xref: /openbmc/u-boot/drivers/misc/cros_ec.c (revision 0c331ebc)
1 /*
2  * Chromium OS cros_ec driver
3  *
4  * Copyright (c) 2012 The Chromium OS Authors.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 /*
10  * This is the interface to the Chrome OS EC. It provides keyboard functions,
11  * power control and battery management. Quite a few other functions are
12  * provided to enable the EC software to be updated, talk to the EC's I2C bus
13  * and store a small amount of data in a memory which persists while the EC
14  * is not reset.
15  */
16 
17 #include <common.h>
18 #include <command.h>
19 #include <dm.h>
20 #include <i2c.h>
21 #include <cros_ec.h>
22 #include <fdtdec.h>
23 #include <malloc.h>
24 #include <spi.h>
25 #include <asm/errno.h>
26 #include <asm/io.h>
27 #include <asm-generic/gpio.h>
28 #include <dm/device-internal.h>
29 #include <dm/uclass-internal.h>
30 
31 #ifdef DEBUG_TRACE
32 #define debug_trace(fmt, b...)	debug(fmt, #b)
33 #else
34 #define debug_trace(fmt, b...)
35 #endif
36 
37 enum {
38 	/* Timeout waiting for a flash erase command to complete */
39 	CROS_EC_CMD_TIMEOUT_MS	= 5000,
40 	/* Timeout waiting for a synchronous hash to be recomputed */
41 	CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
42 };
43 
44 #ifndef CONFIG_DM_CROS_EC
45 static struct cros_ec_dev static_dev, *last_dev;
46 #endif
47 
48 DECLARE_GLOBAL_DATA_PTR;
49 
50 /* Note: depends on enum ec_current_image */
51 static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"};
52 
53 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
54 {
55 #ifdef DEBUG
56 	int i;
57 
58 	printf("%s: ", name);
59 	if (cmd != -1)
60 		printf("cmd=%#x: ", cmd);
61 	for (i = 0; i < len; i++)
62 		printf("%02x ", data[i]);
63 	printf("\n");
64 #endif
65 }
66 
67 /*
68  * Calculate a simple 8-bit checksum of a data block
69  *
70  * @param data	Data block to checksum
71  * @param size	Size of data block in bytes
72  * @return checksum value (0 to 255)
73  */
74 int cros_ec_calc_checksum(const uint8_t *data, int size)
75 {
76 	int csum, i;
77 
78 	for (i = csum = 0; i < size; i++)
79 		csum += data[i];
80 	return csum & 0xff;
81 }
82 
83 /**
84  * Create a request packet for protocol version 3.
85  *
86  * The packet is stored in the device's internal output buffer.
87  *
88  * @param dev		CROS-EC device
89  * @param cmd		Command to send (EC_CMD_...)
90  * @param cmd_version	Version of command to send (EC_VER_...)
91  * @param dout          Output data (may be NULL If dout_len=0)
92  * @param dout_len      Size of output data in bytes
93  * @return packet size in bytes, or <0 if error.
94  */
95 static int create_proto3_request(struct cros_ec_dev *dev,
96 				 int cmd, int cmd_version,
97 				 const void *dout, int dout_len)
98 {
99 	struct ec_host_request *rq = (struct ec_host_request *)dev->dout;
100 	int out_bytes = dout_len + sizeof(*rq);
101 
102 	/* Fail if output size is too big */
103 	if (out_bytes > (int)sizeof(dev->dout)) {
104 		debug("%s: Cannot send %d bytes\n", __func__, dout_len);
105 		return -EC_RES_REQUEST_TRUNCATED;
106 	}
107 
108 	/* Fill in request packet */
109 	rq->struct_version = EC_HOST_REQUEST_VERSION;
110 	rq->checksum = 0;
111 	rq->command = cmd;
112 	rq->command_version = cmd_version;
113 	rq->reserved = 0;
114 	rq->data_len = dout_len;
115 
116 	/* Copy data after header */
117 	memcpy(rq + 1, dout, dout_len);
118 
119 	/* Write checksum field so the entire packet sums to 0 */
120 	rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes));
121 
122 	cros_ec_dump_data("out", cmd, dev->dout, out_bytes);
123 
124 	/* Return size of request packet */
125 	return out_bytes;
126 }
127 
128 /**
129  * Prepare the device to receive a protocol version 3 response.
130  *
131  * @param dev		CROS-EC device
132  * @param din_len       Maximum size of response in bytes
133  * @return maximum expected number of bytes in response, or <0 if error.
134  */
135 static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len)
136 {
137 	int in_bytes = din_len + sizeof(struct ec_host_response);
138 
139 	/* Fail if input size is too big */
140 	if (in_bytes > (int)sizeof(dev->din)) {
141 		debug("%s: Cannot receive %d bytes\n", __func__, din_len);
142 		return -EC_RES_RESPONSE_TOO_BIG;
143 	}
144 
145 	/* Return expected size of response packet */
146 	return in_bytes;
147 }
148 
149 /**
150  * Handle a protocol version 3 response packet.
151  *
152  * The packet must already be stored in the device's internal input buffer.
153  *
154  * @param dev		CROS-EC device
155  * @param dinp          Returns pointer to response data
156  * @param din_len       Maximum size of response in bytes
157  * @return number of bytes of response data, or <0 if error
158  */
159 static int handle_proto3_response(struct cros_ec_dev *dev,
160 				  uint8_t **dinp, int din_len)
161 {
162 	struct ec_host_response *rs = (struct ec_host_response *)dev->din;
163 	int in_bytes;
164 	int csum;
165 
166 	cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
167 
168 	/* Check input data */
169 	if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
170 		debug("%s: EC response version mismatch\n", __func__);
171 		return -EC_RES_INVALID_RESPONSE;
172 	}
173 
174 	if (rs->reserved) {
175 		debug("%s: EC response reserved != 0\n", __func__);
176 		return -EC_RES_INVALID_RESPONSE;
177 	}
178 
179 	if (rs->data_len > din_len) {
180 		debug("%s: EC returned too much data\n", __func__);
181 		return -EC_RES_RESPONSE_TOO_BIG;
182 	}
183 
184 	cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
185 
186 	/* Update in_bytes to actual data size */
187 	in_bytes = sizeof(*rs) + rs->data_len;
188 
189 	/* Verify checksum */
190 	csum = cros_ec_calc_checksum(dev->din, in_bytes);
191 	if (csum) {
192 		debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
193 		      csum);
194 		return -EC_RES_INVALID_CHECKSUM;
195 	}
196 
197 	/* Return error result, if any */
198 	if (rs->result)
199 		return -(int)rs->result;
200 
201 	/* If we're still here, set response data pointer and return length */
202 	*dinp = (uint8_t *)(rs + 1);
203 
204 	return rs->data_len;
205 }
206 
207 static int send_command_proto3(struct cros_ec_dev *dev,
208 			       int cmd, int cmd_version,
209 			       const void *dout, int dout_len,
210 			       uint8_t **dinp, int din_len)
211 {
212 #ifdef CONFIG_DM_CROS_EC
213 	struct dm_cros_ec_ops *ops;
214 #endif
215 	int out_bytes, in_bytes;
216 	int rv;
217 
218 	/* Create request packet */
219 	out_bytes = create_proto3_request(dev, cmd, cmd_version,
220 					  dout, dout_len);
221 	if (out_bytes < 0)
222 		return out_bytes;
223 
224 	/* Prepare response buffer */
225 	in_bytes = prepare_proto3_response_buffer(dev, din_len);
226 	if (in_bytes < 0)
227 		return in_bytes;
228 
229 #ifdef CONFIG_DM_CROS_EC
230 	ops = dm_cros_ec_get_ops(dev->dev);
231 	rv = ops->packet(dev->dev, out_bytes, in_bytes);
232 #else
233 	switch (dev->interface) {
234 #ifdef CONFIG_CROS_EC_SPI
235 	case CROS_EC_IF_SPI:
236 		rv = cros_ec_spi_packet(dev, out_bytes, in_bytes);
237 		break;
238 #endif
239 #ifdef CONFIG_CROS_EC_SANDBOX
240 	case CROS_EC_IF_SANDBOX:
241 		rv = cros_ec_sandbox_packet(dev, out_bytes, in_bytes);
242 		break;
243 #endif
244 	case CROS_EC_IF_NONE:
245 	/* TODO: support protocol 3 for LPC, I2C; for now fall through */
246 	default:
247 		debug("%s: Unsupported interface\n", __func__);
248 		rv = -1;
249 	}
250 #endif
251 	if (rv < 0)
252 		return rv;
253 
254 	/* Process the response */
255 	return handle_proto3_response(dev, dinp, din_len);
256 }
257 
258 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
259 			const void *dout, int dout_len,
260 			uint8_t **dinp, int din_len)
261 {
262 #ifdef CONFIG_DM_CROS_EC
263 	struct dm_cros_ec_ops *ops;
264 #endif
265 	int ret = -1;
266 
267 	/* Handle protocol version 3 support */
268 	if (dev->protocol_version == 3) {
269 		return send_command_proto3(dev, cmd, cmd_version,
270 					   dout, dout_len, dinp, din_len);
271 	}
272 
273 #ifdef CONFIG_DM_CROS_EC
274 	ops = dm_cros_ec_get_ops(dev->dev);
275 	ret = ops->command(dev->dev, cmd, cmd_version,
276 			   (const uint8_t *)dout, dout_len, dinp, din_len);
277 #else
278 	switch (dev->interface) {
279 #ifdef CONFIG_CROS_EC_SPI
280 	case CROS_EC_IF_SPI:
281 		ret = cros_ec_spi_command(dev, cmd, cmd_version,
282 					(const uint8_t *)dout, dout_len,
283 					dinp, din_len);
284 		break;
285 #endif
286 #ifdef CONFIG_CROS_EC_I2C
287 	case CROS_EC_IF_I2C:
288 		ret = cros_ec_i2c_command(dev, cmd, cmd_version,
289 					(const uint8_t *)dout, dout_len,
290 					dinp, din_len);
291 		break;
292 #endif
293 #ifdef CONFIG_CROS_EC_LPC
294 	case CROS_EC_IF_LPC:
295 		ret = cros_ec_lpc_command(dev, cmd, cmd_version,
296 					(const uint8_t *)dout, dout_len,
297 					dinp, din_len);
298 		break;
299 #endif
300 	case CROS_EC_IF_NONE:
301 	default:
302 		ret = -1;
303 	}
304 #endif
305 
306 	return ret;
307 }
308 
309 /**
310  * Send a command to the CROS-EC device and return the reply.
311  *
312  * The device's internal input/output buffers are used.
313  *
314  * @param dev		CROS-EC device
315  * @param cmd		Command to send (EC_CMD_...)
316  * @param cmd_version	Version of command to send (EC_VER_...)
317  * @param dout          Output data (may be NULL If dout_len=0)
318  * @param dout_len      Size of output data in bytes
319  * @param dinp          Response data (may be NULL If din_len=0).
320  *			If not NULL, it will be updated to point to the data
321  *			and will always be double word aligned (64-bits)
322  * @param din_len       Maximum size of response in bytes
323  * @return number of bytes in response, or -1 on error
324  */
325 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
326 		int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
327 		int din_len)
328 {
329 	uint8_t *din = NULL;
330 	int len;
331 
332 	len = send_command(dev, cmd, cmd_version, dout, dout_len,
333 				&din, din_len);
334 
335 	/* If the command doesn't complete, wait a while */
336 	if (len == -EC_RES_IN_PROGRESS) {
337 		struct ec_response_get_comms_status *resp = NULL;
338 		ulong start;
339 
340 		/* Wait for command to complete */
341 		start = get_timer(0);
342 		do {
343 			int ret;
344 
345 			mdelay(50);	/* Insert some reasonable delay */
346 			ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
347 					NULL, 0,
348 					(uint8_t **)&resp, sizeof(*resp));
349 			if (ret < 0)
350 				return ret;
351 
352 			if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
353 				debug("%s: Command %#02x timeout\n",
354 				      __func__, cmd);
355 				return -EC_RES_TIMEOUT;
356 			}
357 		} while (resp->flags & EC_COMMS_STATUS_PROCESSING);
358 
359 		/* OK it completed, so read the status response */
360 		/* not sure why it was 0 for the last argument */
361 		len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
362 				NULL, 0, &din, din_len);
363 	}
364 
365 	debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp,
366 	      dinp ? *dinp : NULL);
367 	if (dinp) {
368 		/* If we have any data to return, it must be 64bit-aligned */
369 		assert(len <= 0 || !((uintptr_t)din & 7));
370 		*dinp = din;
371 	}
372 
373 	return len;
374 }
375 
376 /**
377  * Send a command to the CROS-EC device and return the reply.
378  *
379  * The device's internal input/output buffers are used.
380  *
381  * @param dev		CROS-EC device
382  * @param cmd		Command to send (EC_CMD_...)
383  * @param cmd_version	Version of command to send (EC_VER_...)
384  * @param dout          Output data (may be NULL If dout_len=0)
385  * @param dout_len      Size of output data in bytes
386  * @param din           Response data (may be NULL If din_len=0).
387  *			It not NULL, it is a place for ec_command() to copy the
388  *      data to.
389  * @param din_len       Maximum size of response in bytes
390  * @return number of bytes in response, or -1 on error
391  */
392 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
393 		      const void *dout, int dout_len,
394 		      void *din, int din_len)
395 {
396 	uint8_t *in_buffer;
397 	int len;
398 
399 	assert((din_len == 0) || din);
400 	len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
401 			&in_buffer, din_len);
402 	if (len > 0) {
403 		/*
404 		 * If we were asked to put it somewhere, do so, otherwise just
405 		 * disregard the result.
406 		 */
407 		if (din && in_buffer) {
408 			assert(len <= din_len);
409 			memmove(din, in_buffer, len);
410 		}
411 	}
412 	return len;
413 }
414 
415 int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan)
416 {
417 	if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
418 		       sizeof(scan->data)) != sizeof(scan->data))
419 		return -1;
420 
421 	return 0;
422 }
423 
424 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
425 {
426 	struct ec_response_get_version *r;
427 
428 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
429 			(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
430 		return -1;
431 
432 	if (maxlen > (int)sizeof(r->version_string_ro))
433 		maxlen = sizeof(r->version_string_ro);
434 
435 	switch (r->current_image) {
436 	case EC_IMAGE_RO:
437 		memcpy(id, r->version_string_ro, maxlen);
438 		break;
439 	case EC_IMAGE_RW:
440 		memcpy(id, r->version_string_rw, maxlen);
441 		break;
442 	default:
443 		return -1;
444 	}
445 
446 	id[maxlen - 1] = '\0';
447 	return 0;
448 }
449 
450 int cros_ec_read_version(struct cros_ec_dev *dev,
451 		       struct ec_response_get_version **versionp)
452 {
453 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
454 			(uint8_t **)versionp, sizeof(**versionp))
455 			!= sizeof(**versionp))
456 		return -1;
457 
458 	return 0;
459 }
460 
461 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
462 {
463 	if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
464 			(uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
465 		return -1;
466 
467 	return 0;
468 }
469 
470 int cros_ec_read_current_image(struct cros_ec_dev *dev,
471 		enum ec_current_image *image)
472 {
473 	struct ec_response_get_version *r;
474 
475 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
476 			(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
477 		return -1;
478 
479 	*image = r->current_image;
480 	return 0;
481 }
482 
483 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
484 				  struct ec_response_vboot_hash *hash)
485 {
486 	struct ec_params_vboot_hash p;
487 	ulong start;
488 
489 	start = get_timer(0);
490 	while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
491 		mdelay(50);	/* Insert some reasonable delay */
492 
493 		p.cmd = EC_VBOOT_HASH_GET;
494 		if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
495 		       hash, sizeof(*hash)) < 0)
496 			return -1;
497 
498 		if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
499 			debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
500 			return -EC_RES_TIMEOUT;
501 		}
502 	}
503 	return 0;
504 }
505 
506 
507 int cros_ec_read_hash(struct cros_ec_dev *dev,
508 		struct ec_response_vboot_hash *hash)
509 {
510 	struct ec_params_vboot_hash p;
511 	int rv;
512 
513 	p.cmd = EC_VBOOT_HASH_GET;
514 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
515 		       hash, sizeof(*hash)) < 0)
516 		return -1;
517 
518 	/* If the EC is busy calculating the hash, fidget until it's done. */
519 	rv = cros_ec_wait_on_hash_done(dev, hash);
520 	if (rv)
521 		return rv;
522 
523 	/* If the hash is valid, we're done. Otherwise, we have to kick it off
524 	 * again and wait for it to complete. Note that we explicitly assume
525 	 * that hashing zero bytes is always wrong, even though that would
526 	 * produce a valid hash value. */
527 	if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
528 		return 0;
529 
530 	debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
531 	      __func__, hash->status, hash->size);
532 
533 	p.cmd = EC_VBOOT_HASH_START;
534 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
535 	p.nonce_size = 0;
536 	p.offset = EC_VBOOT_HASH_OFFSET_RW;
537 
538 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
539 		       hash, sizeof(*hash)) < 0)
540 		return -1;
541 
542 	rv = cros_ec_wait_on_hash_done(dev, hash);
543 	if (rv)
544 		return rv;
545 
546 	debug("%s: hash done\n", __func__);
547 
548 	return 0;
549 }
550 
551 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
552 {
553 	struct ec_params_vboot_hash p;
554 	struct ec_response_vboot_hash *hash;
555 
556 	/* We don't have an explict command for the EC to discard its current
557 	 * hash value, so we'll just tell it to calculate one that we know is
558 	 * wrong (we claim that hashing zero bytes is always invalid).
559 	 */
560 	p.cmd = EC_VBOOT_HASH_RECALC;
561 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
562 	p.nonce_size = 0;
563 	p.offset = 0;
564 	p.size = 0;
565 
566 	debug("%s:\n", __func__);
567 
568 	if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
569 		       (uint8_t **)&hash, sizeof(*hash)) < 0)
570 		return -1;
571 
572 	/* No need to wait for it to finish */
573 	return 0;
574 }
575 
576 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
577 		uint8_t flags)
578 {
579 	struct ec_params_reboot_ec p;
580 
581 	p.cmd = cmd;
582 	p.flags = flags;
583 
584 	if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
585 			< 0)
586 		return -1;
587 
588 	if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
589 		/*
590 		 * EC reboot will take place immediately so delay to allow it
591 		 * to complete.  Note that some reboot types (EC_REBOOT_COLD)
592 		 * will reboot the AP as well, in which case we won't actually
593 		 * get to this point.
594 		 */
595 		/*
596 		 * TODO(rspangler@chromium.org): Would be nice if we had a
597 		 * better way to determine when the reboot is complete.  Could
598 		 * we poll a memory-mapped LPC value?
599 		 */
600 		udelay(50000);
601 	}
602 
603 	return 0;
604 }
605 
606 int cros_ec_interrupt_pending(struct cros_ec_dev *dev)
607 {
608 	/* no interrupt support : always poll */
609 	if (!fdt_gpio_isvalid(&dev->ec_int))
610 		return -ENOENT;
611 
612 	return !gpio_get_value(dev->ec_int.gpio);
613 }
614 
615 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info)
616 {
617 	if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
618 		       sizeof(*info)) != sizeof(*info))
619 		return -1;
620 
621 	return 0;
622 }
623 
624 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
625 {
626 	struct ec_response_host_event_mask *resp;
627 
628 	/*
629 	 * Use the B copy of the event flags, because the main copy is already
630 	 * used by ACPI/SMI.
631 	 */
632 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
633 		       (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
634 		return -1;
635 
636 	if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
637 		return -1;
638 
639 	*events_ptr = resp->mask;
640 	return 0;
641 }
642 
643 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
644 {
645 	struct ec_params_host_event_mask params;
646 
647 	params.mask = events;
648 
649 	/*
650 	 * Use the B copy of the event flags, so it affects the data returned
651 	 * by cros_ec_get_host_events().
652 	 */
653 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
654 		       &params, sizeof(params), NULL, 0) < 0)
655 		return -1;
656 
657 	return 0;
658 }
659 
660 int cros_ec_flash_protect(struct cros_ec_dev *dev,
661 		       uint32_t set_mask, uint32_t set_flags,
662 		       struct ec_response_flash_protect *resp)
663 {
664 	struct ec_params_flash_protect params;
665 
666 	params.mask = set_mask;
667 	params.flags = set_flags;
668 
669 	if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
670 		       &params, sizeof(params),
671 		       resp, sizeof(*resp)) != sizeof(*resp))
672 		return -1;
673 
674 	return 0;
675 }
676 
677 static int cros_ec_check_version(struct cros_ec_dev *dev)
678 {
679 	struct ec_params_hello req;
680 	struct ec_response_hello *resp;
681 
682 #ifdef CONFIG_CROS_EC_LPC
683 	/* LPC has its own way of doing this */
684 	if (dev->interface == CROS_EC_IF_LPC)
685 		return cros_ec_lpc_check_version(dev);
686 #endif
687 
688 	/*
689 	 * TODO(sjg@chromium.org).
690 	 * There is a strange oddity here with the EC. We could just ignore
691 	 * the response, i.e. pass the last two parameters as NULL and 0.
692 	 * In this case we won't read back very many bytes from the EC.
693 	 * On the I2C bus the EC gets upset about this and will try to send
694 	 * the bytes anyway. This means that we will have to wait for that
695 	 * to complete before continuing with a new EC command.
696 	 *
697 	 * This problem is probably unique to the I2C bus.
698 	 *
699 	 * So for now, just read all the data anyway.
700 	 */
701 
702 	/* Try sending a version 3 packet */
703 	dev->protocol_version = 3;
704 	req.in_data = 0;
705 	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
706 			     (uint8_t **)&resp, sizeof(*resp)) > 0) {
707 		return 0;
708 	}
709 
710 	/* Try sending a version 2 packet */
711 	dev->protocol_version = 2;
712 	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
713 		       (uint8_t **)&resp, sizeof(*resp)) > 0) {
714 		return 0;
715 	}
716 
717 	/*
718 	 * Fail if we're still here, since the EC doesn't understand any
719 	 * protcol version we speak.  Version 1 interface without command
720 	 * version is no longer supported, and we don't know about any new
721 	 * protocol versions.
722 	 */
723 	dev->protocol_version = 0;
724 	printf("%s: ERROR: old EC interface not supported\n", __func__);
725 	return -1;
726 }
727 
728 int cros_ec_test(struct cros_ec_dev *dev)
729 {
730 	struct ec_params_hello req;
731 	struct ec_response_hello *resp;
732 
733 	req.in_data = 0x12345678;
734 	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
735 		       (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
736 		printf("ec_command_inptr() returned error\n");
737 		return -1;
738 	}
739 	if (resp->out_data != req.in_data + 0x01020304) {
740 		printf("Received invalid handshake %x\n", resp->out_data);
741 		return -1;
742 	}
743 
744 	return 0;
745 }
746 
747 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
748 		      uint32_t *offset, uint32_t *size)
749 {
750 	struct ec_params_flash_region_info p;
751 	struct ec_response_flash_region_info *r;
752 	int ret;
753 
754 	p.region = region;
755 	ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
756 			 EC_VER_FLASH_REGION_INFO,
757 			 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
758 	if (ret != sizeof(*r))
759 		return -1;
760 
761 	if (offset)
762 		*offset = r->offset;
763 	if (size)
764 		*size = r->size;
765 
766 	return 0;
767 }
768 
769 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
770 {
771 	struct ec_params_flash_erase p;
772 
773 	p.offset = offset;
774 	p.size = size;
775 	return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
776 			NULL, 0);
777 }
778 
779 /**
780  * Write a single block to the flash
781  *
782  * Write a block of data to the EC flash. The size must not exceed the flash
783  * write block size which you can obtain from cros_ec_flash_write_burst_size().
784  *
785  * The offset starts at 0. You can obtain the region information from
786  * cros_ec_flash_offset() to find out where to write for a particular region.
787  *
788  * Attempting to write to the region where the EC is currently running from
789  * will result in an error.
790  *
791  * @param dev		CROS-EC device
792  * @param data		Pointer to data buffer to write
793  * @param offset	Offset within flash to write to.
794  * @param size		Number of bytes to write
795  * @return 0 if ok, -1 on error
796  */
797 static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
798 		const uint8_t *data, uint32_t offset, uint32_t size)
799 {
800 	struct ec_params_flash_write p;
801 
802 	p.offset = offset;
803 	p.size = size;
804 	assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE);
805 	memcpy(&p + 1, data, p.size);
806 
807 	return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
808 			  &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1;
809 }
810 
811 /**
812  * Return optimal flash write burst size
813  */
814 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
815 {
816 	return EC_FLASH_WRITE_VER0_SIZE;
817 }
818 
819 /**
820  * Check if a block of data is erased (all 0xff)
821  *
822  * This function is useful when dealing with flash, for checking whether a
823  * data block is erased and thus does not need to be programmed.
824  *
825  * @param data		Pointer to data to check (must be word-aligned)
826  * @param size		Number of bytes to check (must be word-aligned)
827  * @return 0 if erased, non-zero if any word is not erased
828  */
829 static int cros_ec_data_is_erased(const uint32_t *data, int size)
830 {
831 	assert(!(size & 3));
832 	size /= sizeof(uint32_t);
833 	for (; size > 0; size -= 4, data++)
834 		if (*data != -1U)
835 			return 0;
836 
837 	return 1;
838 }
839 
840 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
841 		     uint32_t offset, uint32_t size)
842 {
843 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
844 	uint32_t end, off;
845 	int ret;
846 
847 	/*
848 	 * TODO: round up to the nearest multiple of write size.  Can get away
849 	 * without that on link right now because its write size is 4 bytes.
850 	 */
851 	end = offset + size;
852 	for (off = offset; off < end; off += burst, data += burst) {
853 		uint32_t todo;
854 
855 		/* If the data is empty, there is no point in programming it */
856 		todo = min(end - off, burst);
857 		if (dev->optimise_flash_write &&
858 				cros_ec_data_is_erased((uint32_t *)data, todo))
859 			continue;
860 
861 		ret = cros_ec_flash_write_block(dev, data, off, todo);
862 		if (ret)
863 			return ret;
864 	}
865 
866 	return 0;
867 }
868 
869 /**
870  * Read a single block from the flash
871  *
872  * Read a block of data from the EC flash. The size must not exceed the flash
873  * write block size which you can obtain from cros_ec_flash_write_burst_size().
874  *
875  * The offset starts at 0. You can obtain the region information from
876  * cros_ec_flash_offset() to find out where to read for a particular region.
877  *
878  * @param dev		CROS-EC device
879  * @param data		Pointer to data buffer to read into
880  * @param offset	Offset within flash to read from
881  * @param size		Number of bytes to read
882  * @return 0 if ok, -1 on error
883  */
884 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
885 				 uint32_t offset, uint32_t size)
886 {
887 	struct ec_params_flash_read p;
888 
889 	p.offset = offset;
890 	p.size = size;
891 
892 	return ec_command(dev, EC_CMD_FLASH_READ, 0,
893 			  &p, sizeof(p), data, size) >= 0 ? 0 : -1;
894 }
895 
896 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
897 		    uint32_t size)
898 {
899 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
900 	uint32_t end, off;
901 	int ret;
902 
903 	end = offset + size;
904 	for (off = offset; off < end; off += burst, data += burst) {
905 		ret = cros_ec_flash_read_block(dev, data, off,
906 					    min(end - off, burst));
907 		if (ret)
908 			return ret;
909 	}
910 
911 	return 0;
912 }
913 
914 int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
915 			 const uint8_t *image, int image_size)
916 {
917 	uint32_t rw_offset, rw_size;
918 	int ret;
919 
920 	if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
921 		return -1;
922 	if (image_size > (int)rw_size)
923 		return -1;
924 
925 	/* Invalidate the existing hash, just in case the AP reboots
926 	 * unexpectedly during the update. If that happened, the EC RW firmware
927 	 * would be invalid, but the EC would still have the original hash.
928 	 */
929 	ret = cros_ec_invalidate_hash(dev);
930 	if (ret)
931 		return ret;
932 
933 	/*
934 	 * Erase the entire RW section, so that the EC doesn't see any garbage
935 	 * past the new image if it's smaller than the current image.
936 	 *
937 	 * TODO: could optimize this to erase just the current image, since
938 	 * presumably everything past that is 0xff's.  But would still need to
939 	 * round up to the nearest multiple of erase size.
940 	 */
941 	ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
942 	if (ret)
943 		return ret;
944 
945 	/* Write the image */
946 	ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
947 	if (ret)
948 		return ret;
949 
950 	return 0;
951 }
952 
953 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
954 {
955 	struct ec_params_vbnvcontext p;
956 	int len;
957 
958 	p.op = EC_VBNV_CONTEXT_OP_READ;
959 
960 	len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
961 			&p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
962 	if (len < EC_VBNV_BLOCK_SIZE)
963 		return -1;
964 
965 	return 0;
966 }
967 
968 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
969 {
970 	struct ec_params_vbnvcontext p;
971 	int len;
972 
973 	p.op = EC_VBNV_CONTEXT_OP_WRITE;
974 	memcpy(p.block, block, sizeof(p.block));
975 
976 	len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
977 			&p, sizeof(p), NULL, 0);
978 	if (len < 0)
979 		return -1;
980 
981 	return 0;
982 }
983 
984 int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state)
985 {
986 	struct ec_params_ldo_set params;
987 
988 	params.index = index;
989 	params.state = state;
990 
991 	if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0,
992 		       &params, sizeof(params),
993 		       NULL, 0))
994 		return -1;
995 
996 	return 0;
997 }
998 
999 int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state)
1000 {
1001 	struct ec_params_ldo_get params;
1002 	struct ec_response_ldo_get *resp;
1003 
1004 	params.index = index;
1005 
1006 	if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0,
1007 		       &params, sizeof(params),
1008 		       (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1009 		return -1;
1010 
1011 	*state = resp->state;
1012 
1013 	return 0;
1014 }
1015 
1016 #ifndef CONFIG_DM_CROS_EC
1017 /**
1018  * Decode EC interface details from the device tree and allocate a suitable
1019  * device.
1020  *
1021  * @param blob		Device tree blob
1022  * @param node		Node to decode from
1023  * @param devp		Returns a pointer to the new allocated device
1024  * @return 0 if ok, -1 on error
1025  */
1026 static int cros_ec_decode_fdt(const void *blob, int node,
1027 		struct cros_ec_dev **devp)
1028 {
1029 	enum fdt_compat_id compat;
1030 	struct cros_ec_dev *dev;
1031 	int parent;
1032 
1033 	/* See what type of parent we are inside (this is expensive) */
1034 	parent = fdt_parent_offset(blob, node);
1035 	if (parent < 0) {
1036 		debug("%s: Cannot find node parent\n", __func__);
1037 		return -1;
1038 	}
1039 
1040 	dev = &static_dev;
1041 	dev->node = node;
1042 	dev->parent_node = parent;
1043 
1044 	compat = fdtdec_lookup(blob, parent);
1045 	switch (compat) {
1046 #ifdef CONFIG_CROS_EC_SPI
1047 	case COMPAT_SAMSUNG_EXYNOS_SPI:
1048 		dev->interface = CROS_EC_IF_SPI;
1049 		if (cros_ec_spi_decode_fdt(dev, blob))
1050 			return -1;
1051 		break;
1052 #endif
1053 #ifdef CONFIG_CROS_EC_I2C
1054 	case COMPAT_SAMSUNG_S3C2440_I2C:
1055 		dev->interface = CROS_EC_IF_I2C;
1056 		if (cros_ec_i2c_decode_fdt(dev, blob))
1057 			return -1;
1058 		break;
1059 #endif
1060 #ifdef CONFIG_CROS_EC_LPC
1061 	case COMPAT_INTEL_LPC:
1062 		dev->interface = CROS_EC_IF_LPC;
1063 		break;
1064 #endif
1065 #ifdef CONFIG_CROS_EC_SANDBOX
1066 	case COMPAT_SANDBOX_HOST_EMULATION:
1067 		dev->interface = CROS_EC_IF_SANDBOX;
1068 		break;
1069 #endif
1070 	default:
1071 		debug("%s: Unknown compat id %d\n", __func__, compat);
1072 		return -1;
1073 	}
1074 
1075 	fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int);
1076 	dev->optimise_flash_write = fdtdec_get_bool(blob, node,
1077 						    "optimise-flash-write");
1078 	*devp = dev;
1079 
1080 	return 0;
1081 }
1082 #endif
1083 
1084 #ifdef CONFIG_DM_CROS_EC
1085 int cros_ec_register(struct udevice *dev)
1086 {
1087 	struct cros_ec_dev *cdev = dev->uclass_priv;
1088 	const void *blob = gd->fdt_blob;
1089 	int node = dev->of_offset;
1090 	char id[MSG_BYTES];
1091 
1092 	cdev->dev = dev;
1093 	fdtdec_decode_gpio(blob, node, "ec-interrupt", &cdev->ec_int);
1094 	cdev->optimise_flash_write = fdtdec_get_bool(blob, node,
1095 						     "optimise-flash-write");
1096 
1097 	/* we will poll the EC interrupt line */
1098 	fdtdec_setup_gpio(&cdev->ec_int);
1099 	if (fdt_gpio_isvalid(&cdev->ec_int)) {
1100 		gpio_request(cdev->ec_int.gpio, "cros-ec-irq");
1101 		gpio_direction_input(cdev->ec_int.gpio);
1102 	}
1103 
1104 	if (cros_ec_check_version(cdev)) {
1105 		debug("%s: Could not detect CROS-EC version\n", __func__);
1106 		return -CROS_EC_ERR_CHECK_VERSION;
1107 	}
1108 
1109 	if (cros_ec_read_id(cdev, id, sizeof(id))) {
1110 		debug("%s: Could not read KBC ID\n", __func__);
1111 		return -CROS_EC_ERR_READ_ID;
1112 	}
1113 
1114 	/* Remember this device for use by the cros_ec command */
1115 	debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);
1116 
1117 	return 0;
1118 }
1119 #else
1120 int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp)
1121 {
1122 	struct cros_ec_dev *dev;
1123 	char id[MSG_BYTES];
1124 #ifdef CONFIG_DM_CROS_EC
1125 	struct udevice *udev;
1126 	int ret;
1127 
1128 	ret = uclass_find_device(UCLASS_CROS_EC, 0, &udev);
1129 	if (!ret)
1130 		device_remove(udev);
1131 	ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
1132 	if (ret)
1133 		return ret;
1134 	dev = udev->uclass_priv;
1135 	return 0;
1136 #else
1137 	int node = 0;
1138 
1139 	*cros_ecp = NULL;
1140 	do {
1141 		node = fdtdec_next_compatible(blob, node,
1142 					      COMPAT_GOOGLE_CROS_EC);
1143 		if (node < 0) {
1144 			debug("%s: Node not found\n", __func__);
1145 			return 0;
1146 		}
1147 	} while (!fdtdec_get_is_enabled(blob, node));
1148 
1149 	if (cros_ec_decode_fdt(blob, node, &dev)) {
1150 		debug("%s: Failed to decode device.\n", __func__);
1151 		return -CROS_EC_ERR_FDT_DECODE;
1152 	}
1153 
1154 	switch (dev->interface) {
1155 #ifdef CONFIG_CROS_EC_SPI
1156 	case CROS_EC_IF_SPI:
1157 		if (cros_ec_spi_init(dev, blob)) {
1158 			debug("%s: Could not setup SPI interface\n", __func__);
1159 			return -CROS_EC_ERR_DEV_INIT;
1160 		}
1161 		break;
1162 #endif
1163 #ifdef CONFIG_CROS_EC_I2C
1164 	case CROS_EC_IF_I2C:
1165 		if (cros_ec_i2c_init(dev, blob))
1166 			return -CROS_EC_ERR_DEV_INIT;
1167 		break;
1168 #endif
1169 #ifdef CONFIG_CROS_EC_LPC
1170 	case CROS_EC_IF_LPC:
1171 		if (cros_ec_lpc_init(dev, blob))
1172 			return -CROS_EC_ERR_DEV_INIT;
1173 		break;
1174 #endif
1175 #ifdef CONFIG_CROS_EC_SANDBOX
1176 	case CROS_EC_IF_SANDBOX:
1177 		if (cros_ec_sandbox_init(dev, blob))
1178 			return -CROS_EC_ERR_DEV_INIT;
1179 		break;
1180 #endif
1181 	case CROS_EC_IF_NONE:
1182 	default:
1183 		return 0;
1184 	}
1185 #endif
1186 
1187 	/* we will poll the EC interrupt line */
1188 	fdtdec_setup_gpio(&dev->ec_int);
1189 	if (fdt_gpio_isvalid(&dev->ec_int)) {
1190 		gpio_request(dev->ec_int.gpio, "cros-ec-irq");
1191 		gpio_direction_input(dev->ec_int.gpio);
1192 	}
1193 
1194 	if (cros_ec_check_version(dev)) {
1195 		debug("%s: Could not detect CROS-EC version\n", __func__);
1196 		return -CROS_EC_ERR_CHECK_VERSION;
1197 	}
1198 
1199 	if (cros_ec_read_id(dev, id, sizeof(id))) {
1200 		debug("%s: Could not read KBC ID\n", __func__);
1201 		return -CROS_EC_ERR_READ_ID;
1202 	}
1203 
1204 	/* Remember this device for use by the cros_ec command */
1205 	*cros_ecp = dev;
1206 #ifndef CONFIG_DM_CROS_EC
1207 	last_dev = dev;
1208 #endif
1209 	debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);
1210 
1211 	return 0;
1212 }
1213 #endif
1214 
1215 int cros_ec_decode_region(int argc, char * const argv[])
1216 {
1217 	if (argc > 0) {
1218 		if (0 == strcmp(*argv, "rw"))
1219 			return EC_FLASH_REGION_RW;
1220 		else if (0 == strcmp(*argv, "ro"))
1221 			return EC_FLASH_REGION_RO;
1222 
1223 		debug("%s: Invalid region '%s'\n", __func__, *argv);
1224 	} else {
1225 		debug("%s: Missing region parameter\n", __func__);
1226 	}
1227 
1228 	return -1;
1229 }
1230 
1231 int cros_ec_decode_ec_flash(const void *blob, int node,
1232 			    struct fdt_cros_ec *config)
1233 {
1234 	int flash_node;
1235 
1236 	flash_node = fdt_subnode_offset(blob, node, "flash");
1237 	if (flash_node < 0) {
1238 		debug("Failed to find flash node\n");
1239 		return -1;
1240 	}
1241 
1242 	if (fdtdec_read_fmap_entry(blob, flash_node, "flash",
1243 				   &config->flash)) {
1244 		debug("Failed to decode flash node in chrome-ec'\n");
1245 		return -1;
1246 	}
1247 
1248 	config->flash_erase_value = fdtdec_get_int(blob, flash_node,
1249 						    "erase-value", -1);
1250 	for (node = fdt_first_subnode(blob, flash_node); node >= 0;
1251 	     node = fdt_next_subnode(blob, node)) {
1252 		const char *name = fdt_get_name(blob, node, NULL);
1253 		enum ec_flash_region region;
1254 
1255 		if (0 == strcmp(name, "ro")) {
1256 			region = EC_FLASH_REGION_RO;
1257 		} else if (0 == strcmp(name, "rw")) {
1258 			region = EC_FLASH_REGION_RW;
1259 		} else if (0 == strcmp(name, "wp-ro")) {
1260 			region = EC_FLASH_REGION_WP_RO;
1261 		} else {
1262 			debug("Unknown EC flash region name '%s'\n", name);
1263 			return -1;
1264 		}
1265 
1266 		if (fdtdec_read_fmap_entry(blob, node, "reg",
1267 					   &config->region[region])) {
1268 			debug("Failed to decode flash region in chrome-ec'\n");
1269 			return -1;
1270 		}
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 int cros_ec_i2c_xfer(struct cros_ec_dev *dev, uchar chip, uint addr,
1277 		     int alen, uchar *buffer, int len, int is_read)
1278 {
1279 	union {
1280 		struct ec_params_i2c_passthru p;
1281 		uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1282 	} params;
1283 	union {
1284 		struct ec_response_i2c_passthru r;
1285 		uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1286 	} response;
1287 	struct ec_params_i2c_passthru *p = &params.p;
1288 	struct ec_response_i2c_passthru *r = &response.r;
1289 	struct ec_params_i2c_passthru_msg *msg = p->msg;
1290 	uint8_t *pdata;
1291 	int read_len, write_len;
1292 	int size;
1293 	int rv;
1294 
1295 	p->port = 0;
1296 
1297 	if (alen != 1) {
1298 		printf("Unsupported address length %d\n", alen);
1299 		return -1;
1300 	}
1301 	if (is_read) {
1302 		read_len = len;
1303 		write_len = alen;
1304 		p->num_msgs = 2;
1305 	} else {
1306 		read_len = 0;
1307 		write_len = alen + len;
1308 		p->num_msgs = 1;
1309 	}
1310 
1311 	size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1312 	if (size + write_len > sizeof(params)) {
1313 		puts("Params too large for buffer\n");
1314 		return -1;
1315 	}
1316 	if (sizeof(*r) + read_len > sizeof(response)) {
1317 		puts("Read length too big for buffer\n");
1318 		return -1;
1319 	}
1320 
1321 	/* Create a message to write the register address and optional data */
1322 	pdata = (uint8_t *)p + size;
1323 	msg->addr_flags = chip;
1324 	msg->len = write_len;
1325 	pdata[0] = addr;
1326 	if (!is_read)
1327 		memcpy(pdata + 1, buffer, len);
1328 	msg++;
1329 
1330 	if (read_len) {
1331 		msg->addr_flags = chip | EC_I2C_FLAG_READ;
1332 		msg->len = read_len;
1333 	}
1334 
1335 	rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, size + write_len,
1336 			r, sizeof(*r) + read_len);
1337 	if (rv < 0)
1338 		return rv;
1339 
1340 	/* Parse response */
1341 	if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1342 		printf("Transfer failed with status=0x%x\n", r->i2c_status);
1343 		return -1;
1344 	}
1345 
1346 	if (rv < sizeof(*r) + read_len) {
1347 		puts("Truncated read response\n");
1348 		return -1;
1349 	}
1350 
1351 	if (read_len)
1352 		memcpy(buffer, r->data, read_len);
1353 
1354 	return 0;
1355 }
1356 
1357 #ifdef CONFIG_CMD_CROS_EC
1358 
1359 /**
1360  * Perform a flash read or write command
1361  *
1362  * @param dev		CROS-EC device to read/write
1363  * @param is_write	1 do to a write, 0 to do a read
1364  * @param argc		Number of arguments
1365  * @param argv		Arguments (2 is region, 3 is address)
1366  * @return 0 for ok, 1 for a usage error or -ve for ec command error
1367  *	(negative EC_RES_...)
1368  */
1369 static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc,
1370 			 char * const argv[])
1371 {
1372 	uint32_t offset, size = -1U, region_size;
1373 	unsigned long addr;
1374 	char *endp;
1375 	int region;
1376 	int ret;
1377 
1378 	region = cros_ec_decode_region(argc - 2, argv + 2);
1379 	if (region == -1)
1380 		return 1;
1381 	if (argc < 4)
1382 		return 1;
1383 	addr = simple_strtoul(argv[3], &endp, 16);
1384 	if (*argv[3] == 0 || *endp != 0)
1385 		return 1;
1386 	if (argc > 4) {
1387 		size = simple_strtoul(argv[4], &endp, 16);
1388 		if (*argv[4] == 0 || *endp != 0)
1389 			return 1;
1390 	}
1391 
1392 	ret = cros_ec_flash_offset(dev, region, &offset, &region_size);
1393 	if (ret) {
1394 		debug("%s: Could not read region info\n", __func__);
1395 		return ret;
1396 	}
1397 	if (size == -1U)
1398 		size = region_size;
1399 
1400 	ret = is_write ?
1401 		cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) :
1402 		cros_ec_flash_read(dev, (uint8_t *)addr, offset, size);
1403 	if (ret) {
1404 		debug("%s: Could not %s region\n", __func__,
1405 		      is_write ? "write" : "read");
1406 		return ret;
1407 	}
1408 
1409 	return 0;
1410 }
1411 
1412 /**
1413  * get_alen() - Small parser helper function to get address length
1414  *
1415  * Returns the address length.
1416  */
1417 static uint get_alen(char *arg)
1418 {
1419 	int	j;
1420 	int	alen;
1421 
1422 	alen = 1;
1423 	for (j = 0; j < 8; j++) {
1424 		if (arg[j] == '.') {
1425 			alen = arg[j+1] - '0';
1426 			break;
1427 		} else if (arg[j] == '\0') {
1428 			break;
1429 		}
1430 	}
1431 	return alen;
1432 }
1433 
1434 #define DISP_LINE_LEN	16
1435 
1436 /*
1437  * TODO(sjg@chromium.org): This code copied almost verbatim from cmd_i2c.c
1438  * so we can remove it later.
1439  */
1440 static int cros_ec_i2c_md(struct cros_ec_dev *dev, int flag, int argc,
1441 			  char * const argv[])
1442 {
1443 	u_char	chip;
1444 	uint	addr, alen, length = 0x10;
1445 	int	j, nbytes, linebytes;
1446 
1447 	if (argc < 2)
1448 		return CMD_RET_USAGE;
1449 
1450 	if (1 || (flag & CMD_FLAG_REPEAT) == 0) {
1451 		/*
1452 		 * New command specified.
1453 		 */
1454 
1455 		/*
1456 		 * I2C chip address
1457 		 */
1458 		chip = simple_strtoul(argv[0], NULL, 16);
1459 
1460 		/*
1461 		 * I2C data address within the chip.  This can be 1 or
1462 		 * 2 bytes long.  Some day it might be 3 bytes long :-).
1463 		 */
1464 		addr = simple_strtoul(argv[1], NULL, 16);
1465 		alen = get_alen(argv[1]);
1466 		if (alen > 3)
1467 			return CMD_RET_USAGE;
1468 
1469 		/*
1470 		 * If another parameter, it is the length to display.
1471 		 * Length is the number of objects, not number of bytes.
1472 		 */
1473 		if (argc > 2)
1474 			length = simple_strtoul(argv[2], NULL, 16);
1475 	}
1476 
1477 	/*
1478 	 * Print the lines.
1479 	 *
1480 	 * We buffer all read data, so we can make sure data is read only
1481 	 * once.
1482 	 */
1483 	nbytes = length;
1484 	do {
1485 		unsigned char	linebuf[DISP_LINE_LEN];
1486 		unsigned char	*cp;
1487 
1488 		linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
1489 
1490 		if (cros_ec_i2c_xfer(dev, chip, addr, alen, linebuf, linebytes,
1491 				     1))
1492 			puts("Error reading the chip.\n");
1493 		else {
1494 			printf("%04x:", addr);
1495 			cp = linebuf;
1496 			for (j = 0; j < linebytes; j++) {
1497 				printf(" %02x", *cp++);
1498 				addr++;
1499 			}
1500 			puts("    ");
1501 			cp = linebuf;
1502 			for (j = 0; j < linebytes; j++) {
1503 				if ((*cp < 0x20) || (*cp > 0x7e))
1504 					puts(".");
1505 				else
1506 					printf("%c", *cp);
1507 				cp++;
1508 			}
1509 			putc('\n');
1510 		}
1511 		nbytes -= linebytes;
1512 	} while (nbytes > 0);
1513 
1514 	return 0;
1515 }
1516 
1517 static int cros_ec_i2c_mw(struct cros_ec_dev *dev, int flag, int argc,
1518 			  char * const argv[])
1519 {
1520 	uchar	chip;
1521 	ulong	addr;
1522 	uint	alen;
1523 	uchar	byte;
1524 	int	count;
1525 
1526 	if ((argc < 3) || (argc > 4))
1527 		return CMD_RET_USAGE;
1528 
1529 	/*
1530 	 * Chip is always specified.
1531 	 */
1532 	chip = simple_strtoul(argv[0], NULL, 16);
1533 
1534 	/*
1535 	 * Address is always specified.
1536 	 */
1537 	addr = simple_strtoul(argv[1], NULL, 16);
1538 	alen = get_alen(argv[1]);
1539 	if (alen > 3)
1540 		return CMD_RET_USAGE;
1541 
1542 	/*
1543 	 * Value to write is always specified.
1544 	 */
1545 	byte = simple_strtoul(argv[2], NULL, 16);
1546 
1547 	/*
1548 	 * Optional count
1549 	 */
1550 	if (argc == 4)
1551 		count = simple_strtoul(argv[3], NULL, 16);
1552 	else
1553 		count = 1;
1554 
1555 	while (count-- > 0) {
1556 		if (cros_ec_i2c_xfer(dev, chip, addr++, alen, &byte, 1, 0))
1557 			puts("Error writing the chip.\n");
1558 		/*
1559 		 * Wait for the write to complete.  The write can take
1560 		 * up to 10mSec (we allow a little more time).
1561 		 */
1562 /*
1563  * No write delay with FRAM devices.
1564  */
1565 #if !defined(CONFIG_SYS_I2C_FRAM)
1566 		udelay(11000);
1567 #endif
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 /* Temporary code until we have driver model and can use the i2c command */
1574 static int cros_ec_i2c_passthrough(struct cros_ec_dev *dev, int flag,
1575 				   int argc, char * const argv[])
1576 {
1577 	const char *cmd;
1578 
1579 	if (argc < 1)
1580 		return CMD_RET_USAGE;
1581 	cmd = *argv++;
1582 	argc--;
1583 	if (0 == strcmp("md", cmd))
1584 		cros_ec_i2c_md(dev, flag, argc, argv);
1585 	else if (0 == strcmp("mw", cmd))
1586 		cros_ec_i2c_mw(dev, flag, argc, argv);
1587 	else
1588 		return CMD_RET_USAGE;
1589 
1590 	return 0;
1591 }
1592 
1593 static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1594 {
1595 	struct cros_ec_dev *dev;
1596 #ifdef CONFIG_DM_CROS_EC
1597 	struct udevice *udev;
1598 #endif
1599 	const char *cmd;
1600 	int ret = 0;
1601 
1602 	if (argc < 2)
1603 		return CMD_RET_USAGE;
1604 
1605 	cmd = argv[1];
1606 	if (0 == strcmp("init", cmd)) {
1607 #ifndef CONFIG_DM_CROS_EC
1608 		ret = cros_ec_init(gd->fdt_blob, &dev);
1609 		if (ret) {
1610 			printf("Could not init cros_ec device (err %d)\n", ret);
1611 			return 1;
1612 		}
1613 #endif
1614 		return 0;
1615 	}
1616 
1617 #ifdef CONFIG_DM_CROS_EC
1618 	ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
1619 	if (ret) {
1620 		printf("Cannot get cros-ec device (err=%d)\n", ret);
1621 		return 1;
1622 	}
1623 	dev = udev->uclass_priv;
1624 #else
1625 	/* Just use the last allocated device; there should be only one */
1626 	if (!last_dev) {
1627 		printf("No CROS-EC device available\n");
1628 		return 1;
1629 	}
1630 	dev = last_dev;
1631 #endif
1632 	if (0 == strcmp("id", cmd)) {
1633 		char id[MSG_BYTES];
1634 
1635 		if (cros_ec_read_id(dev, id, sizeof(id))) {
1636 			debug("%s: Could not read KBC ID\n", __func__);
1637 			return 1;
1638 		}
1639 		printf("%s\n", id);
1640 	} else if (0 == strcmp("info", cmd)) {
1641 		struct ec_response_mkbp_info info;
1642 
1643 		if (cros_ec_info(dev, &info)) {
1644 			debug("%s: Could not read KBC info\n", __func__);
1645 			return 1;
1646 		}
1647 		printf("rows     = %u\n", info.rows);
1648 		printf("cols     = %u\n", info.cols);
1649 		printf("switches = %#x\n", info.switches);
1650 	} else if (0 == strcmp("curimage", cmd)) {
1651 		enum ec_current_image image;
1652 
1653 		if (cros_ec_read_current_image(dev, &image)) {
1654 			debug("%s: Could not read KBC image\n", __func__);
1655 			return 1;
1656 		}
1657 		printf("%d\n", image);
1658 	} else if (0 == strcmp("hash", cmd)) {
1659 		struct ec_response_vboot_hash hash;
1660 		int i;
1661 
1662 		if (cros_ec_read_hash(dev, &hash)) {
1663 			debug("%s: Could not read KBC hash\n", __func__);
1664 			return 1;
1665 		}
1666 
1667 		if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256)
1668 			printf("type:    SHA-256\n");
1669 		else
1670 			printf("type:    %d\n", hash.hash_type);
1671 
1672 		printf("offset:  0x%08x\n", hash.offset);
1673 		printf("size:    0x%08x\n", hash.size);
1674 
1675 		printf("digest:  ");
1676 		for (i = 0; i < hash.digest_size; i++)
1677 			printf("%02x", hash.hash_digest[i]);
1678 		printf("\n");
1679 	} else if (0 == strcmp("reboot", cmd)) {
1680 		int region;
1681 		enum ec_reboot_cmd cmd;
1682 
1683 		if (argc >= 3 && !strcmp(argv[2], "cold"))
1684 			cmd = EC_REBOOT_COLD;
1685 		else {
1686 			region = cros_ec_decode_region(argc - 2, argv + 2);
1687 			if (region == EC_FLASH_REGION_RO)
1688 				cmd = EC_REBOOT_JUMP_RO;
1689 			else if (region == EC_FLASH_REGION_RW)
1690 				cmd = EC_REBOOT_JUMP_RW;
1691 			else
1692 				return CMD_RET_USAGE;
1693 		}
1694 
1695 		if (cros_ec_reboot(dev, cmd, 0)) {
1696 			debug("%s: Could not reboot KBC\n", __func__);
1697 			return 1;
1698 		}
1699 	} else if (0 == strcmp("events", cmd)) {
1700 		uint32_t events;
1701 
1702 		if (cros_ec_get_host_events(dev, &events)) {
1703 			debug("%s: Could not read host events\n", __func__);
1704 			return 1;
1705 		}
1706 		printf("0x%08x\n", events);
1707 	} else if (0 == strcmp("clrevents", cmd)) {
1708 		uint32_t events = 0x7fffffff;
1709 
1710 		if (argc >= 3)
1711 			events = simple_strtol(argv[2], NULL, 0);
1712 
1713 		if (cros_ec_clear_host_events(dev, events)) {
1714 			debug("%s: Could not clear host events\n", __func__);
1715 			return 1;
1716 		}
1717 	} else if (0 == strcmp("read", cmd)) {
1718 		ret = do_read_write(dev, 0, argc, argv);
1719 		if (ret > 0)
1720 			return CMD_RET_USAGE;
1721 	} else if (0 == strcmp("write", cmd)) {
1722 		ret = do_read_write(dev, 1, argc, argv);
1723 		if (ret > 0)
1724 			return CMD_RET_USAGE;
1725 	} else if (0 == strcmp("erase", cmd)) {
1726 		int region = cros_ec_decode_region(argc - 2, argv + 2);
1727 		uint32_t offset, size;
1728 
1729 		if (region == -1)
1730 			return CMD_RET_USAGE;
1731 		if (cros_ec_flash_offset(dev, region, &offset, &size)) {
1732 			debug("%s: Could not read region info\n", __func__);
1733 			ret = -1;
1734 		} else {
1735 			ret = cros_ec_flash_erase(dev, offset, size);
1736 			if (ret) {
1737 				debug("%s: Could not erase region\n",
1738 				      __func__);
1739 			}
1740 		}
1741 	} else if (0 == strcmp("regioninfo", cmd)) {
1742 		int region = cros_ec_decode_region(argc - 2, argv + 2);
1743 		uint32_t offset, size;
1744 
1745 		if (region == -1)
1746 			return CMD_RET_USAGE;
1747 		ret = cros_ec_flash_offset(dev, region, &offset, &size);
1748 		if (ret) {
1749 			debug("%s: Could not read region info\n", __func__);
1750 		} else {
1751 			printf("Region: %s\n", region == EC_FLASH_REGION_RO ?
1752 					"RO" : "RW");
1753 			printf("Offset: %x\n", offset);
1754 			printf("Size:   %x\n", size);
1755 		}
1756 	} else if (0 == strcmp("vbnvcontext", cmd)) {
1757 		uint8_t block[EC_VBNV_BLOCK_SIZE];
1758 		char buf[3];
1759 		int i, len;
1760 		unsigned long result;
1761 
1762 		if (argc <= 2) {
1763 			ret = cros_ec_read_vbnvcontext(dev, block);
1764 			if (!ret) {
1765 				printf("vbnv_block: ");
1766 				for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++)
1767 					printf("%02x", block[i]);
1768 				putc('\n');
1769 			}
1770 		} else {
1771 			/*
1772 			 * TODO(clchiou): Move this to a utility function as
1773 			 * cmd_spi might want to call it.
1774 			 */
1775 			memset(block, 0, EC_VBNV_BLOCK_SIZE);
1776 			len = strlen(argv[2]);
1777 			buf[2] = '\0';
1778 			for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) {
1779 				if (i * 2 >= len)
1780 					break;
1781 				buf[0] = argv[2][i * 2];
1782 				if (i * 2 + 1 >= len)
1783 					buf[1] = '0';
1784 				else
1785 					buf[1] = argv[2][i * 2 + 1];
1786 				strict_strtoul(buf, 16, &result);
1787 				block[i] = result;
1788 			}
1789 			ret = cros_ec_write_vbnvcontext(dev, block);
1790 		}
1791 		if (ret) {
1792 			debug("%s: Could not %s VbNvContext\n", __func__,
1793 					argc <= 2 ?  "read" : "write");
1794 		}
1795 	} else if (0 == strcmp("test", cmd)) {
1796 		int result = cros_ec_test(dev);
1797 
1798 		if (result)
1799 			printf("Test failed with error %d\n", result);
1800 		else
1801 			puts("Test passed\n");
1802 	} else if (0 == strcmp("version", cmd)) {
1803 		struct ec_response_get_version *p;
1804 		char *build_string;
1805 
1806 		ret = cros_ec_read_version(dev, &p);
1807 		if (!ret) {
1808 			/* Print versions */
1809 			printf("RO version:    %1.*s\n",
1810 			       (int)sizeof(p->version_string_ro),
1811 			       p->version_string_ro);
1812 			printf("RW version:    %1.*s\n",
1813 			       (int)sizeof(p->version_string_rw),
1814 			       p->version_string_rw);
1815 			printf("Firmware copy: %s\n",
1816 				(p->current_image <
1817 					ARRAY_SIZE(ec_current_image_name) ?
1818 				ec_current_image_name[p->current_image] :
1819 				"?"));
1820 			ret = cros_ec_read_build_info(dev, &build_string);
1821 			if (!ret)
1822 				printf("Build info:    %s\n", build_string);
1823 		}
1824 	} else if (0 == strcmp("ldo", cmd)) {
1825 		uint8_t index, state;
1826 		char *endp;
1827 
1828 		if (argc < 3)
1829 			return CMD_RET_USAGE;
1830 		index = simple_strtoul(argv[2], &endp, 10);
1831 		if (*argv[2] == 0 || *endp != 0)
1832 			return CMD_RET_USAGE;
1833 		if (argc > 3) {
1834 			state = simple_strtoul(argv[3], &endp, 10);
1835 			if (*argv[3] == 0 || *endp != 0)
1836 				return CMD_RET_USAGE;
1837 			ret = cros_ec_set_ldo(dev, index, state);
1838 		} else {
1839 			ret = cros_ec_get_ldo(dev, index, &state);
1840 			if (!ret) {
1841 				printf("LDO%d: %s\n", index,
1842 					state == EC_LDO_STATE_ON ?
1843 					"on" : "off");
1844 			}
1845 		}
1846 
1847 		if (ret) {
1848 			debug("%s: Could not access LDO%d\n", __func__, index);
1849 			return ret;
1850 		}
1851 	} else if (0 == strcmp("i2c", cmd)) {
1852 		ret = cros_ec_i2c_passthrough(dev, flag, argc - 2, argv + 2);
1853 	} else {
1854 		return CMD_RET_USAGE;
1855 	}
1856 
1857 	if (ret < 0) {
1858 		printf("Error: CROS-EC command failed (error %d)\n", ret);
1859 		ret = 1;
1860 	}
1861 
1862 	return ret;
1863 }
1864 
1865 U_BOOT_CMD(
1866 	crosec,	6,	1,	do_cros_ec,
1867 	"CROS-EC utility command",
1868 	"init                Re-init CROS-EC (done on startup automatically)\n"
1869 	"crosec id                  Read CROS-EC ID\n"
1870 	"crosec info                Read CROS-EC info\n"
1871 	"crosec curimage            Read CROS-EC current image\n"
1872 	"crosec hash                Read CROS-EC hash\n"
1873 	"crosec reboot [rw | ro | cold]  Reboot CROS-EC\n"
1874 	"crosec events              Read CROS-EC host events\n"
1875 	"crosec clrevents [mask]    Clear CROS-EC host events\n"
1876 	"crosec regioninfo <ro|rw>  Read image info\n"
1877 	"crosec erase <ro|rw>       Erase EC image\n"
1878 	"crosec read <ro|rw> <addr> [<size>]   Read EC image\n"
1879 	"crosec write <ro|rw> <addr> [<size>]  Write EC image\n"
1880 	"crosec vbnvcontext [hexstring]        Read [write] VbNvContext from EC\n"
1881 	"crosec ldo <idx> [<state>] Switch/Read LDO state\n"
1882 	"crosec test                run tests on cros_ec\n"
1883 	"crosec version             Read CROS-EC version\n"
1884 	"crosec i2c md chip address[.0, .1, .2] [# of objects] - read from I2C passthru\n"
1885 	"crosec i2c mw chip address[.0, .1, .2] value [count] - write to I2C passthru (fill)"
1886 );
1887 #endif
1888 
1889 #ifdef CONFIG_DM_CROS_EC
1890 UCLASS_DRIVER(cros_ec) = {
1891 	.id		= UCLASS_CROS_EC,
1892 	.name		= "cros_ec",
1893 	.per_device_auto_alloc_size = sizeof(struct cros_ec_dev),
1894 };
1895 #endif
1896