xref: /openbmc/u-boot/drivers/i2c/s3c24x0_i2c.c (revision 3bddafaa)
1 /*
2  * (C) Copyright 2002
3  * David Mueller, ELSOFT AG, d.mueller@elsoft.ch
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 /* This code should work for both the S3C2400 and the S3C2410
9  * as they seem to have the same I2C controller inside.
10  * The different address mapping is handled by the s3c24xx.h files below.
11  */
12 
13 #include <common.h>
14 #include <fdtdec.h>
15 #if (defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
16 #include <asm/arch/clk.h>
17 #include <asm/arch/cpu.h>
18 #include <asm/arch/pinmux.h>
19 #else
20 #include <asm/arch/s3c24x0_cpu.h>
21 #endif
22 #include <asm/io.h>
23 #include <i2c.h>
24 #include "s3c24x0_i2c.h"
25 
26 #ifdef CONFIG_HARD_I2C
27 
28 #define	I2C_WRITE	0
29 #define I2C_READ	1
30 
31 #define I2C_OK		0
32 #define I2C_NOK		1
33 #define I2C_NACK	2
34 #define I2C_NOK_LA	3	/* Lost arbitration */
35 #define I2C_NOK_TOUT	4	/* time out */
36 
37 /* HSI2C specific register description */
38 
39 /* I2C_CTL Register bits */
40 #define HSI2C_FUNC_MODE_I2C		(1u << 0)
41 #define HSI2C_MASTER			(1u << 3)
42 #define HSI2C_RXCHON			(1u << 6)	/* Write/Send */
43 #define HSI2C_TXCHON			(1u << 7)	/* Read/Receive */
44 #define HSI2C_SW_RST			(1u << 31)
45 
46 /* I2C_FIFO_CTL Register bits */
47 #define HSI2C_RXFIFO_EN			(1u << 0)
48 #define HSI2C_TXFIFO_EN			(1u << 1)
49 #define HSI2C_TXFIFO_TRIGGER_LEVEL	(0x20 << 16)
50 #define HSI2C_RXFIFO_TRIGGER_LEVEL	(0x20 << 4)
51 
52 /* I2C_TRAILING_CTL Register bits */
53 #define HSI2C_TRAILING_COUNT		(0xff)
54 
55 /* I2C_INT_EN Register bits */
56 #define HSI2C_TX_UNDERRUN_EN		(1u << 2)
57 #define HSI2C_TX_OVERRUN_EN		(1u << 3)
58 #define HSI2C_RX_UNDERRUN_EN		(1u << 4)
59 #define HSI2C_RX_OVERRUN_EN		(1u << 5)
60 #define HSI2C_INT_TRAILING_EN		(1u << 6)
61 #define HSI2C_INT_I2C_EN		(1u << 9)
62 
63 #define HSI2C_INT_ERROR_MASK	(HSI2C_TX_UNDERRUN_EN |\
64 				 HSI2C_TX_OVERRUN_EN  |\
65 				 HSI2C_RX_UNDERRUN_EN |\
66 				 HSI2C_RX_OVERRUN_EN  |\
67 				 HSI2C_INT_TRAILING_EN)
68 
69 /* I2C_CONF Register bits */
70 #define HSI2C_AUTO_MODE			(1u << 31)
71 #define HSI2C_10BIT_ADDR_MODE		(1u << 30)
72 #define HSI2C_HS_MODE			(1u << 29)
73 
74 /* I2C_AUTO_CONF Register bits */
75 #define HSI2C_READ_WRITE		(1u << 16)
76 #define HSI2C_STOP_AFTER_TRANS		(1u << 17)
77 #define HSI2C_MASTER_RUN		(1u << 31)
78 
79 /* I2C_TIMEOUT Register bits */
80 #define HSI2C_TIMEOUT_EN		(1u << 31)
81 
82 /* I2C_TRANS_STATUS register bits */
83 #define HSI2C_MASTER_BUSY		(1u << 17)
84 #define HSI2C_SLAVE_BUSY		(1u << 16)
85 #define HSI2C_TIMEOUT_AUTO		(1u << 4)
86 #define HSI2C_NO_DEV			(1u << 3)
87 #define HSI2C_NO_DEV_ACK		(1u << 2)
88 #define HSI2C_TRANS_ABORT		(1u << 1)
89 #define HSI2C_TRANS_SUCCESS		(1u << 0)
90 #define HSI2C_TRANS_ERROR_MASK	(HSI2C_TIMEOUT_AUTO |\
91 				 HSI2C_NO_DEV | HSI2C_NO_DEV_ACK |\
92 				 HSI2C_TRANS_ABORT)
93 #define HSI2C_TRANS_FINISHED_MASK (HSI2C_TRANS_ERROR_MASK | HSI2C_TRANS_SUCCESS)
94 
95 
96 /* I2C_FIFO_STAT Register bits */
97 #define HSI2C_RX_FIFO_EMPTY		(1u << 24)
98 #define HSI2C_RX_FIFO_FULL		(1u << 23)
99 #define HSI2C_TX_FIFO_EMPTY		(1u << 8)
100 #define HSI2C_TX_FIFO_FULL		(1u << 7)
101 #define HSI2C_RX_FIFO_LEVEL(x)		(((x) >> 16) & 0x7f)
102 #define HSI2C_TX_FIFO_LEVEL(x)		((x) & 0x7f)
103 
104 #define HSI2C_SLV_ADDR_MAS(x)		((x & 0x3ff) << 10)
105 
106 /* S3C I2C Controller bits */
107 #define I2CSTAT_BSY	0x20	/* Busy bit */
108 #define I2CSTAT_NACK	0x01	/* Nack bit */
109 #define I2CCON_ACKGEN	0x80	/* Acknowledge generation */
110 #define I2CCON_IRPND	0x10	/* Interrupt pending bit */
111 #define I2C_MODE_MT	0xC0	/* Master Transmit Mode */
112 #define I2C_MODE_MR	0x80	/* Master Receive Mode */
113 #define I2C_START_STOP	0x20	/* START / STOP */
114 #define I2C_TXRX_ENA	0x10	/* I2C Tx/Rx enable */
115 
116 #define I2C_TIMEOUT_MS 1000		/* 1 second */
117 
118 #define	HSI2C_TIMEOUT_US 100000 /* 100 ms, finer granularity */
119 
120 
121 /* To support VCMA9 boards and other who dont define max_i2c_num */
122 #ifndef CONFIG_MAX_I2C_NUM
123 #define CONFIG_MAX_I2C_NUM 1
124 #endif
125 
126 /*
127  * For SPL boot some boards need i2c before SDRAM is initialised so force
128  * variables to live in SRAM
129  */
130 static unsigned int g_current_bus __attribute__((section(".data")));
131 static struct s3c24x0_i2c_bus i2c_bus[CONFIG_MAX_I2C_NUM]
132 			__attribute__((section(".data")));
133 
134 /**
135  * Get a pointer to the given bus index
136  *
137  * @bus_idx: Bus index to look up
138  * @return pointer to bus, or NULL if invalid or not available
139  */
140 static struct s3c24x0_i2c_bus *get_bus(unsigned int bus_idx)
141 {
142 	if (bus_idx < ARRAY_SIZE(i2c_bus)) {
143 		struct s3c24x0_i2c_bus *bus;
144 
145 		bus = &i2c_bus[bus_idx];
146 		if (bus->active)
147 			return bus;
148 	}
149 
150 	debug("Undefined bus: %d\n", bus_idx);
151 	return NULL;
152 }
153 
154 #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
155 static int GetI2CSDA(void)
156 {
157 	struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
158 
159 #ifdef CONFIG_S3C2410
160 	return (readl(&gpio->gpedat) & 0x8000) >> 15;
161 #endif
162 #ifdef CONFIG_S3C2400
163 	return (readl(&gpio->pgdat) & 0x0020) >> 5;
164 #endif
165 }
166 
167 static void SetI2CSCL(int x)
168 {
169 	struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
170 
171 #ifdef CONFIG_S3C2410
172 	writel((readl(&gpio->gpedat) & ~0x4000) |
173 					(x & 1) << 14, &gpio->gpedat);
174 #endif
175 #ifdef CONFIG_S3C2400
176 	writel((readl(&gpio->pgdat) & ~0x0040) | (x & 1) << 6, &gpio->pgdat);
177 #endif
178 }
179 #endif
180 
181 /*
182  * Wait til the byte transfer is completed.
183  *
184  * @param i2c- pointer to the appropriate i2c register bank.
185  * @return I2C_OK, if transmission was ACKED
186  *         I2C_NACK, if transmission was NACKED
187  *         I2C_NOK_TIMEOUT, if transaction did not complete in I2C_TIMEOUT_MS
188  */
189 
190 static int WaitForXfer(struct s3c24x0_i2c *i2c)
191 {
192 	ulong start_time = get_timer(0);
193 
194 	do {
195 		if (readl(&i2c->iiccon) & I2CCON_IRPND)
196 			return (readl(&i2c->iicstat) & I2CSTAT_NACK) ?
197 				I2C_NACK : I2C_OK;
198 	} while (get_timer(start_time) < I2C_TIMEOUT_MS);
199 
200 	return I2C_NOK_TOUT;
201 }
202 
203 /*
204  * Wait for transfer completion.
205  *
206  * This function reads the interrupt status register waiting for the INT_I2C
207  * bit to be set, which indicates copletion of a transaction.
208  *
209  * @param i2c: pointer to the appropriate register bank
210  *
211  * @return: I2C_OK in case of successful completion, I2C_NOK_TIMEOUT in case
212  *          the status bits do not get set in time, or an approrpiate error
213  *          value in case of transfer errors.
214  */
215 static int hsi2c_wait_for_trx(struct exynos5_hsi2c *i2c)
216 {
217 	int i = HSI2C_TIMEOUT_US;
218 
219 	while (i-- > 0) {
220 		u32 int_status = readl(&i2c->usi_int_stat);
221 
222 		if (int_status & HSI2C_INT_I2C_EN) {
223 			u32 trans_status = readl(&i2c->usi_trans_status);
224 
225 			/* Deassert pending interrupt. */
226 			writel(int_status, &i2c->usi_int_stat);
227 
228 			if (trans_status & HSI2C_NO_DEV_ACK) {
229 				debug("%s: no ACK from device\n", __func__);
230 				return I2C_NACK;
231 			}
232 			if (trans_status & HSI2C_NO_DEV) {
233 				debug("%s: no device\n", __func__);
234 				return I2C_NOK;
235 			}
236 			if (trans_status & HSI2C_TRANS_ABORT) {
237 				debug("%s: arbitration lost\n", __func__);
238 				return I2C_NOK_LA;
239 			}
240 			if (trans_status & HSI2C_TIMEOUT_AUTO) {
241 				debug("%s: device timed out\n", __func__);
242 				return I2C_NOK_TOUT;
243 			}
244 			return I2C_OK;
245 		}
246 		udelay(1);
247 	}
248 	debug("%s: transaction timeout!\n", __func__);
249 	return I2C_NOK_TOUT;
250 }
251 
252 static void ReadWriteByte(struct s3c24x0_i2c *i2c)
253 {
254 	writel(readl(&i2c->iiccon) & ~I2CCON_IRPND, &i2c->iiccon);
255 }
256 
257 static struct s3c24x0_i2c *get_base_i2c(void)
258 {
259 #ifdef CONFIG_EXYNOS4
260 	struct s3c24x0_i2c *i2c = (struct s3c24x0_i2c *)(samsung_get_base_i2c()
261 							+ (EXYNOS4_I2C_SPACING
262 							* g_current_bus));
263 	return i2c;
264 #elif defined CONFIG_EXYNOS5
265 	struct s3c24x0_i2c *i2c = (struct s3c24x0_i2c *)(samsung_get_base_i2c()
266 							+ (EXYNOS5_I2C_SPACING
267 							* g_current_bus));
268 	return i2c;
269 #else
270 	return s3c24x0_get_base_i2c();
271 #endif
272 }
273 
274 static void i2c_ch_init(struct s3c24x0_i2c *i2c, int speed, int slaveadd)
275 {
276 	ulong freq, pres = 16, div;
277 #if (defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
278 	freq = get_i2c_clk();
279 #else
280 	freq = get_PCLK();
281 #endif
282 	/* calculate prescaler and divisor values */
283 	if ((freq / pres / (16 + 1)) > speed)
284 		/* set prescaler to 512 */
285 		pres = 512;
286 
287 	div = 0;
288 	while ((freq / pres / (div + 1)) > speed)
289 		div++;
290 
291 	/* set prescaler, divisor according to freq, also set ACKGEN, IRQ */
292 	writel((div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0), &i2c->iiccon);
293 
294 	/* init to SLAVE REVEIVE and set slaveaddr */
295 	writel(0, &i2c->iicstat);
296 	writel(slaveadd, &i2c->iicadd);
297 	/* program Master Transmit (and implicit STOP) */
298 	writel(I2C_MODE_MT | I2C_TXRX_ENA, &i2c->iicstat);
299 }
300 
301 #ifdef CONFIG_I2C_MULTI_BUS
302 static int hsi2c_get_clk_details(struct s3c24x0_i2c_bus *i2c_bus)
303 {
304 	struct exynos5_hsi2c *hsregs = i2c_bus->hsregs;
305 	ulong clkin;
306 	unsigned int op_clk = i2c_bus->clock_frequency;
307 	unsigned int i = 0, utemp0 = 0, utemp1 = 0;
308 	unsigned int t_ftl_cycle;
309 
310 #if defined CONFIG_EXYNOS5
311 	clkin = get_i2c_clk();
312 #endif
313 	/* FPCLK / FI2C =
314 	 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
315 	 * uTemp0 = (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2)
316 	 * uTemp1 = (TSCLK_L + TSCLK_H + 2)
317 	 * uTemp2 = TSCLK_L + TSCLK_H
318 	 */
319 	t_ftl_cycle = (readl(&hsregs->usi_conf) >> 16) & 0x7;
320 	utemp0 = (clkin / op_clk) - 8 - 2 * t_ftl_cycle;
321 
322 	/* CLK_DIV max is 256 */
323 	for (i = 0; i < 256; i++) {
324 		utemp1 = utemp0 / (i + 1);
325 		if ((utemp1 < 512) && (utemp1 > 4)) {
326 			i2c_bus->clk_cycle = utemp1 - 2;
327 			i2c_bus->clk_div = i;
328 			return 0;
329 		}
330 	}
331 	return -1;
332 }
333 #endif
334 
335 static void hsi2c_ch_init(struct s3c24x0_i2c_bus *i2c_bus)
336 {
337 	struct exynos5_hsi2c *hsregs = i2c_bus->hsregs;
338 	unsigned int t_sr_release;
339 	unsigned int n_clkdiv;
340 	unsigned int t_start_su, t_start_hd;
341 	unsigned int t_stop_su;
342 	unsigned int t_data_su, t_data_hd;
343 	unsigned int t_scl_l, t_scl_h;
344 	u32 i2c_timing_s1;
345 	u32 i2c_timing_s2;
346 	u32 i2c_timing_s3;
347 	u32 i2c_timing_sla;
348 
349 	n_clkdiv = i2c_bus->clk_div;
350 	t_scl_l = i2c_bus->clk_cycle / 2;
351 	t_scl_h = i2c_bus->clk_cycle / 2;
352 	t_start_su = t_scl_l;
353 	t_start_hd = t_scl_l;
354 	t_stop_su = t_scl_l;
355 	t_data_su = t_scl_l / 2;
356 	t_data_hd = t_scl_l / 2;
357 	t_sr_release = i2c_bus->clk_cycle;
358 
359 	i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
360 	i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
361 	i2c_timing_s3 = n_clkdiv << 16 | t_sr_release << 0;
362 	i2c_timing_sla = t_data_hd << 0;
363 
364 	writel(HSI2C_TRAILING_COUNT, &hsregs->usi_trailing_ctl);
365 
366 	/* Clear to enable Timeout */
367 	clrsetbits_le32(&hsregs->usi_timeout, HSI2C_TIMEOUT_EN, 0);
368 
369 	/* set AUTO mode */
370 	writel(readl(&hsregs->usi_conf) | HSI2C_AUTO_MODE, &hsregs->usi_conf);
371 
372 	/* Enable completion conditions' reporting. */
373 	writel(HSI2C_INT_I2C_EN, &hsregs->usi_int_en);
374 
375 	/* Enable FIFOs */
376 	writel(HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN, &hsregs->usi_fifo_ctl);
377 
378 	/* Currently operating in Fast speed mode. */
379 	writel(i2c_timing_s1, &hsregs->usi_timing_fs1);
380 	writel(i2c_timing_s2, &hsregs->usi_timing_fs2);
381 	writel(i2c_timing_s3, &hsregs->usi_timing_fs3);
382 	writel(i2c_timing_sla, &hsregs->usi_timing_sla);
383 }
384 
385 /* SW reset for the high speed bus */
386 static void exynos5_i2c_reset(struct s3c24x0_i2c_bus *i2c_bus)
387 {
388 	struct exynos5_hsi2c *i2c = i2c_bus->hsregs;
389 	u32 i2c_ctl;
390 
391 	/* Set and clear the bit for reset */
392 	i2c_ctl = readl(&i2c->usi_ctl);
393 	i2c_ctl |= HSI2C_SW_RST;
394 	writel(i2c_ctl, &i2c->usi_ctl);
395 
396 	i2c_ctl = readl(&i2c->usi_ctl);
397 	i2c_ctl &= ~HSI2C_SW_RST;
398 	writel(i2c_ctl, &i2c->usi_ctl);
399 
400 	/* Initialize the configure registers */
401 	hsi2c_ch_init(i2c_bus);
402 }
403 
404 /*
405  * MULTI BUS I2C support
406  */
407 
408 #ifdef CONFIG_I2C_MULTI_BUS
409 int i2c_set_bus_num(unsigned int bus)
410 {
411 	struct s3c24x0_i2c_bus *i2c_bus;
412 
413 	i2c_bus = get_bus(bus);
414 	if (!i2c_bus)
415 		return -1;
416 	g_current_bus = bus;
417 
418 	if (i2c_bus->is_highspeed) {
419 		if (hsi2c_get_clk_details(i2c_bus))
420 			return -1;
421 		hsi2c_ch_init(i2c_bus);
422 	} else {
423 		i2c_ch_init(i2c_bus->regs, i2c_bus->clock_frequency,
424 						CONFIG_SYS_I2C_SLAVE);
425 	}
426 
427 	return 0;
428 }
429 
430 unsigned int i2c_get_bus_num(void)
431 {
432 	return g_current_bus;
433 }
434 #endif
435 
436 void i2c_init(int speed, int slaveadd)
437 {
438 	struct s3c24x0_i2c *i2c;
439 #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
440 	struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
441 #endif
442 	ulong start_time = get_timer(0);
443 
444 	/* By default i2c channel 0 is the current bus */
445 	g_current_bus = 0;
446 	i2c = get_base_i2c();
447 
448 	/*
449 	 * In case the previous transfer is still going, wait to give it a
450 	 * chance to finish.
451 	 */
452 	while (readl(&i2c->iicstat) & I2CSTAT_BSY) {
453 		if (get_timer(start_time) > I2C_TIMEOUT_MS) {
454 			printf("%s: I2C bus busy for %p\n", __func__,
455 			       &i2c->iicstat);
456 			return;
457 		}
458 	}
459 
460 #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
461 	int i;
462 
463 	if ((readl(&i2c->iicstat) & I2CSTAT_BSY) || GetI2CSDA() == 0) {
464 #ifdef CONFIG_S3C2410
465 		ulong old_gpecon = readl(&gpio->gpecon);
466 #endif
467 #ifdef CONFIG_S3C2400
468 		ulong old_gpecon = readl(&gpio->pgcon);
469 #endif
470 		/* bus still busy probably by (most) previously interrupted
471 		   transfer */
472 
473 #ifdef CONFIG_S3C2410
474 		/* set I2CSDA and I2CSCL (GPE15, GPE14) to GPIO */
475 		writel((readl(&gpio->gpecon) & ~0xF0000000) | 0x10000000,
476 		       &gpio->gpecon);
477 #endif
478 #ifdef CONFIG_S3C2400
479 		/* set I2CSDA and I2CSCL (PG5, PG6) to GPIO */
480 		writel((readl(&gpio->pgcon) & ~0x00003c00) | 0x00001000,
481 		       &gpio->pgcon);
482 #endif
483 
484 		/* toggle I2CSCL until bus idle */
485 		SetI2CSCL(0);
486 		udelay(1000);
487 		i = 10;
488 		while ((i > 0) && (GetI2CSDA() != 1)) {
489 			SetI2CSCL(1);
490 			udelay(1000);
491 			SetI2CSCL(0);
492 			udelay(1000);
493 			i--;
494 		}
495 		SetI2CSCL(1);
496 		udelay(1000);
497 
498 		/* restore pin functions */
499 #ifdef CONFIG_S3C2410
500 		writel(old_gpecon, &gpio->gpecon);
501 #endif
502 #ifdef CONFIG_S3C2400
503 		writel(old_gpecon, &gpio->pgcon);
504 #endif
505 	}
506 #endif /* #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5) */
507 	i2c_ch_init(i2c, speed, slaveadd);
508 }
509 
510 /*
511  * Poll the appropriate bit of the fifo status register until the interface is
512  * ready to process the next byte or timeout expires.
513  *
514  * In addition to the FIFO status register this function also polls the
515  * interrupt status register to be able to detect unexpected transaction
516  * completion.
517  *
518  * When FIFO is ready to process the next byte, this function returns I2C_OK.
519  * If in course of polling the INT_I2C assertion is detected, the function
520  * returns I2C_NOK. If timeout happens before any of the above conditions is
521  * met - the function returns I2C_NOK_TOUT;
522 
523  * @param i2c: pointer to the appropriate i2c register bank.
524  * @param rx_transfer: set to True if the receive transaction is in progress.
525  * @return: as described above.
526  */
527 static unsigned hsi2c_poll_fifo(struct exynos5_hsi2c *i2c, bool rx_transfer)
528 {
529 	u32 fifo_bit = rx_transfer ? HSI2C_RX_FIFO_EMPTY : HSI2C_TX_FIFO_FULL;
530 	int i = HSI2C_TIMEOUT_US;
531 
532 	while (readl(&i2c->usi_fifo_stat) & fifo_bit) {
533 		if (readl(&i2c->usi_int_stat) & HSI2C_INT_I2C_EN) {
534 			/*
535 			 * There is a chance that assertion of
536 			 * HSI2C_INT_I2C_EN and deassertion of
537 			 * HSI2C_RX_FIFO_EMPTY happen simultaneously. Let's
538 			 * give FIFO status priority and check it one more
539 			 * time before reporting interrupt. The interrupt will
540 			 * be reported next time this function is called.
541 			 */
542 			if (rx_transfer &&
543 			    !(readl(&i2c->usi_fifo_stat) & fifo_bit))
544 				break;
545 			return I2C_NOK;
546 		}
547 		if (!i--) {
548 			debug("%s: FIFO polling timeout!\n", __func__);
549 			return I2C_NOK_TOUT;
550 		}
551 		udelay(1);
552 	}
553 	return I2C_OK;
554 }
555 
556 /*
557  * Preapre hsi2c transaction, either read or write.
558  *
559  * Set up transfer as described in section 27.5.1.2 'I2C Channel Auto Mode' of
560  * the 5420 UM.
561  *
562  * @param i2c: pointer to the appropriate i2c register bank.
563  * @param chip: slave address on the i2c bus (with read/write bit exlcuded)
564  * @param len: number of bytes expected to be sent or received
565  * @param rx_transfer: set to true for receive transactions
566  * @param: issue_stop: set to true if i2c stop condition should be generated
567  *         after this transaction.
568  * @return: I2C_NOK_TOUT in case the bus remained busy for HSI2C_TIMEOUT_US,
569  *          I2C_OK otherwise.
570  */
571 static int hsi2c_prepare_transaction(struct exynos5_hsi2c *i2c,
572 				     u8 chip,
573 				     u16 len,
574 				     bool rx_transfer,
575 				     bool issue_stop)
576 {
577 	u32 conf;
578 
579 	conf = len | HSI2C_MASTER_RUN;
580 
581 	if (issue_stop)
582 		conf |= HSI2C_STOP_AFTER_TRANS;
583 
584 	/* Clear to enable Timeout */
585 	writel(readl(&i2c->usi_timeout) & ~HSI2C_TIMEOUT_EN, &i2c->usi_timeout);
586 
587 	/* Set slave address */
588 	writel(HSI2C_SLV_ADDR_MAS(chip), &i2c->i2c_addr);
589 
590 	if (rx_transfer) {
591 		/* i2c master, read transaction */
592 		writel((HSI2C_RXCHON | HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
593 		       &i2c->usi_ctl);
594 
595 		/* read up to len bytes, stop after transaction is finished */
596 		writel(conf | HSI2C_READ_WRITE, &i2c->usi_auto_conf);
597 	} else {
598 		/* i2c master, write transaction */
599 		writel((HSI2C_TXCHON | HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
600 		       &i2c->usi_ctl);
601 
602 		/* write up to len bytes, stop after transaction is finished */
603 		writel(conf, &i2c->usi_auto_conf);
604 	}
605 
606 	/* Reset all pending interrupt status bits we care about, if any */
607 	writel(HSI2C_INT_I2C_EN, &i2c->usi_int_stat);
608 
609 	return I2C_OK;
610 }
611 
612 /*
613  * Wait while i2c bus is settling down (mostly stop gets completed).
614  */
615 static int hsi2c_wait_while_busy(struct exynos5_hsi2c *i2c)
616 {
617 	int i = HSI2C_TIMEOUT_US;
618 
619 	while (readl(&i2c->usi_trans_status) & HSI2C_MASTER_BUSY) {
620 		if (!i--) {
621 			debug("%s: bus busy\n", __func__);
622 			return I2C_NOK_TOUT;
623 		}
624 		udelay(1);
625 	}
626 	return I2C_OK;
627 }
628 
629 static int hsi2c_write(struct exynos5_hsi2c *i2c,
630 		       unsigned char chip,
631 		       unsigned char addr[],
632 		       unsigned char alen,
633 		       unsigned char data[],
634 		       unsigned short len,
635 		       bool issue_stop)
636 {
637 	int i, rv = 0;
638 
639 	if (!(len + alen)) {
640 		/* Writes of zero length not supported in auto mode. */
641 		debug("%s: zero length writes not supported\n", __func__);
642 		return I2C_NOK;
643 	}
644 
645 	rv = hsi2c_prepare_transaction
646 		(i2c, chip, len + alen, false, issue_stop);
647 	if (rv != I2C_OK)
648 		return rv;
649 
650 	/* Move address, if any, and the data, if any, into the FIFO. */
651 	for (i = 0; i < alen; i++) {
652 		rv = hsi2c_poll_fifo(i2c, false);
653 		if (rv != I2C_OK) {
654 			debug("%s: address write failed\n", __func__);
655 			goto write_error;
656 		}
657 		writel(addr[i], &i2c->usi_txdata);
658 	}
659 
660 	for (i = 0; i < len; i++) {
661 		rv = hsi2c_poll_fifo(i2c, false);
662 		if (rv != I2C_OK) {
663 			debug("%s: data write failed\n", __func__);
664 			goto write_error;
665 		}
666 		writel(data[i], &i2c->usi_txdata);
667 	}
668 
669 	rv = hsi2c_wait_for_trx(i2c);
670 
671  write_error:
672 	if (issue_stop) {
673 		int tmp_ret = hsi2c_wait_while_busy(i2c);
674 		if (rv == I2C_OK)
675 			rv = tmp_ret;
676 	}
677 
678 	writel(HSI2C_FUNC_MODE_I2C, &i2c->usi_ctl); /* done */
679 	return rv;
680 }
681 
682 static int hsi2c_read(struct exynos5_hsi2c *i2c,
683 		      unsigned char chip,
684 		      unsigned char addr[],
685 		      unsigned char alen,
686 		      unsigned char data[],
687 		      unsigned short len)
688 {
689 	int i, rv, tmp_ret;
690 	bool drop_data = false;
691 
692 	if (!len) {
693 		/* Reads of zero length not supported in auto mode. */
694 		debug("%s: zero length read adjusted\n", __func__);
695 		drop_data = true;
696 		len = 1;
697 	}
698 
699 	if (alen) {
700 		/* Internal register adress needs to be written first. */
701 		rv = hsi2c_write(i2c, chip, addr, alen, NULL, 0, false);
702 		if (rv != I2C_OK)
703 			return rv;
704 	}
705 
706 	rv = hsi2c_prepare_transaction(i2c, chip, len, true, true);
707 
708 	if (rv != I2C_OK)
709 		return rv;
710 
711 	for (i = 0; i < len; i++) {
712 		rv = hsi2c_poll_fifo(i2c, true);
713 		if (rv != I2C_OK)
714 			goto read_err;
715 		if (drop_data)
716 			continue;
717 		data[i] = readl(&i2c->usi_rxdata);
718 	}
719 
720 	rv = hsi2c_wait_for_trx(i2c);
721 
722  read_err:
723 	tmp_ret = hsi2c_wait_while_busy(i2c);
724 	if (rv == I2C_OK)
725 		rv = tmp_ret;
726 
727 	writel(HSI2C_FUNC_MODE_I2C, &i2c->usi_ctl); /* done */
728 	return rv;
729 }
730 
731 /*
732  * cmd_type is 0 for write, 1 for read.
733  *
734  * addr_len can take any value from 0-255, it is only limited
735  * by the char, we could make it larger if needed. If it is
736  * 0 we skip the address write cycle.
737  */
738 static int i2c_transfer(struct s3c24x0_i2c *i2c,
739 			unsigned char cmd_type,
740 			unsigned char chip,
741 			unsigned char addr[],
742 			unsigned char addr_len,
743 			unsigned char data[],
744 			unsigned short data_len)
745 {
746 	int i = 0, result;
747 	ulong start_time = get_timer(0);
748 
749 	if (data == 0 || data_len == 0) {
750 		/*Don't support data transfer of no length or to address 0 */
751 		debug("i2c_transfer: bad call\n");
752 		return I2C_NOK;
753 	}
754 
755 	while (readl(&i2c->iicstat) & I2CSTAT_BSY) {
756 		if (get_timer(start_time) > I2C_TIMEOUT_MS)
757 			return I2C_NOK_TOUT;
758 	}
759 
760 	writel(readl(&i2c->iiccon) | I2CCON_ACKGEN, &i2c->iiccon);
761 
762 	/* Get the slave chip address going */
763 	writel(chip, &i2c->iicds);
764 	if ((cmd_type == I2C_WRITE) || (addr && addr_len))
765 		writel(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
766 		       &i2c->iicstat);
767 	else
768 		writel(I2C_MODE_MR | I2C_TXRX_ENA | I2C_START_STOP,
769 		       &i2c->iicstat);
770 
771 	/* Wait for chip address to transmit. */
772 	result = WaitForXfer(i2c);
773 	if (result != I2C_OK)
774 		goto bailout;
775 
776 	/* If register address needs to be transmitted - do it now. */
777 	if (addr && addr_len) {
778 		while ((i < addr_len) && (result == I2C_OK)) {
779 			writel(addr[i++], &i2c->iicds);
780 			ReadWriteByte(i2c);
781 			result = WaitForXfer(i2c);
782 		}
783 		i = 0;
784 		if (result != I2C_OK)
785 			goto bailout;
786 	}
787 
788 	switch (cmd_type) {
789 	case I2C_WRITE:
790 		while ((i < data_len) && (result == I2C_OK)) {
791 			writel(data[i++], &i2c->iicds);
792 			ReadWriteByte(i2c);
793 			result = WaitForXfer(i2c);
794 		}
795 		break;
796 
797 	case I2C_READ:
798 		if (addr && addr_len) {
799 			/*
800 			 * Register address has been sent, now send slave chip
801 			 * address again to start the actual read transaction.
802 			 */
803 			writel(chip, &i2c->iicds);
804 
805 			/* Generate a re-START. */
806 			writel(I2C_MODE_MR | I2C_TXRX_ENA | I2C_START_STOP,
807 				&i2c->iicstat);
808 			ReadWriteByte(i2c);
809 			result = WaitForXfer(i2c);
810 
811 			if (result != I2C_OK)
812 				goto bailout;
813 		}
814 
815 		while ((i < data_len) && (result == I2C_OK)) {
816 			/* disable ACK for final READ */
817 			if (i == data_len - 1)
818 				writel(readl(&i2c->iiccon)
819 				       & ~I2CCON_ACKGEN,
820 				       &i2c->iiccon);
821 			ReadWriteByte(i2c);
822 			result = WaitForXfer(i2c);
823 			data[i++] = readl(&i2c->iicds);
824 		}
825 		if (result == I2C_NACK)
826 			result = I2C_OK; /* Normal terminated read. */
827 		break;
828 
829 	default:
830 		debug("i2c_transfer: bad call\n");
831 		result = I2C_NOK;
832 		break;
833 	}
834 
835 bailout:
836 	/* Send STOP. */
837 	writel(I2C_MODE_MR | I2C_TXRX_ENA, &i2c->iicstat);
838 	ReadWriteByte(i2c);
839 
840 	return result;
841 }
842 
843 int i2c_probe(uchar chip)
844 {
845 	struct s3c24x0_i2c_bus *i2c_bus;
846 	uchar buf[1];
847 	int ret;
848 
849 	i2c_bus = get_bus(g_current_bus);
850 	if (!i2c_bus)
851 		return -1;
852 	buf[0] = 0;
853 
854 	/*
855 	 * What is needed is to send the chip address and verify that the
856 	 * address was <ACK>ed (i.e. there was a chip at that address which
857 	 * drove the data line low).
858 	 */
859 	if (i2c_bus->is_highspeed) {
860 		ret = hsi2c_read(i2c_bus->hsregs,
861 				chip, 0, 0, buf, 1);
862 	} else {
863 		ret = i2c_transfer(i2c_bus->regs,
864 				I2C_READ, chip << 1, 0, 0, buf, 1);
865 	}
866 
867 
868 	return ret != I2C_OK;
869 }
870 
871 int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
872 {
873 	struct s3c24x0_i2c_bus *i2c_bus;
874 	uchar xaddr[4];
875 	int ret;
876 
877 	if (alen > 4) {
878 		debug("I2C read: addr len %d not supported\n", alen);
879 		return 1;
880 	}
881 
882 	if (alen > 0) {
883 		xaddr[0] = (addr >> 24) & 0xFF;
884 		xaddr[1] = (addr >> 16) & 0xFF;
885 		xaddr[2] = (addr >> 8) & 0xFF;
886 		xaddr[3] = addr & 0xFF;
887 	}
888 
889 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
890 	/*
891 	 * EEPROM chips that implement "address overflow" are ones
892 	 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
893 	 * address and the extra bits end up in the "chip address"
894 	 * bit slots. This makes a 24WC08 (1Kbyte) chip look like
895 	 * four 256 byte chips.
896 	 *
897 	 * Note that we consider the length of the address field to
898 	 * still be one byte because the extra address bits are
899 	 * hidden in the chip address.
900 	 */
901 	if (alen > 0)
902 		chip |= ((addr >> (alen * 8)) &
903 			 CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
904 #endif
905 	i2c_bus = get_bus(g_current_bus);
906 	if (!i2c_bus)
907 		return -1;
908 
909 	if (i2c_bus->is_highspeed)
910 		ret = hsi2c_read(i2c_bus->hsregs, chip, &xaddr[4 - alen],
911 				 alen, buffer, len);
912 	else
913 		ret = i2c_transfer(i2c_bus->regs, I2C_READ, chip << 1,
914 				&xaddr[4 - alen], alen, buffer, len);
915 
916 	if (ret) {
917 		if (i2c_bus->is_highspeed)
918 			exynos5_i2c_reset(i2c_bus);
919 		debug("I2c read failed %d\n", ret);
920 		return 1;
921 	}
922 	return 0;
923 }
924 
925 int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
926 {
927 	struct s3c24x0_i2c_bus *i2c_bus;
928 	uchar xaddr[4];
929 	int ret;
930 
931 	if (alen > 4) {
932 		debug("I2C write: addr len %d not supported\n", alen);
933 		return 1;
934 	}
935 
936 	if (alen > 0) {
937 		xaddr[0] = (addr >> 24) & 0xFF;
938 		xaddr[1] = (addr >> 16) & 0xFF;
939 		xaddr[2] = (addr >> 8) & 0xFF;
940 		xaddr[3] = addr & 0xFF;
941 	}
942 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
943 	/*
944 	 * EEPROM chips that implement "address overflow" are ones
945 	 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
946 	 * address and the extra bits end up in the "chip address"
947 	 * bit slots. This makes a 24WC08 (1Kbyte) chip look like
948 	 * four 256 byte chips.
949 	 *
950 	 * Note that we consider the length of the address field to
951 	 * still be one byte because the extra address bits are
952 	 * hidden in the chip address.
953 	 */
954 	if (alen > 0)
955 		chip |= ((addr >> (alen * 8)) &
956 			 CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
957 #endif
958 	i2c_bus = get_bus(g_current_bus);
959 	if (!i2c_bus)
960 		return -1;
961 
962 	if (i2c_bus->is_highspeed)
963 		ret = hsi2c_write(i2c_bus->hsregs, chip, &xaddr[4 - alen],
964 				  alen, buffer, len, true);
965 	else
966 		ret = i2c_transfer(i2c_bus->regs, I2C_WRITE, chip << 1,
967 				&xaddr[4 - alen], alen, buffer, len);
968 
969 	if (ret != 0) {
970 		if (i2c_bus->is_highspeed)
971 			exynos5_i2c_reset(i2c_bus);
972 		return 1;
973 	} else {
974 		return 0;
975 	}
976 }
977 
978 #ifdef CONFIG_OF_CONTROL
979 static void process_nodes(const void *blob, int node_list[], int count,
980 			 int is_highspeed)
981 {
982 	struct s3c24x0_i2c_bus *bus;
983 	int i;
984 
985 	for (i = 0; i < count; i++) {
986 		int node = node_list[i];
987 
988 		if (node <= 0)
989 			continue;
990 
991 		bus = &i2c_bus[i];
992 		bus->active = true;
993 		bus->is_highspeed = is_highspeed;
994 
995 		if (is_highspeed)
996 			bus->hsregs = (struct exynos5_hsi2c *)
997 					fdtdec_get_addr(blob, node, "reg");
998 		else
999 			bus->regs = (struct s3c24x0_i2c *)
1000 					fdtdec_get_addr(blob, node, "reg");
1001 
1002 		bus->id = pinmux_decode_periph_id(blob, node);
1003 		bus->clock_frequency = fdtdec_get_int(blob, node,
1004 						      "clock-frequency",
1005 						      CONFIG_SYS_I2C_SPEED);
1006 		bus->node = node;
1007 		bus->bus_num = i;
1008 		exynos_pinmux_config(bus->id, 0);
1009 
1010 		/* Mark position as used */
1011 		node_list[i] = -1;
1012 	}
1013 }
1014 
1015 void board_i2c_init(const void *blob)
1016 {
1017 	int node_list[CONFIG_MAX_I2C_NUM];
1018 	int count;
1019 
1020 	/* First get the normal i2c ports */
1021 	count = fdtdec_find_aliases_for_id(blob, "i2c",
1022 		COMPAT_SAMSUNG_S3C2440_I2C, node_list,
1023 		CONFIG_MAX_I2C_NUM);
1024 	process_nodes(blob, node_list, count, 0);
1025 
1026 	/* Now look for high speed i2c ports */
1027 	count = fdtdec_find_aliases_for_id(blob, "i2c",
1028 		COMPAT_SAMSUNG_EXYNOS5_I2C, node_list,
1029 		CONFIG_MAX_I2C_NUM);
1030 	process_nodes(blob, node_list, count, 1);
1031 
1032 }
1033 
1034 int i2c_get_bus_num_fdt(int node)
1035 {
1036 	int i;
1037 
1038 	for (i = 0; i < ARRAY_SIZE(i2c_bus); i++) {
1039 		if (node == i2c_bus[i].node)
1040 			return i;
1041 	}
1042 
1043 	debug("%s: Can't find any matched I2C bus\n", __func__);
1044 	return -1;
1045 }
1046 
1047 #ifdef CONFIG_I2C_MULTI_BUS
1048 int i2c_reset_port_fdt(const void *blob, int node)
1049 {
1050 	struct s3c24x0_i2c_bus *i2c_bus;
1051 	int bus;
1052 
1053 	bus = i2c_get_bus_num_fdt(node);
1054 	if (bus < 0) {
1055 		debug("could not get bus for node %d\n", node);
1056 		return -1;
1057 	}
1058 
1059 	i2c_bus = get_bus(bus);
1060 	if (!i2c_bus) {
1061 		debug("get_bus() failed for node node %d\n", node);
1062 		return -1;
1063 	}
1064 
1065 	if (i2c_bus->is_highspeed) {
1066 		if (hsi2c_get_clk_details(i2c_bus))
1067 			return -1;
1068 		hsi2c_ch_init(i2c_bus);
1069 	} else {
1070 		i2c_ch_init(i2c_bus->regs, i2c_bus->clock_frequency,
1071 						CONFIG_SYS_I2C_SLAVE);
1072 	}
1073 
1074 	return 0;
1075 }
1076 #endif
1077 #endif
1078 
1079 #endif /* CONFIG_HARD_I2C */
1080