1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Chromium OS cros_ec driver 4 * 5 * Copyright (c) 2012 The Chromium OS Authors. 6 */ 7 8 /* 9 * This is the interface to the Chrome OS EC. It provides keyboard functions, 10 * power control and battery management. Quite a few other functions are 11 * provided to enable the EC software to be updated, talk to the EC's I2C bus 12 * and store a small amount of data in a memory which persists while the EC 13 * is not reset. 14 */ 15 16 #include <common.h> 17 #include <command.h> 18 #include <dm.h> 19 #include <i2c.h> 20 #include <cros_ec.h> 21 #include <fdtdec.h> 22 #include <malloc.h> 23 #include <spi.h> 24 #include <linux/errno.h> 25 #include <asm/io.h> 26 #include <asm-generic/gpio.h> 27 #include <dm/device-internal.h> 28 #include <dm/of_extra.h> 29 #include <dm/uclass-internal.h> 30 31 #ifdef DEBUG_TRACE 32 #define debug_trace(fmt, b...) debug(fmt, #b) 33 #else 34 #define debug_trace(fmt, b...) 35 #endif 36 37 enum { 38 /* Timeout waiting for a flash erase command to complete */ 39 CROS_EC_CMD_TIMEOUT_MS = 5000, 40 /* Timeout waiting for a synchronous hash to be recomputed */ 41 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, 42 }; 43 44 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) 45 { 46 #ifdef DEBUG 47 int i; 48 49 printf("%s: ", name); 50 if (cmd != -1) 51 printf("cmd=%#x: ", cmd); 52 for (i = 0; i < len; i++) 53 printf("%02x ", data[i]); 54 printf("\n"); 55 #endif 56 } 57 58 /* 59 * Calculate a simple 8-bit checksum of a data block 60 * 61 * @param data Data block to checksum 62 * @param size Size of data block in bytes 63 * @return checksum value (0 to 255) 64 */ 65 int cros_ec_calc_checksum(const uint8_t *data, int size) 66 { 67 int csum, i; 68 69 for (i = csum = 0; i < size; i++) 70 csum += data[i]; 71 return csum & 0xff; 72 } 73 74 /** 75 * Create a request packet for protocol version 3. 76 * 77 * The packet is stored in the device's internal output buffer. 78 * 79 * @param dev CROS-EC device 80 * @param cmd Command to send (EC_CMD_...) 81 * @param cmd_version Version of command to send (EC_VER_...) 82 * @param dout Output data (may be NULL If dout_len=0) 83 * @param dout_len Size of output data in bytes 84 * @return packet size in bytes, or <0 if error. 85 */ 86 static int create_proto3_request(struct cros_ec_dev *cdev, 87 int cmd, int cmd_version, 88 const void *dout, int dout_len) 89 { 90 struct ec_host_request *rq = (struct ec_host_request *)cdev->dout; 91 int out_bytes = dout_len + sizeof(*rq); 92 93 /* Fail if output size is too big */ 94 if (out_bytes > (int)sizeof(cdev->dout)) { 95 debug("%s: Cannot send %d bytes\n", __func__, dout_len); 96 return -EC_RES_REQUEST_TRUNCATED; 97 } 98 99 /* Fill in request packet */ 100 rq->struct_version = EC_HOST_REQUEST_VERSION; 101 rq->checksum = 0; 102 rq->command = cmd; 103 rq->command_version = cmd_version; 104 rq->reserved = 0; 105 rq->data_len = dout_len; 106 107 /* Copy data after header */ 108 memcpy(rq + 1, dout, dout_len); 109 110 /* Write checksum field so the entire packet sums to 0 */ 111 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes)); 112 113 cros_ec_dump_data("out", cmd, cdev->dout, out_bytes); 114 115 /* Return size of request packet */ 116 return out_bytes; 117 } 118 119 /** 120 * Prepare the device to receive a protocol version 3 response. 121 * 122 * @param dev CROS-EC device 123 * @param din_len Maximum size of response in bytes 124 * @return maximum expected number of bytes in response, or <0 if error. 125 */ 126 static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len) 127 { 128 int in_bytes = din_len + sizeof(struct ec_host_response); 129 130 /* Fail if input size is too big */ 131 if (in_bytes > (int)sizeof(cdev->din)) { 132 debug("%s: Cannot receive %d bytes\n", __func__, din_len); 133 return -EC_RES_RESPONSE_TOO_BIG; 134 } 135 136 /* Return expected size of response packet */ 137 return in_bytes; 138 } 139 140 /** 141 * Handle a protocol version 3 response packet. 142 * 143 * The packet must already be stored in the device's internal input buffer. 144 * 145 * @param dev CROS-EC device 146 * @param dinp Returns pointer to response data 147 * @param din_len Maximum size of response in bytes 148 * @return number of bytes of response data, or <0 if error. Note that error 149 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they 150 * overlap!) 151 */ 152 static int handle_proto3_response(struct cros_ec_dev *dev, 153 uint8_t **dinp, int din_len) 154 { 155 struct ec_host_response *rs = (struct ec_host_response *)dev->din; 156 int in_bytes; 157 int csum; 158 159 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs)); 160 161 /* Check input data */ 162 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) { 163 debug("%s: EC response version mismatch\n", __func__); 164 return -EC_RES_INVALID_RESPONSE; 165 } 166 167 if (rs->reserved) { 168 debug("%s: EC response reserved != 0\n", __func__); 169 return -EC_RES_INVALID_RESPONSE; 170 } 171 172 if (rs->data_len > din_len) { 173 debug("%s: EC returned too much data\n", __func__); 174 return -EC_RES_RESPONSE_TOO_BIG; 175 } 176 177 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len); 178 179 /* Update in_bytes to actual data size */ 180 in_bytes = sizeof(*rs) + rs->data_len; 181 182 /* Verify checksum */ 183 csum = cros_ec_calc_checksum(dev->din, in_bytes); 184 if (csum) { 185 debug("%s: EC response checksum invalid: 0x%02x\n", __func__, 186 csum); 187 return -EC_RES_INVALID_CHECKSUM; 188 } 189 190 /* Return error result, if any */ 191 if (rs->result) 192 return -(int)rs->result; 193 194 /* If we're still here, set response data pointer and return length */ 195 *dinp = (uint8_t *)(rs + 1); 196 197 return rs->data_len; 198 } 199 200 static int send_command_proto3(struct cros_ec_dev *cdev, 201 int cmd, int cmd_version, 202 const void *dout, int dout_len, 203 uint8_t **dinp, int din_len) 204 { 205 struct dm_cros_ec_ops *ops; 206 int out_bytes, in_bytes; 207 int rv; 208 209 /* Create request packet */ 210 out_bytes = create_proto3_request(cdev, cmd, cmd_version, 211 dout, dout_len); 212 if (out_bytes < 0) 213 return out_bytes; 214 215 /* Prepare response buffer */ 216 in_bytes = prepare_proto3_response_buffer(cdev, din_len); 217 if (in_bytes < 0) 218 return in_bytes; 219 220 ops = dm_cros_ec_get_ops(cdev->dev); 221 rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) : 222 -ENOSYS; 223 if (rv < 0) 224 return rv; 225 226 /* Process the response */ 227 return handle_proto3_response(cdev, dinp, din_len); 228 } 229 230 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 231 const void *dout, int dout_len, 232 uint8_t **dinp, int din_len) 233 { 234 struct dm_cros_ec_ops *ops; 235 int ret = -1; 236 237 /* Handle protocol version 3 support */ 238 if (dev->protocol_version == 3) { 239 return send_command_proto3(dev, cmd, cmd_version, 240 dout, dout_len, dinp, din_len); 241 } 242 243 ops = dm_cros_ec_get_ops(dev->dev); 244 ret = ops->command(dev->dev, cmd, cmd_version, 245 (const uint8_t *)dout, dout_len, dinp, din_len); 246 247 return ret; 248 } 249 250 /** 251 * Send a command to the CROS-EC device and return the reply. 252 * 253 * The device's internal input/output buffers are used. 254 * 255 * @param dev CROS-EC device 256 * @param cmd Command to send (EC_CMD_...) 257 * @param cmd_version Version of command to send (EC_VER_...) 258 * @param dout Output data (may be NULL If dout_len=0) 259 * @param dout_len Size of output data in bytes 260 * @param dinp Response data (may be NULL If din_len=0). 261 * If not NULL, it will be updated to point to the data 262 * and will always be double word aligned (64-bits) 263 * @param din_len Maximum size of response in bytes 264 * @return number of bytes in response, or -ve on error 265 */ 266 static int ec_command_inptr(struct udevice *dev, uint8_t cmd, 267 int cmd_version, const void *dout, int dout_len, 268 uint8_t **dinp, int din_len) 269 { 270 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 271 uint8_t *din = NULL; 272 int len; 273 274 len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din, 275 din_len); 276 277 /* If the command doesn't complete, wait a while */ 278 if (len == -EC_RES_IN_PROGRESS) { 279 struct ec_response_get_comms_status *resp = NULL; 280 ulong start; 281 282 /* Wait for command to complete */ 283 start = get_timer(0); 284 do { 285 int ret; 286 287 mdelay(50); /* Insert some reasonable delay */ 288 ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0, 289 NULL, 0, 290 (uint8_t **)&resp, sizeof(*resp)); 291 if (ret < 0) 292 return ret; 293 294 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { 295 debug("%s: Command %#02x timeout\n", 296 __func__, cmd); 297 return -EC_RES_TIMEOUT; 298 } 299 } while (resp->flags & EC_COMMS_STATUS_PROCESSING); 300 301 /* OK it completed, so read the status response */ 302 /* not sure why it was 0 for the last argument */ 303 len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0, 304 &din, din_len); 305 } 306 307 debug("%s: len=%d, din=%p\n", __func__, len, din); 308 if (dinp) { 309 /* If we have any data to return, it must be 64bit-aligned */ 310 assert(len <= 0 || !((uintptr_t)din & 7)); 311 *dinp = din; 312 } 313 314 return len; 315 } 316 317 /** 318 * Send a command to the CROS-EC device and return the reply. 319 * 320 * The device's internal input/output buffers are used. 321 * 322 * @param dev CROS-EC device 323 * @param cmd Command to send (EC_CMD_...) 324 * @param cmd_version Version of command to send (EC_VER_...) 325 * @param dout Output data (may be NULL If dout_len=0) 326 * @param dout_len Size of output data in bytes 327 * @param din Response data (may be NULL If din_len=0). 328 * It not NULL, it is a place for ec_command() to copy the 329 * data to. 330 * @param din_len Maximum size of response in bytes 331 * @return number of bytes in response, or -ve on error 332 */ 333 static int ec_command(struct udevice *dev, uint8_t cmd, int cmd_version, 334 const void *dout, int dout_len, 335 void *din, int din_len) 336 { 337 uint8_t *in_buffer; 338 int len; 339 340 assert((din_len == 0) || din); 341 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, 342 &in_buffer, din_len); 343 if (len > 0) { 344 /* 345 * If we were asked to put it somewhere, do so, otherwise just 346 * disregard the result. 347 */ 348 if (din && in_buffer) { 349 assert(len <= din_len); 350 memmove(din, in_buffer, len); 351 } 352 } 353 return len; 354 } 355 356 int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan) 357 { 358 if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan, 359 sizeof(scan->data)) != sizeof(scan->data)) 360 return -1; 361 362 return 0; 363 } 364 365 int cros_ec_read_id(struct udevice *dev, char *id, int maxlen) 366 { 367 struct ec_response_get_version *r; 368 369 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 370 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 371 return -1; 372 373 if (maxlen > (int)sizeof(r->version_string_ro)) 374 maxlen = sizeof(r->version_string_ro); 375 376 switch (r->current_image) { 377 case EC_IMAGE_RO: 378 memcpy(id, r->version_string_ro, maxlen); 379 break; 380 case EC_IMAGE_RW: 381 memcpy(id, r->version_string_rw, maxlen); 382 break; 383 default: 384 return -1; 385 } 386 387 id[maxlen - 1] = '\0'; 388 return 0; 389 } 390 391 int cros_ec_read_version(struct udevice *dev, 392 struct ec_response_get_version **versionp) 393 { 394 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 395 (uint8_t **)versionp, sizeof(**versionp)) 396 != sizeof(**versionp)) 397 return -1; 398 399 return 0; 400 } 401 402 int cros_ec_read_build_info(struct udevice *dev, char **strp) 403 { 404 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, 405 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0) 406 return -1; 407 408 return 0; 409 } 410 411 int cros_ec_read_current_image(struct udevice *dev, 412 enum ec_current_image *image) 413 { 414 struct ec_response_get_version *r; 415 416 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 417 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 418 return -1; 419 420 *image = r->current_image; 421 return 0; 422 } 423 424 static int cros_ec_wait_on_hash_done(struct udevice *dev, 425 struct ec_response_vboot_hash *hash) 426 { 427 struct ec_params_vboot_hash p; 428 ulong start; 429 430 start = get_timer(0); 431 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { 432 mdelay(50); /* Insert some reasonable delay */ 433 434 p.cmd = EC_VBOOT_HASH_GET; 435 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 436 hash, sizeof(*hash)) < 0) 437 return -1; 438 439 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { 440 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); 441 return -EC_RES_TIMEOUT; 442 } 443 } 444 return 0; 445 } 446 447 int cros_ec_read_hash(struct udevice *dev, uint hash_offset, 448 struct ec_response_vboot_hash *hash) 449 { 450 struct ec_params_vboot_hash p; 451 int rv; 452 453 p.cmd = EC_VBOOT_HASH_GET; 454 p.offset = hash_offset; 455 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 456 hash, sizeof(*hash)) < 0) 457 return -1; 458 459 /* If the EC is busy calculating the hash, fidget until it's done. */ 460 rv = cros_ec_wait_on_hash_done(dev, hash); 461 if (rv) 462 return rv; 463 464 /* If the hash is valid, we're done. Otherwise, we have to kick it off 465 * again and wait for it to complete. Note that we explicitly assume 466 * that hashing zero bytes is always wrong, even though that would 467 * produce a valid hash value. */ 468 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) 469 return 0; 470 471 debug("%s: No valid hash (status=%d size=%d). Compute one...\n", 472 __func__, hash->status, hash->size); 473 474 p.cmd = EC_VBOOT_HASH_START; 475 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 476 p.nonce_size = 0; 477 p.offset = hash_offset; 478 479 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 480 hash, sizeof(*hash)) < 0) 481 return -1; 482 483 rv = cros_ec_wait_on_hash_done(dev, hash); 484 if (rv) 485 return rv; 486 487 debug("%s: hash done\n", __func__); 488 489 return 0; 490 } 491 492 static int cros_ec_invalidate_hash(struct udevice *dev) 493 { 494 struct ec_params_vboot_hash p; 495 struct ec_response_vboot_hash *hash; 496 497 /* We don't have an explict command for the EC to discard its current 498 * hash value, so we'll just tell it to calculate one that we know is 499 * wrong (we claim that hashing zero bytes is always invalid). 500 */ 501 p.cmd = EC_VBOOT_HASH_RECALC; 502 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 503 p.nonce_size = 0; 504 p.offset = 0; 505 p.size = 0; 506 507 debug("%s:\n", __func__); 508 509 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 510 (uint8_t **)&hash, sizeof(*hash)) < 0) 511 return -1; 512 513 /* No need to wait for it to finish */ 514 return 0; 515 } 516 517 int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags) 518 { 519 struct ec_params_reboot_ec p; 520 521 p.cmd = cmd; 522 p.flags = flags; 523 524 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) 525 < 0) 526 return -1; 527 528 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { 529 /* 530 * EC reboot will take place immediately so delay to allow it 531 * to complete. Note that some reboot types (EC_REBOOT_COLD) 532 * will reboot the AP as well, in which case we won't actually 533 * get to this point. 534 */ 535 /* 536 * TODO(rspangler@chromium.org): Would be nice if we had a 537 * better way to determine when the reboot is complete. Could 538 * we poll a memory-mapped LPC value? 539 */ 540 udelay(50000); 541 } 542 543 return 0; 544 } 545 546 int cros_ec_interrupt_pending(struct udevice *dev) 547 { 548 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 549 550 /* no interrupt support : always poll */ 551 if (!dm_gpio_is_valid(&cdev->ec_int)) 552 return -ENOENT; 553 554 return dm_gpio_get_value(&cdev->ec_int); 555 } 556 557 int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info) 558 { 559 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info, 560 sizeof(*info)) != sizeof(*info)) 561 return -1; 562 563 return 0; 564 } 565 566 int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr) 567 { 568 struct ec_response_host_event_mask *resp; 569 570 /* 571 * Use the B copy of the event flags, because the main copy is already 572 * used by ACPI/SMI. 573 */ 574 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, 575 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp)) 576 return -1; 577 578 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) 579 return -1; 580 581 *events_ptr = resp->mask; 582 return 0; 583 } 584 585 int cros_ec_clear_host_events(struct udevice *dev, uint32_t events) 586 { 587 struct ec_params_host_event_mask params; 588 589 params.mask = events; 590 591 /* 592 * Use the B copy of the event flags, so it affects the data returned 593 * by cros_ec_get_host_events(). 594 */ 595 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, 596 ¶ms, sizeof(params), NULL, 0) < 0) 597 return -1; 598 599 return 0; 600 } 601 602 int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask, 603 uint32_t set_flags, 604 struct ec_response_flash_protect *resp) 605 { 606 struct ec_params_flash_protect params; 607 608 params.mask = set_mask; 609 params.flags = set_flags; 610 611 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, 612 ¶ms, sizeof(params), 613 resp, sizeof(*resp)) != sizeof(*resp)) 614 return -1; 615 616 return 0; 617 } 618 619 static int cros_ec_check_version(struct udevice *dev) 620 { 621 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 622 struct ec_params_hello req; 623 struct ec_response_hello *resp; 624 625 struct dm_cros_ec_ops *ops; 626 int ret; 627 628 ops = dm_cros_ec_get_ops(dev); 629 if (ops->check_version) { 630 ret = ops->check_version(dev); 631 if (ret) 632 return ret; 633 } 634 635 /* 636 * TODO(sjg@chromium.org). 637 * There is a strange oddity here with the EC. We could just ignore 638 * the response, i.e. pass the last two parameters as NULL and 0. 639 * In this case we won't read back very many bytes from the EC. 640 * On the I2C bus the EC gets upset about this and will try to send 641 * the bytes anyway. This means that we will have to wait for that 642 * to complete before continuing with a new EC command. 643 * 644 * This problem is probably unique to the I2C bus. 645 * 646 * So for now, just read all the data anyway. 647 */ 648 649 /* Try sending a version 3 packet */ 650 cdev->protocol_version = 3; 651 req.in_data = 0; 652 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 653 (uint8_t **)&resp, sizeof(*resp)) > 0) { 654 return 0; 655 } 656 657 /* Try sending a version 2 packet */ 658 cdev->protocol_version = 2; 659 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 660 (uint8_t **)&resp, sizeof(*resp)) > 0) { 661 return 0; 662 } 663 664 /* 665 * Fail if we're still here, since the EC doesn't understand any 666 * protcol version we speak. Version 1 interface without command 667 * version is no longer supported, and we don't know about any new 668 * protocol versions. 669 */ 670 cdev->protocol_version = 0; 671 printf("%s: ERROR: old EC interface not supported\n", __func__); 672 return -1; 673 } 674 675 int cros_ec_test(struct udevice *dev) 676 { 677 struct ec_params_hello req; 678 struct ec_response_hello *resp; 679 680 req.in_data = 0x12345678; 681 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 682 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { 683 printf("ec_command_inptr() returned error\n"); 684 return -1; 685 } 686 if (resp->out_data != req.in_data + 0x01020304) { 687 printf("Received invalid handshake %x\n", resp->out_data); 688 return -1; 689 } 690 691 return 0; 692 } 693 694 int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region, 695 uint32_t *offset, uint32_t *size) 696 { 697 struct ec_params_flash_region_info p; 698 struct ec_response_flash_region_info *r; 699 int ret; 700 701 p.region = region; 702 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, 703 EC_VER_FLASH_REGION_INFO, 704 &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); 705 if (ret != sizeof(*r)) 706 return -1; 707 708 if (offset) 709 *offset = r->offset; 710 if (size) 711 *size = r->size; 712 713 return 0; 714 } 715 716 int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size) 717 { 718 struct ec_params_flash_erase p; 719 720 p.offset = offset; 721 p.size = size; 722 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), 723 NULL, 0); 724 } 725 726 /** 727 * Write a single block to the flash 728 * 729 * Write a block of data to the EC flash. The size must not exceed the flash 730 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 731 * 732 * The offset starts at 0. You can obtain the region information from 733 * cros_ec_flash_offset() to find out where to write for a particular region. 734 * 735 * Attempting to write to the region where the EC is currently running from 736 * will result in an error. 737 * 738 * @param dev CROS-EC device 739 * @param data Pointer to data buffer to write 740 * @param offset Offset within flash to write to. 741 * @param size Number of bytes to write 742 * @return 0 if ok, -1 on error 743 */ 744 static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data, 745 uint32_t offset, uint32_t size) 746 { 747 struct ec_params_flash_write *p; 748 int ret; 749 750 p = malloc(sizeof(*p) + size); 751 if (!p) 752 return -ENOMEM; 753 754 p->offset = offset; 755 p->size = size; 756 assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE); 757 memcpy(p + 1, data, p->size); 758 759 ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, 760 p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1; 761 762 free(p); 763 764 return ret; 765 } 766 767 /** 768 * Return optimal flash write burst size 769 */ 770 static int cros_ec_flash_write_burst_size(struct udevice *dev) 771 { 772 return EC_FLASH_WRITE_VER0_SIZE; 773 } 774 775 /** 776 * Check if a block of data is erased (all 0xff) 777 * 778 * This function is useful when dealing with flash, for checking whether a 779 * data block is erased and thus does not need to be programmed. 780 * 781 * @param data Pointer to data to check (must be word-aligned) 782 * @param size Number of bytes to check (must be word-aligned) 783 * @return 0 if erased, non-zero if any word is not erased 784 */ 785 static int cros_ec_data_is_erased(const uint32_t *data, int size) 786 { 787 assert(!(size & 3)); 788 size /= sizeof(uint32_t); 789 for (; size > 0; size -= 4, data++) 790 if (*data != -1U) 791 return 0; 792 793 return 1; 794 } 795 796 /** 797 * Read back flash parameters 798 * 799 * This function reads back parameters of the flash as reported by the EC 800 * 801 * @param dev Pointer to device 802 * @param info Pointer to output flash info struct 803 */ 804 int cros_ec_read_flashinfo(struct udevice *dev, 805 struct ec_response_flash_info *info) 806 { 807 int ret; 808 809 ret = ec_command(dev, EC_CMD_FLASH_INFO, 0, 810 NULL, 0, info, sizeof(*info)); 811 if (ret < 0) 812 return ret; 813 814 return ret < sizeof(*info) ? -1 : 0; 815 } 816 817 int cros_ec_flash_write(struct udevice *dev, const uint8_t *data, 818 uint32_t offset, uint32_t size) 819 { 820 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 821 uint32_t burst = cros_ec_flash_write_burst_size(dev); 822 uint32_t end, off; 823 int ret; 824 825 /* 826 * TODO: round up to the nearest multiple of write size. Can get away 827 * without that on link right now because its write size is 4 bytes. 828 */ 829 end = offset + size; 830 for (off = offset; off < end; off += burst, data += burst) { 831 uint32_t todo; 832 833 /* If the data is empty, there is no point in programming it */ 834 todo = min(end - off, burst); 835 if (cdev->optimise_flash_write && 836 cros_ec_data_is_erased((uint32_t *)data, todo)) 837 continue; 838 839 ret = cros_ec_flash_write_block(dev, data, off, todo); 840 if (ret) 841 return ret; 842 } 843 844 return 0; 845 } 846 847 /** 848 * Read a single block from the flash 849 * 850 * Read a block of data from the EC flash. The size must not exceed the flash 851 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 852 * 853 * The offset starts at 0. You can obtain the region information from 854 * cros_ec_flash_offset() to find out where to read for a particular region. 855 * 856 * @param dev CROS-EC device 857 * @param data Pointer to data buffer to read into 858 * @param offset Offset within flash to read from 859 * @param size Number of bytes to read 860 * @return 0 if ok, -1 on error 861 */ 862 static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data, 863 uint32_t offset, uint32_t size) 864 { 865 struct ec_params_flash_read p; 866 867 p.offset = offset; 868 p.size = size; 869 870 return ec_command(dev, EC_CMD_FLASH_READ, 0, 871 &p, sizeof(p), data, size) >= 0 ? 0 : -1; 872 } 873 874 int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset, 875 uint32_t size) 876 { 877 uint32_t burst = cros_ec_flash_write_burst_size(dev); 878 uint32_t end, off; 879 int ret; 880 881 end = offset + size; 882 for (off = offset; off < end; off += burst, data += burst) { 883 ret = cros_ec_flash_read_block(dev, data, off, 884 min(end - off, burst)); 885 if (ret) 886 return ret; 887 } 888 889 return 0; 890 } 891 892 int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image, 893 int image_size) 894 { 895 uint32_t rw_offset, rw_size; 896 int ret; 897 898 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset, 899 &rw_size)) 900 return -1; 901 if (image_size > (int)rw_size) 902 return -1; 903 904 /* Invalidate the existing hash, just in case the AP reboots 905 * unexpectedly during the update. If that happened, the EC RW firmware 906 * would be invalid, but the EC would still have the original hash. 907 */ 908 ret = cros_ec_invalidate_hash(dev); 909 if (ret) 910 return ret; 911 912 /* 913 * Erase the entire RW section, so that the EC doesn't see any garbage 914 * past the new image if it's smaller than the current image. 915 * 916 * TODO: could optimize this to erase just the current image, since 917 * presumably everything past that is 0xff's. But would still need to 918 * round up to the nearest multiple of erase size. 919 */ 920 ret = cros_ec_flash_erase(dev, rw_offset, rw_size); 921 if (ret) 922 return ret; 923 924 /* Write the image */ 925 ret = cros_ec_flash_write(dev, image, rw_offset, image_size); 926 if (ret) 927 return ret; 928 929 return 0; 930 } 931 932 int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size) 933 { 934 struct ec_params_vbnvcontext p; 935 int len; 936 937 if (size != EC_VBNV_BLOCK_SIZE) 938 return -EINVAL; 939 940 p.op = EC_VBNV_CONTEXT_OP_READ; 941 942 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 943 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE); 944 if (len < EC_VBNV_BLOCK_SIZE) 945 return -EIO; 946 947 return 0; 948 } 949 950 int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size) 951 { 952 struct ec_params_vbnvcontext p; 953 int len; 954 955 if (size != EC_VBNV_BLOCK_SIZE) 956 return -EINVAL; 957 p.op = EC_VBNV_CONTEXT_OP_WRITE; 958 memcpy(p.block, block, sizeof(p.block)); 959 960 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 961 &p, sizeof(p), NULL, 0); 962 if (len < 0) 963 return -1; 964 965 return 0; 966 } 967 968 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state) 969 { 970 struct ec_params_ldo_set params; 971 972 params.index = index; 973 params.state = state; 974 975 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, ¶ms, sizeof(params), 976 NULL, 0)) 977 return -1; 978 979 return 0; 980 } 981 982 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state) 983 { 984 struct ec_params_ldo_get params; 985 struct ec_response_ldo_get *resp; 986 987 params.index = index; 988 989 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, ¶ms, sizeof(params), 990 (uint8_t **)&resp, sizeof(*resp)) != 991 sizeof(*resp)) 992 return -1; 993 994 *state = resp->state; 995 996 return 0; 997 } 998 999 int cros_ec_register(struct udevice *dev) 1000 { 1001 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 1002 char id[MSG_BYTES]; 1003 1004 cdev->dev = dev; 1005 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int, 1006 GPIOD_IS_IN); 1007 cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write"); 1008 1009 if (cros_ec_check_version(dev)) { 1010 debug("%s: Could not detect CROS-EC version\n", __func__); 1011 return -CROS_EC_ERR_CHECK_VERSION; 1012 } 1013 1014 if (cros_ec_read_id(dev, id, sizeof(id))) { 1015 debug("%s: Could not read KBC ID\n", __func__); 1016 return -CROS_EC_ERR_READ_ID; 1017 } 1018 1019 /* Remember this device for use by the cros_ec command */ 1020 debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n", 1021 cdev->protocol_version, id); 1022 1023 return 0; 1024 } 1025 1026 int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config) 1027 { 1028 ofnode flash_node, node; 1029 1030 flash_node = dev_read_subnode(dev, "flash"); 1031 if (!ofnode_valid(flash_node)) { 1032 debug("Failed to find flash node\n"); 1033 return -1; 1034 } 1035 1036 if (ofnode_read_fmap_entry(flash_node, &config->flash)) { 1037 debug("Failed to decode flash node in chrome-ec\n"); 1038 return -1; 1039 } 1040 1041 config->flash_erase_value = ofnode_read_s32_default(flash_node, 1042 "erase-value", -1); 1043 ofnode_for_each_subnode(node, flash_node) { 1044 const char *name = ofnode_get_name(node); 1045 enum ec_flash_region region; 1046 1047 if (0 == strcmp(name, "ro")) { 1048 region = EC_FLASH_REGION_RO; 1049 } else if (0 == strcmp(name, "rw")) { 1050 region = EC_FLASH_REGION_ACTIVE; 1051 } else if (0 == strcmp(name, "wp-ro")) { 1052 region = EC_FLASH_REGION_WP_RO; 1053 } else { 1054 debug("Unknown EC flash region name '%s'\n", name); 1055 return -1; 1056 } 1057 1058 if (ofnode_read_fmap_entry(node, &config->region[region])) { 1059 debug("Failed to decode flash region in chrome-ec'\n"); 1060 return -1; 1061 } 1062 } 1063 1064 return 0; 1065 } 1066 1067 int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in, 1068 int nmsgs) 1069 { 1070 union { 1071 struct ec_params_i2c_passthru p; 1072 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1073 } params; 1074 union { 1075 struct ec_response_i2c_passthru r; 1076 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1077 } response; 1078 struct ec_params_i2c_passthru *p = ¶ms.p; 1079 struct ec_response_i2c_passthru *r = &response.r; 1080 struct ec_params_i2c_passthru_msg *msg; 1081 uint8_t *pdata, *read_ptr = NULL; 1082 int read_len; 1083 int size; 1084 int rv; 1085 int i; 1086 1087 p->port = port; 1088 1089 p->num_msgs = nmsgs; 1090 size = sizeof(*p) + p->num_msgs * sizeof(*msg); 1091 1092 /* Create a message to write the register address and optional data */ 1093 pdata = (uint8_t *)p + size; 1094 1095 read_len = 0; 1096 for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) { 1097 bool is_read = in->flags & I2C_M_RD; 1098 1099 msg->addr_flags = in->addr; 1100 msg->len = in->len; 1101 if (is_read) { 1102 msg->addr_flags |= EC_I2C_FLAG_READ; 1103 read_len += in->len; 1104 read_ptr = in->buf; 1105 if (sizeof(*r) + read_len > sizeof(response)) { 1106 puts("Read length too big for buffer\n"); 1107 return -1; 1108 } 1109 } else { 1110 if (pdata - (uint8_t *)p + in->len > sizeof(params)) { 1111 puts("Params too large for buffer\n"); 1112 return -1; 1113 } 1114 memcpy(pdata, in->buf, in->len); 1115 pdata += in->len; 1116 } 1117 } 1118 1119 rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p, 1120 r, sizeof(*r) + read_len); 1121 if (rv < 0) 1122 return rv; 1123 1124 /* Parse response */ 1125 if (r->i2c_status & EC_I2C_STATUS_ERROR) { 1126 printf("Transfer failed with status=0x%x\n", r->i2c_status); 1127 return -1; 1128 } 1129 1130 if (rv < sizeof(*r) + read_len) { 1131 puts("Truncated read response\n"); 1132 return -1; 1133 } 1134 1135 /* We only support a single read message for each transfer */ 1136 if (read_len) 1137 memcpy(read_ptr, r->data, read_len); 1138 1139 return 0; 1140 } 1141 1142 UCLASS_DRIVER(cros_ec) = { 1143 .id = UCLASS_CROS_EC, 1144 .name = "cros_ec", 1145 .per_device_auto_alloc_size = sizeof(struct cros_ec_dev), 1146 .post_bind = dm_scan_fdt_dev, 1147 }; 1148