->flags & I2C_M_RD; 1240 1241 msg->addr_flags = in->addr; 1242 msg->len = in->len; 1243 if (is_read) { 1244 msg->addr_flags |= EC_I2C_FLAG_READ; 1245 read_len += in->len; 1246 read_ptr = in->buf; 1247 if (sizeof(*r) + read_len > sizeof(response)) { 1248 puts("Read length too big for buffer\n"); 1249 return -1; 1250 } 1251 } else { 1252 if (pdata - (uint8_t *)p + in->len > sizeof(params)) { 1253 puts("Params too large for buffer\n"); 1254 return -1; 1255 } 1256 memcpy(pdata, in->buf, in->len); 1257 pdata += in->len; 1258 } 1259 } 1260 1261 rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p, 1262 r, sizeof(*r) + read_len); 1263 if (rv < 0) 1264 return rv; 1265 1266 /* Parse response */ 1267 if (r->i2c_status & EC_I2C_STATUS_ERROR) { 1268 printf("Transfer failed with status=0x%x\n", r->i2c_status); 1269 return -1; 1270 } 1271 1272 if (rv < sizeof(*r) + read_len) { 1273 puts("Truncated read response\n"); 1274 return -1; 1275 } 1276 1277 /* We only support a single read message for each transfer */ 1278 if (read_len) 1279 memcpy(read_ptr, r->data, read_len); 1280 1281 return 0; 1282 } 1283 1284 int cros_ec_check_feature(struct udevice *dev, int feature) 1285 { 1286 struct ec_response_get_features r; 1287 int rv; 1288 1289 rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, &r, sizeof(r), NULL, 0); 1290 if (rv) 1291 return rv; 1292 1293 if (feature >= 8 * sizeof(r.flags)) 1294 return -1; 1295 1296 return r.flags[feature / 32] & EC_FEATURE_MASK_0(feature); 1297 } 1298 1299 /* 1300 * Query the EC for specified mask indicating enabled events. 1301 * The EC maintains separate event masks for SMI, SCI and WAKE. 1302 */ 1303 static int cros_ec_uhepi_cmd(struct udevice *dev, uint mask, uint action, 1304 uint64_t *value) 1305 { 1306 int ret; 1307 struct ec_params_host_event req; 1308 struct ec_response_host_event rsp; 1309 1310 req.action = action; 1311 req.mask_type = mask; 1312 if (action != EC_HOST_EVENT_GET) 1313 req.value = *value; 1314 else 1315 *value = 0; 1316 ret = ec_command(dev, EC_CMD_HOST_EVENT, 0, &req, sizeof(req), &rsp, 1317 sizeof(rsp)); 1318 1319 if (action != EC_HOST_EVENT_GET) 1320 return ret; 1321 if (ret == 0) 1322 *value = rsp.value; 1323 1324 return ret; 1325 } 1326 1327 static int cros_ec_handle_non_uhepi_cmd(struct udevice *dev, uint hcmd, 1328 uint action, uint64_t *value) 1329 { 1330 int ret = -1; 1331 struct ec_params_host_event_mask req; 1332 struct ec_response_host_event_mask rsp; 1333 1334 if (hcmd == INVALID_HCMD) 1335 return ret; 1336 1337 if (action != EC_HOST_EVENT_GET) 1338 req.mask = (uint32_t)*value; 1339 else 1340 *value = 0; 1341 1342 ret = ec_command(dev, hcmd, 0, &req, sizeof(req), &rsp, sizeof(rsp)); 1343 if (action != EC_HOST_EVENT_GET) 1344 return ret; 1345 if (ret == 0) 1346 *value = rsp.mask; 1347 1348 return ret; 1349 } 1350 1351 bool cros_ec_is_uhepi_supported(struct udevice *dev) 1352 { 1353 #define UHEPI_SUPPORTED 1 1354 #define UHEPI_NOT_SUPPORTED 2 1355 static int uhepi_support; 1356 1357 if (!uhepi_support) { 1358 uhepi_support = cros_ec_check_feature(dev, 1359 EC_FEATURE_UNIFIED_WAKE_MASKS) > 0 ? UHEPI_SUPPORTED : 1360 UHEPI_NOT_SUPPORTED; 1361 log_debug("Chrome EC: UHEPI %s\n", 1362 uhepi_support == UHEPI_SUPPORTED ? "supported" : 1363 "not supported"); 1364 } 1365 return uhepi_support == UHEPI_SUPPORTED; 1366 } 1367 1368 static int cros_ec_get_mask(struct udevice *dev, uint type) 1369 { 1370 u64 value = 0; 1371 1372 if (cros_ec_is_uhepi_supported(dev)) { 1373 cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_GET, &value); 1374 } else { 1375 assert(type < ARRAY_SIZE(event_map)); 1376 cros_ec_handle_non_uhepi_cmd(dev, event_map[type].get_cmd, 1377 EC_HOST_EVENT_GET, &value); 1378 } 1379 return value; 1380 } 1381 1382 static int cros_ec_clear_mask(struct udevice *dev, uint type, u64 mask) 1383 { 1384 if (cros_ec_is_uhepi_supported(dev)) 1385 return cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_CLEAR, &mask); 1386 1387 assert(type < ARRAY_SIZE(event_map)); 1388 1389 return cros_ec_handle_non_uhepi_cmd(dev, event_map[type].clear_cmd, 1390 EC_HOST_EVENT_CLEAR, &mask); 1391 } 1392 1393 uint64_t cros_ec_get_events_b(struct udevice *dev) 1394 { 1395 return cros_ec_get_mask(dev, EC_HOST_EVENT_B); 1396 } 1397 1398 int cros_ec_clear_events_b(struct udevice *dev, uint64_t mask) 1399 { 1400 log_debug("Chrome EC: clear events_b mask to 0x%016llx\n", mask); 1401 1402 return cros_ec_clear_mask(dev, EC_HOST_EVENT_B, mask); 1403 } 1404 1405 int cros_ec_read_limit_power(struct udevice *dev, int *limit_powerp) 1406 { 1407 struct ec_params_charge_state p; 1408 struct ec_response_charge_state r; 1409 int ret; 1410 1411 p.cmd = CHARGE_STATE_CMD_GET_PARAM; 1412 p.get_param.param = CS_PARAM_LIMIT_POWER; 1413 ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &p, sizeof(p), 1414 &r, sizeof(r)); 1415 1416 /* 1417 * If our EC doesn't support the LIMIT_POWER parameter, assume that 1418 * LIMIT_POWER is not requested. 1419 */ 1420 if (ret == -EC_RES_INVALID_PARAM || ret == -EC_RES_INVALID_COMMAND) { 1421 log_warning("PARAM_LIMIT_POWER not supported by EC\n"); 1422 return -ENOSYS; 1423 } 1424 1425 if (ret != sizeof(r.get_param)) 1426 return -EINVAL; 1427 1428 *limit_powerp = r.get_param.value; 1429 return 0; 1430 } 1431 1432 int cros_ec_config_powerbtn(struct udevice *dev, uint32_t flags) 1433 { 1434 struct ec_params_config_power_button params; 1435 int ret; 1436 1437 params.flags = flags; 1438 ret = ec_command(dev, EC_CMD_CONFIG_POWER_BUTTON, 0, 1439 ¶ms, sizeof(params), NULL, 0); 1440 if (ret < 0) 1441 return ret; 1442 1443 return 0; 1444 } 1445 1446 int cros_ec_get_lid_shutdown_mask(struct udevice *dev) 1447 { 1448 u32 mask; 1449 int ret; 1450 1451 ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK, 1452 &mask); 1453 if (ret < 0) 1454 return ret; 1455 1456 return !!(mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED)); 1457 } 1458 1459 int cros_ec_set_lid_shutdown_mask(struct udevice *dev, int enable) 1460 { 1461 u32 mask; 1462 int ret; 1463 1464 ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK, 1465 &mask); 1466 if (ret < 0) 1467 return ret; 1468 1469 // Set lid close event state in the EC SMI event mask 1470 if (enable) 1471 mask |= EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED); 1472 else 1473 mask &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED); 1474 1475 ret = cros_ec_set_event_mask(dev, EC_CMD_HOST_EVENT_SET_SMI_MASK, mask); 1476 if (ret < 0) 1477 return ret; 1478 1479 printf("EC: %sabled lid close event\n", enable ? "en" : "dis"); 1480 return 0; 1481 } 1482 1483 UCLASS_DRIVER(cros_ec) = { 1484 .id = UCLASS_CROS_EC, 1485 .name = "cros_ec", 1486 .per_device_auto_alloc_size = sizeof(struct cros_ec_dev), 1487 .post_bind = dm_scan_fdt_dev, 1488 .flags = DM_UC_FLAG_ALLOC_PRIV_DMA, 1489 }; 1490