1 /* 2 * Chromium OS cros_ec driver 3 * 4 * Copyright (c) 2012 The Chromium OS Authors. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 */ 8 9 /* 10 * This is the interface to the Chrome OS EC. It provides keyboard functions, 11 * power control and battery management. Quite a few other functions are 12 * provided to enable the EC software to be updated, talk to the EC's I2C bus 13 * and store a small amount of data in a memory which persists while the EC 14 * is not reset. 15 */ 16 17 #include <common.h> 18 #include <command.h> 19 #include <dm.h> 20 #include <i2c.h> 21 #include <cros_ec.h> 22 #include <fdtdec.h> 23 #include <malloc.h> 24 #include <spi.h> 25 #include <linux/errno.h> 26 #include <asm/io.h> 27 #include <asm-generic/gpio.h> 28 #include <dm/device-internal.h> 29 #include <dm/uclass-internal.h> 30 31 #ifdef DEBUG_TRACE 32 #define debug_trace(fmt, b...) debug(fmt, #b) 33 #else 34 #define debug_trace(fmt, b...) 35 #endif 36 37 enum { 38 /* Timeout waiting for a flash erase command to complete */ 39 CROS_EC_CMD_TIMEOUT_MS = 5000, 40 /* Timeout waiting for a synchronous hash to be recomputed */ 41 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, 42 }; 43 44 DECLARE_GLOBAL_DATA_PTR; 45 46 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) 47 { 48 #ifdef DEBUG 49 int i; 50 51 printf("%s: ", name); 52 if (cmd != -1) 53 printf("cmd=%#x: ", cmd); 54 for (i = 0; i < len; i++) 55 printf("%02x ", data[i]); 56 printf("\n"); 57 #endif 58 } 59 60 /* 61 * Calculate a simple 8-bit checksum of a data block 62 * 63 * @param data Data block to checksum 64 * @param size Size of data block in bytes 65 * @return checksum value (0 to 255) 66 */ 67 int cros_ec_calc_checksum(const uint8_t *data, int size) 68 { 69 int csum, i; 70 71 for (i = csum = 0; i < size; i++) 72 csum += data[i]; 73 return csum & 0xff; 74 } 75 76 /** 77 * Create a request packet for protocol version 3. 78 * 79 * The packet is stored in the device's internal output buffer. 80 * 81 * @param dev CROS-EC device 82 * @param cmd Command to send (EC_CMD_...) 83 * @param cmd_version Version of command to send (EC_VER_...) 84 * @param dout Output data (may be NULL If dout_len=0) 85 * @param dout_len Size of output data in bytes 86 * @return packet size in bytes, or <0 if error. 87 */ 88 static int create_proto3_request(struct cros_ec_dev *dev, 89 int cmd, int cmd_version, 90 const void *dout, int dout_len) 91 { 92 struct ec_host_request *rq = (struct ec_host_request *)dev->dout; 93 int out_bytes = dout_len + sizeof(*rq); 94 95 /* Fail if output size is too big */ 96 if (out_bytes > (int)sizeof(dev->dout)) { 97 debug("%s: Cannot send %d bytes\n", __func__, dout_len); 98 return -EC_RES_REQUEST_TRUNCATED; 99 } 100 101 /* Fill in request packet */ 102 rq->struct_version = EC_HOST_REQUEST_VERSION; 103 rq->checksum = 0; 104 rq->command = cmd; 105 rq->command_version = cmd_version; 106 rq->reserved = 0; 107 rq->data_len = dout_len; 108 109 /* Copy data after header */ 110 memcpy(rq + 1, dout, dout_len); 111 112 /* Write checksum field so the entire packet sums to 0 */ 113 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes)); 114 115 cros_ec_dump_data("out", cmd, dev->dout, out_bytes); 116 117 /* Return size of request packet */ 118 return out_bytes; 119 } 120 121 /** 122 * Prepare the device to receive a protocol version 3 response. 123 * 124 * @param dev CROS-EC device 125 * @param din_len Maximum size of response in bytes 126 * @return maximum expected number of bytes in response, or <0 if error. 127 */ 128 static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len) 129 { 130 int in_bytes = din_len + sizeof(struct ec_host_response); 131 132 /* Fail if input size is too big */ 133 if (in_bytes > (int)sizeof(dev->din)) { 134 debug("%s: Cannot receive %d bytes\n", __func__, din_len); 135 return -EC_RES_RESPONSE_TOO_BIG; 136 } 137 138 /* Return expected size of response packet */ 139 return in_bytes; 140 } 141 142 /** 143 * Handle a protocol version 3 response packet. 144 * 145 * The packet must already be stored in the device's internal input buffer. 146 * 147 * @param dev CROS-EC device 148 * @param dinp Returns pointer to response data 149 * @param din_len Maximum size of response in bytes 150 * @return number of bytes of response data, or <0 if error. Note that error 151 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they 152 * overlap!) 153 */ 154 static int handle_proto3_response(struct cros_ec_dev *dev, 155 uint8_t **dinp, int din_len) 156 { 157 struct ec_host_response *rs = (struct ec_host_response *)dev->din; 158 int in_bytes; 159 int csum; 160 161 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs)); 162 163 /* Check input data */ 164 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) { 165 debug("%s: EC response version mismatch\n", __func__); 166 return -EC_RES_INVALID_RESPONSE; 167 } 168 169 if (rs->reserved) { 170 debug("%s: EC response reserved != 0\n", __func__); 171 return -EC_RES_INVALID_RESPONSE; 172 } 173 174 if (rs->data_len > din_len) { 175 debug("%s: EC returned too much data\n", __func__); 176 return -EC_RES_RESPONSE_TOO_BIG; 177 } 178 179 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len); 180 181 /* Update in_bytes to actual data size */ 182 in_bytes = sizeof(*rs) + rs->data_len; 183 184 /* Verify checksum */ 185 csum = cros_ec_calc_checksum(dev->din, in_bytes); 186 if (csum) { 187 debug("%s: EC response checksum invalid: 0x%02x\n", __func__, 188 csum); 189 return -EC_RES_INVALID_CHECKSUM; 190 } 191 192 /* Return error result, if any */ 193 if (rs->result) 194 return -(int)rs->result; 195 196 /* If we're still here, set response data pointer and return length */ 197 *dinp = (uint8_t *)(rs + 1); 198 199 return rs->data_len; 200 } 201 202 static int send_command_proto3(struct cros_ec_dev *dev, 203 int cmd, int cmd_version, 204 const void *dout, int dout_len, 205 uint8_t **dinp, int din_len) 206 { 207 struct dm_cros_ec_ops *ops; 208 int out_bytes, in_bytes; 209 int rv; 210 211 /* Create request packet */ 212 out_bytes = create_proto3_request(dev, cmd, cmd_version, 213 dout, dout_len); 214 if (out_bytes < 0) 215 return out_bytes; 216 217 /* Prepare response buffer */ 218 in_bytes = prepare_proto3_response_buffer(dev, din_len); 219 if (in_bytes < 0) 220 return in_bytes; 221 222 ops = dm_cros_ec_get_ops(dev->dev); 223 rv = ops->packet ? ops->packet(dev->dev, out_bytes, in_bytes) : -ENOSYS; 224 if (rv < 0) 225 return rv; 226 227 /* Process the response */ 228 return handle_proto3_response(dev, dinp, din_len); 229 } 230 231 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 232 const void *dout, int dout_len, 233 uint8_t **dinp, int din_len) 234 { 235 struct dm_cros_ec_ops *ops; 236 int ret = -1; 237 238 /* Handle protocol version 3 support */ 239 if (dev->protocol_version == 3) { 240 return send_command_proto3(dev, cmd, cmd_version, 241 dout, dout_len, dinp, din_len); 242 } 243 244 ops = dm_cros_ec_get_ops(dev->dev); 245 ret = ops->command(dev->dev, cmd, cmd_version, 246 (const uint8_t *)dout, dout_len, dinp, din_len); 247 248 return ret; 249 } 250 251 /** 252 * Send a command to the CROS-EC device and return the reply. 253 * 254 * The device's internal input/output buffers are used. 255 * 256 * @param dev CROS-EC device 257 * @param cmd Command to send (EC_CMD_...) 258 * @param cmd_version Version of command to send (EC_VER_...) 259 * @param dout Output data (may be NULL If dout_len=0) 260 * @param dout_len Size of output data in bytes 261 * @param dinp Response data (may be NULL If din_len=0). 262 * If not NULL, it will be updated to point to the data 263 * and will always be double word aligned (64-bits) 264 * @param din_len Maximum size of response in bytes 265 * @return number of bytes in response, or -ve on error 266 */ 267 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd, 268 int cmd_version, const void *dout, int dout_len, uint8_t **dinp, 269 int din_len) 270 { 271 uint8_t *din = NULL; 272 int len; 273 274 len = send_command(dev, cmd, cmd_version, dout, dout_len, 275 &din, din_len); 276 277 /* If the command doesn't complete, wait a while */ 278 if (len == -EC_RES_IN_PROGRESS) { 279 struct ec_response_get_comms_status *resp = NULL; 280 ulong start; 281 282 /* Wait for command to complete */ 283 start = get_timer(0); 284 do { 285 int ret; 286 287 mdelay(50); /* Insert some reasonable delay */ 288 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0, 289 NULL, 0, 290 (uint8_t **)&resp, sizeof(*resp)); 291 if (ret < 0) 292 return ret; 293 294 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { 295 debug("%s: Command %#02x timeout\n", 296 __func__, cmd); 297 return -EC_RES_TIMEOUT; 298 } 299 } while (resp->flags & EC_COMMS_STATUS_PROCESSING); 300 301 /* OK it completed, so read the status response */ 302 /* not sure why it was 0 for the last argument */ 303 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0, 304 NULL, 0, &din, din_len); 305 } 306 307 debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, 308 dinp ? *dinp : NULL); 309 if (dinp) { 310 /* If we have any data to return, it must be 64bit-aligned */ 311 assert(len <= 0 || !((uintptr_t)din & 7)); 312 *dinp = din; 313 } 314 315 return len; 316 } 317 318 /** 319 * Send a command to the CROS-EC device and return the reply. 320 * 321 * The device's internal input/output buffers are used. 322 * 323 * @param dev CROS-EC device 324 * @param cmd Command to send (EC_CMD_...) 325 * @param cmd_version Version of command to send (EC_VER_...) 326 * @param dout Output data (may be NULL If dout_len=0) 327 * @param dout_len Size of output data in bytes 328 * @param din Response data (may be NULL If din_len=0). 329 * It not NULL, it is a place for ec_command() to copy the 330 * data to. 331 * @param din_len Maximum size of response in bytes 332 * @return number of bytes in response, or -ve on error 333 */ 334 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 335 const void *dout, int dout_len, 336 void *din, int din_len) 337 { 338 uint8_t *in_buffer; 339 int len; 340 341 assert((din_len == 0) || din); 342 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, 343 &in_buffer, din_len); 344 if (len > 0) { 345 /* 346 * If we were asked to put it somewhere, do so, otherwise just 347 * disregard the result. 348 */ 349 if (din && in_buffer) { 350 assert(len <= din_len); 351 memmove(din, in_buffer, len); 352 } 353 } 354 return len; 355 } 356 357 int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan) 358 { 359 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 360 361 if (ec_command(cdev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan, 362 sizeof(scan->data)) != sizeof(scan->data)) 363 return -1; 364 365 return 0; 366 } 367 368 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen) 369 { 370 struct ec_response_get_version *r; 371 372 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 373 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 374 return -1; 375 376 if (maxlen > (int)sizeof(r->version_string_ro)) 377 maxlen = sizeof(r->version_string_ro); 378 379 switch (r->current_image) { 380 case EC_IMAGE_RO: 381 memcpy(id, r->version_string_ro, maxlen); 382 break; 383 case EC_IMAGE_RW: 384 memcpy(id, r->version_string_rw, maxlen); 385 break; 386 default: 387 return -1; 388 } 389 390 id[maxlen - 1] = '\0'; 391 return 0; 392 } 393 394 int cros_ec_read_version(struct cros_ec_dev *dev, 395 struct ec_response_get_version **versionp) 396 { 397 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 398 (uint8_t **)versionp, sizeof(**versionp)) 399 != sizeof(**versionp)) 400 return -1; 401 402 return 0; 403 } 404 405 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp) 406 { 407 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, 408 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0) 409 return -1; 410 411 return 0; 412 } 413 414 int cros_ec_read_current_image(struct cros_ec_dev *dev, 415 enum ec_current_image *image) 416 { 417 struct ec_response_get_version *r; 418 419 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 420 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 421 return -1; 422 423 *image = r->current_image; 424 return 0; 425 } 426 427 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev, 428 struct ec_response_vboot_hash *hash) 429 { 430 struct ec_params_vboot_hash p; 431 ulong start; 432 433 start = get_timer(0); 434 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { 435 mdelay(50); /* Insert some reasonable delay */ 436 437 p.cmd = EC_VBOOT_HASH_GET; 438 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 439 hash, sizeof(*hash)) < 0) 440 return -1; 441 442 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { 443 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); 444 return -EC_RES_TIMEOUT; 445 } 446 } 447 return 0; 448 } 449 450 451 int cros_ec_read_hash(struct cros_ec_dev *dev, 452 struct ec_response_vboot_hash *hash) 453 { 454 struct ec_params_vboot_hash p; 455 int rv; 456 457 p.cmd = EC_VBOOT_HASH_GET; 458 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 459 hash, sizeof(*hash)) < 0) 460 return -1; 461 462 /* If the EC is busy calculating the hash, fidget until it's done. */ 463 rv = cros_ec_wait_on_hash_done(dev, hash); 464 if (rv) 465 return rv; 466 467 /* If the hash is valid, we're done. Otherwise, we have to kick it off 468 * again and wait for it to complete. Note that we explicitly assume 469 * that hashing zero bytes is always wrong, even though that would 470 * produce a valid hash value. */ 471 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) 472 return 0; 473 474 debug("%s: No valid hash (status=%d size=%d). Compute one...\n", 475 __func__, hash->status, hash->size); 476 477 p.cmd = EC_VBOOT_HASH_START; 478 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 479 p.nonce_size = 0; 480 p.offset = EC_VBOOT_HASH_OFFSET_RW; 481 482 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 483 hash, sizeof(*hash)) < 0) 484 return -1; 485 486 rv = cros_ec_wait_on_hash_done(dev, hash); 487 if (rv) 488 return rv; 489 490 debug("%s: hash done\n", __func__); 491 492 return 0; 493 } 494 495 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev) 496 { 497 struct ec_params_vboot_hash p; 498 struct ec_response_vboot_hash *hash; 499 500 /* We don't have an explict command for the EC to discard its current 501 * hash value, so we'll just tell it to calculate one that we know is 502 * wrong (we claim that hashing zero bytes is always invalid). 503 */ 504 p.cmd = EC_VBOOT_HASH_RECALC; 505 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 506 p.nonce_size = 0; 507 p.offset = 0; 508 p.size = 0; 509 510 debug("%s:\n", __func__); 511 512 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 513 (uint8_t **)&hash, sizeof(*hash)) < 0) 514 return -1; 515 516 /* No need to wait for it to finish */ 517 return 0; 518 } 519 520 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd, 521 uint8_t flags) 522 { 523 struct ec_params_reboot_ec p; 524 525 p.cmd = cmd; 526 p.flags = flags; 527 528 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) 529 < 0) 530 return -1; 531 532 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { 533 /* 534 * EC reboot will take place immediately so delay to allow it 535 * to complete. Note that some reboot types (EC_REBOOT_COLD) 536 * will reboot the AP as well, in which case we won't actually 537 * get to this point. 538 */ 539 /* 540 * TODO(rspangler@chromium.org): Would be nice if we had a 541 * better way to determine when the reboot is complete. Could 542 * we poll a memory-mapped LPC value? 543 */ 544 udelay(50000); 545 } 546 547 return 0; 548 } 549 550 int cros_ec_interrupt_pending(struct udevice *dev) 551 { 552 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 553 554 /* no interrupt support : always poll */ 555 if (!dm_gpio_is_valid(&cdev->ec_int)) 556 return -ENOENT; 557 558 return dm_gpio_get_value(&cdev->ec_int); 559 } 560 561 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info) 562 { 563 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info, 564 sizeof(*info)) != sizeof(*info)) 565 return -1; 566 567 return 0; 568 } 569 570 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr) 571 { 572 struct ec_response_host_event_mask *resp; 573 574 /* 575 * Use the B copy of the event flags, because the main copy is already 576 * used by ACPI/SMI. 577 */ 578 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, 579 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp)) 580 return -1; 581 582 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) 583 return -1; 584 585 *events_ptr = resp->mask; 586 return 0; 587 } 588 589 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events) 590 { 591 struct ec_params_host_event_mask params; 592 593 params.mask = events; 594 595 /* 596 * Use the B copy of the event flags, so it affects the data returned 597 * by cros_ec_get_host_events(). 598 */ 599 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, 600 ¶ms, sizeof(params), NULL, 0) < 0) 601 return -1; 602 603 return 0; 604 } 605 606 int cros_ec_flash_protect(struct cros_ec_dev *dev, 607 uint32_t set_mask, uint32_t set_flags, 608 struct ec_response_flash_protect *resp) 609 { 610 struct ec_params_flash_protect params; 611 612 params.mask = set_mask; 613 params.flags = set_flags; 614 615 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, 616 ¶ms, sizeof(params), 617 resp, sizeof(*resp)) != sizeof(*resp)) 618 return -1; 619 620 return 0; 621 } 622 623 static int cros_ec_check_version(struct cros_ec_dev *dev) 624 { 625 struct ec_params_hello req; 626 struct ec_response_hello *resp; 627 628 struct dm_cros_ec_ops *ops; 629 int ret; 630 631 ops = dm_cros_ec_get_ops(dev->dev); 632 if (ops->check_version) { 633 ret = ops->check_version(dev->dev); 634 if (ret) 635 return ret; 636 } 637 638 /* 639 * TODO(sjg@chromium.org). 640 * There is a strange oddity here with the EC. We could just ignore 641 * the response, i.e. pass the last two parameters as NULL and 0. 642 * In this case we won't read back very many bytes from the EC. 643 * On the I2C bus the EC gets upset about this and will try to send 644 * the bytes anyway. This means that we will have to wait for that 645 * to complete before continuing with a new EC command. 646 * 647 * This problem is probably unique to the I2C bus. 648 * 649 * So for now, just read all the data anyway. 650 */ 651 652 /* Try sending a version 3 packet */ 653 dev->protocol_version = 3; 654 req.in_data = 0; 655 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 656 (uint8_t **)&resp, sizeof(*resp)) > 0) { 657 return 0; 658 } 659 660 /* Try sending a version 2 packet */ 661 dev->protocol_version = 2; 662 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 663 (uint8_t **)&resp, sizeof(*resp)) > 0) { 664 return 0; 665 } 666 667 /* 668 * Fail if we're still here, since the EC doesn't understand any 669 * protcol version we speak. Version 1 interface without command 670 * version is no longer supported, and we don't know about any new 671 * protocol versions. 672 */ 673 dev->protocol_version = 0; 674 printf("%s: ERROR: old EC interface not supported\n", __func__); 675 return -1; 676 } 677 678 int cros_ec_test(struct cros_ec_dev *dev) 679 { 680 struct ec_params_hello req; 681 struct ec_response_hello *resp; 682 683 req.in_data = 0x12345678; 684 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 685 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { 686 printf("ec_command_inptr() returned error\n"); 687 return -1; 688 } 689 if (resp->out_data != req.in_data + 0x01020304) { 690 printf("Received invalid handshake %x\n", resp->out_data); 691 return -1; 692 } 693 694 return 0; 695 } 696 697 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region, 698 uint32_t *offset, uint32_t *size) 699 { 700 struct ec_params_flash_region_info p; 701 struct ec_response_flash_region_info *r; 702 int ret; 703 704 p.region = region; 705 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, 706 EC_VER_FLASH_REGION_INFO, 707 &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); 708 if (ret != sizeof(*r)) 709 return -1; 710 711 if (offset) 712 *offset = r->offset; 713 if (size) 714 *size = r->size; 715 716 return 0; 717 } 718 719 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size) 720 { 721 struct ec_params_flash_erase p; 722 723 p.offset = offset; 724 p.size = size; 725 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), 726 NULL, 0); 727 } 728 729 /** 730 * Write a single block to the flash 731 * 732 * Write a block of data to the EC flash. The size must not exceed the flash 733 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 734 * 735 * The offset starts at 0. You can obtain the region information from 736 * cros_ec_flash_offset() to find out where to write for a particular region. 737 * 738 * Attempting to write to the region where the EC is currently running from 739 * will result in an error. 740 * 741 * @param dev CROS-EC device 742 * @param data Pointer to data buffer to write 743 * @param offset Offset within flash to write to. 744 * @param size Number of bytes to write 745 * @return 0 if ok, -1 on error 746 */ 747 static int cros_ec_flash_write_block(struct cros_ec_dev *dev, 748 const uint8_t *data, uint32_t offset, uint32_t size) 749 { 750 struct ec_params_flash_write *p; 751 int ret; 752 753 p = malloc(sizeof(*p) + size); 754 if (!p) 755 return -ENOMEM; 756 757 p->offset = offset; 758 p->size = size; 759 assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE); 760 memcpy(p + 1, data, p->size); 761 762 ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, 763 p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1; 764 765 free(p); 766 767 return ret; 768 } 769 770 /** 771 * Return optimal flash write burst size 772 */ 773 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev) 774 { 775 return EC_FLASH_WRITE_VER0_SIZE; 776 } 777 778 /** 779 * Check if a block of data is erased (all 0xff) 780 * 781 * This function is useful when dealing with flash, for checking whether a 782 * data block is erased and thus does not need to be programmed. 783 * 784 * @param data Pointer to data to check (must be word-aligned) 785 * @param size Number of bytes to check (must be word-aligned) 786 * @return 0 if erased, non-zero if any word is not erased 787 */ 788 static int cros_ec_data_is_erased(const uint32_t *data, int size) 789 { 790 assert(!(size & 3)); 791 size /= sizeof(uint32_t); 792 for (; size > 0; size -= 4, data++) 793 if (*data != -1U) 794 return 0; 795 796 return 1; 797 } 798 799 /** 800 * Read back flash parameters 801 * 802 * This function reads back parameters of the flash as reported by the EC 803 * 804 * @param dev Pointer to device 805 * @param info Pointer to output flash info struct 806 */ 807 int cros_ec_read_flashinfo(struct cros_ec_dev *dev, 808 struct ec_response_flash_info *info) 809 { 810 int ret; 811 812 ret = ec_command(dev, EC_CMD_FLASH_INFO, 0, 813 NULL, 0, info, sizeof(*info)); 814 if (ret < 0) 815 return ret; 816 817 return ret < sizeof(*info) ? -1 : 0; 818 } 819 820 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data, 821 uint32_t offset, uint32_t size) 822 { 823 uint32_t burst = cros_ec_flash_write_burst_size(dev); 824 uint32_t end, off; 825 int ret; 826 827 /* 828 * TODO: round up to the nearest multiple of write size. Can get away 829 * without that on link right now because its write size is 4 bytes. 830 */ 831 end = offset + size; 832 for (off = offset; off < end; off += burst, data += burst) { 833 uint32_t todo; 834 835 /* If the data is empty, there is no point in programming it */ 836 todo = min(end - off, burst); 837 if (dev->optimise_flash_write && 838 cros_ec_data_is_erased((uint32_t *)data, todo)) 839 continue; 840 841 ret = cros_ec_flash_write_block(dev, data, off, todo); 842 if (ret) 843 return ret; 844 } 845 846 return 0; 847 } 848 849 /** 850 * Read a single block from the flash 851 * 852 * Read a block of data from the EC flash. The size must not exceed the flash 853 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 854 * 855 * The offset starts at 0. You can obtain the region information from 856 * cros_ec_flash_offset() to find out where to read for a particular region. 857 * 858 * @param dev CROS-EC device 859 * @param data Pointer to data buffer to read into 860 * @param offset Offset within flash to read from 861 * @param size Number of bytes to read 862 * @return 0 if ok, -1 on error 863 */ 864 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data, 865 uint32_t offset, uint32_t size) 866 { 867 struct ec_params_flash_read p; 868 869 p.offset = offset; 870 p.size = size; 871 872 return ec_command(dev, EC_CMD_FLASH_READ, 0, 873 &p, sizeof(p), data, size) >= 0 ? 0 : -1; 874 } 875 876 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset, 877 uint32_t size) 878 { 879 uint32_t burst = cros_ec_flash_write_burst_size(dev); 880 uint32_t end, off; 881 int ret; 882 883 end = offset + size; 884 for (off = offset; off < end; off += burst, data += burst) { 885 ret = cros_ec_flash_read_block(dev, data, off, 886 min(end - off, burst)); 887 if (ret) 888 return ret; 889 } 890 891 return 0; 892 } 893 894 int cros_ec_flash_update_rw(struct cros_ec_dev *dev, 895 const uint8_t *image, int image_size) 896 { 897 uint32_t rw_offset, rw_size; 898 int ret; 899 900 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size)) 901 return -1; 902 if (image_size > (int)rw_size) 903 return -1; 904 905 /* Invalidate the existing hash, just in case the AP reboots 906 * unexpectedly during the update. If that happened, the EC RW firmware 907 * would be invalid, but the EC would still have the original hash. 908 */ 909 ret = cros_ec_invalidate_hash(dev); 910 if (ret) 911 return ret; 912 913 /* 914 * Erase the entire RW section, so that the EC doesn't see any garbage 915 * past the new image if it's smaller than the current image. 916 * 917 * TODO: could optimize this to erase just the current image, since 918 * presumably everything past that is 0xff's. But would still need to 919 * round up to the nearest multiple of erase size. 920 */ 921 ret = cros_ec_flash_erase(dev, rw_offset, rw_size); 922 if (ret) 923 return ret; 924 925 /* Write the image */ 926 ret = cros_ec_flash_write(dev, image, rw_offset, image_size); 927 if (ret) 928 return ret; 929 930 return 0; 931 } 932 933 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block) 934 { 935 struct ec_params_vbnvcontext p; 936 int len; 937 938 p.op = EC_VBNV_CONTEXT_OP_READ; 939 940 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 941 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE); 942 if (len < EC_VBNV_BLOCK_SIZE) 943 return -1; 944 945 return 0; 946 } 947 948 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block) 949 { 950 struct ec_params_vbnvcontext p; 951 int len; 952 953 p.op = EC_VBNV_CONTEXT_OP_WRITE; 954 memcpy(p.block, block, sizeof(p.block)); 955 956 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 957 &p, sizeof(p), NULL, 0); 958 if (len < 0) 959 return -1; 960 961 return 0; 962 } 963 964 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state) 965 { 966 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 967 struct ec_params_ldo_set params; 968 969 params.index = index; 970 params.state = state; 971 972 if (ec_command_inptr(cdev, EC_CMD_LDO_SET, 0, ¶ms, sizeof(params), 973 NULL, 0)) 974 return -1; 975 976 return 0; 977 } 978 979 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state) 980 { 981 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 982 struct ec_params_ldo_get params; 983 struct ec_response_ldo_get *resp; 984 985 params.index = index; 986 987 if (ec_command_inptr(cdev, EC_CMD_LDO_GET, 0, ¶ms, sizeof(params), 988 (uint8_t **)&resp, sizeof(*resp)) != 989 sizeof(*resp)) 990 return -1; 991 992 *state = resp->state; 993 994 return 0; 995 } 996 997 int cros_ec_register(struct udevice *dev) 998 { 999 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 1000 const void *blob = gd->fdt_blob; 1001 int node = dev_of_offset(dev); 1002 char id[MSG_BYTES]; 1003 1004 cdev->dev = dev; 1005 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int, 1006 GPIOD_IS_IN); 1007 cdev->optimise_flash_write = fdtdec_get_bool(blob, node, 1008 "optimise-flash-write"); 1009 1010 if (cros_ec_check_version(cdev)) { 1011 debug("%s: Could not detect CROS-EC version\n", __func__); 1012 return -CROS_EC_ERR_CHECK_VERSION; 1013 } 1014 1015 if (cros_ec_read_id(cdev, id, sizeof(id))) { 1016 debug("%s: Could not read KBC ID\n", __func__); 1017 return -CROS_EC_ERR_READ_ID; 1018 } 1019 1020 /* Remember this device for use by the cros_ec command */ 1021 debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n", 1022 cdev->protocol_version, id); 1023 1024 return 0; 1025 } 1026 1027 int cros_ec_decode_ec_flash(const void *blob, int node, 1028 struct fdt_cros_ec *config) 1029 { 1030 int flash_node; 1031 1032 flash_node = fdt_subnode_offset(blob, node, "flash"); 1033 if (flash_node < 0) { 1034 debug("Failed to find flash node\n"); 1035 return -1; 1036 } 1037 1038 if (fdtdec_read_fmap_entry(blob, flash_node, "flash", 1039 &config->flash)) { 1040 debug("Failed to decode flash node in chrome-ec'\n"); 1041 return -1; 1042 } 1043 1044 config->flash_erase_value = fdtdec_get_int(blob, flash_node, 1045 "erase-value", -1); 1046 for (node = fdt_first_subnode(blob, flash_node); node >= 0; 1047 node = fdt_next_subnode(blob, node)) { 1048 const char *name = fdt_get_name(blob, node, NULL); 1049 enum ec_flash_region region; 1050 1051 if (0 == strcmp(name, "ro")) { 1052 region = EC_FLASH_REGION_RO; 1053 } else if (0 == strcmp(name, "rw")) { 1054 region = EC_FLASH_REGION_RW; 1055 } else if (0 == strcmp(name, "wp-ro")) { 1056 region = EC_FLASH_REGION_WP_RO; 1057 } else { 1058 debug("Unknown EC flash region name '%s'\n", name); 1059 return -1; 1060 } 1061 1062 if (fdtdec_read_fmap_entry(blob, node, "reg", 1063 &config->region[region])) { 1064 debug("Failed to decode flash region in chrome-ec'\n"); 1065 return -1; 1066 } 1067 } 1068 1069 return 0; 1070 } 1071 1072 int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in, 1073 int nmsgs) 1074 { 1075 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 1076 union { 1077 struct ec_params_i2c_passthru p; 1078 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1079 } params; 1080 union { 1081 struct ec_response_i2c_passthru r; 1082 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1083 } response; 1084 struct ec_params_i2c_passthru *p = ¶ms.p; 1085 struct ec_response_i2c_passthru *r = &response.r; 1086 struct ec_params_i2c_passthru_msg *msg; 1087 uint8_t *pdata, *read_ptr = NULL; 1088 int read_len; 1089 int size; 1090 int rv; 1091 int i; 1092 1093 p->port = port; 1094 1095 p->num_msgs = nmsgs; 1096 size = sizeof(*p) + p->num_msgs * sizeof(*msg); 1097 1098 /* Create a message to write the register address and optional data */ 1099 pdata = (uint8_t *)p + size; 1100 1101 read_len = 0; 1102 for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) { 1103 bool is_read = in->flags & I2C_M_RD; 1104 1105 msg->addr_flags = in->addr; 1106 msg->len = in->len; 1107 if (is_read) { 1108 msg->addr_flags |= EC_I2C_FLAG_READ; 1109 read_len += in->len; 1110 read_ptr = in->buf; 1111 if (sizeof(*r) + read_len > sizeof(response)) { 1112 puts("Read length too big for buffer\n"); 1113 return -1; 1114 } 1115 } else { 1116 if (pdata - (uint8_t *)p + in->len > sizeof(params)) { 1117 puts("Params too large for buffer\n"); 1118 return -1; 1119 } 1120 memcpy(pdata, in->buf, in->len); 1121 pdata += in->len; 1122 } 1123 } 1124 1125 rv = ec_command(cdev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p, 1126 r, sizeof(*r) + read_len); 1127 if (rv < 0) 1128 return rv; 1129 1130 /* Parse response */ 1131 if (r->i2c_status & EC_I2C_STATUS_ERROR) { 1132 printf("Transfer failed with status=0x%x\n", r->i2c_status); 1133 return -1; 1134 } 1135 1136 if (rv < sizeof(*r) + read_len) { 1137 puts("Truncated read response\n"); 1138 return -1; 1139 } 1140 1141 /* We only support a single read message for each transfer */ 1142 if (read_len) 1143 memcpy(read_ptr, r->data, read_len); 1144 1145 return 0; 1146 } 1147 1148 UCLASS_DRIVER(cros_ec) = { 1149 .id = UCLASS_CROS_EC, 1150 .name = "cros_ec", 1151 .per_device_auto_alloc_size = sizeof(struct cros_ec_dev), 1152 .post_bind = dm_scan_fdt_dev, 1153 }; 1154