1 /* 2 * Basic I2C functions 3 * 4 * Copyright (c) 2004 Texas Instruments 5 * 6 * This package is free software; you can redistribute it and/or 7 * modify it under the terms of the license found in the file 8 * named COPYING that should have accompanied this file. 9 * 10 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 11 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 12 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 13 * 14 * Author: Jian Zhang jzhang@ti.com, Texas Instruments 15 * 16 * Copyright (c) 2003 Wolfgang Denk, wd@denx.de 17 * Rewritten to fit into the current U-Boot framework 18 * 19 * Adapted for OMAP2420 I2C, r-woodruff2@ti.com 20 * 21 * Copyright (c) 2013 Lubomir Popov <lpopov@mm-sol.com>, MM Solutions 22 * New i2c_read, i2c_write and i2c_probe functions, tested on OMAP4 23 * (4430/60/70), OMAP5 (5430) and AM335X (3359); should work on older 24 * OMAPs and derivatives as well. The only anticipated exception would 25 * be the OMAP2420, which shall require driver modification. 26 * - Rewritten i2c_read to operate correctly with all types of chips 27 * (old function could not read consistent data from some I2C slaves). 28 * - Optimized i2c_write. 29 * - New i2c_probe, performs write access vs read. The old probe could 30 * hang the system under certain conditions (e.g. unconfigured pads). 31 * - The read/write/probe functions try to identify unconfigured bus. 32 * - Status functions now read irqstatus_raw as per TRM guidelines 33 * (except for OMAP243X and OMAP34XX). 34 * - Driver now supports up to I2C5 (OMAP5). 35 * 36 * Copyright (c) 2014 Hannes Schmelzer <oe5hpm@oevsv.at>, B&R 37 * - Added support for set_speed 38 * 39 */ 40 41 #include <common.h> 42 #include <dm.h> 43 #include <i2c.h> 44 45 #include <asm/arch/i2c.h> 46 #include <asm/io.h> 47 48 #include "omap24xx_i2c.h" 49 50 DECLARE_GLOBAL_DATA_PTR; 51 52 #define I2C_TIMEOUT 1000 53 54 /* Absolutely safe for status update at 100 kHz I2C: */ 55 #define I2C_WAIT 200 56 57 struct omap_i2c { 58 struct udevice *clk; 59 struct i2c *regs; 60 unsigned int speed; 61 int waitdelay; 62 int clk_id; 63 }; 64 65 static int omap24_i2c_findpsc(u32 *pscl, u32 *psch, uint speed) 66 { 67 unsigned long internal_clk = 0, fclk; 68 unsigned int prescaler; 69 70 /* 71 * This method is only called for Standard and Fast Mode speeds 72 * 73 * For some TI SoCs it is explicitly written in TRM (e,g, SPRUHZ6G, 74 * page 5685, Table 24-7) 75 * that the internal I2C clock (after prescaler) should be between 76 * 7-12 MHz (at least for Fast Mode (FS)). 77 * 78 * Such approach is used in v4.9 Linux kernel in: 79 * ./drivers/i2c/busses/i2c-omap.c (omap_i2c_init function). 80 */ 81 82 speed /= 1000; /* convert speed to kHz */ 83 84 if (speed > 100) 85 internal_clk = 9600; 86 else 87 internal_clk = 4000; 88 89 fclk = I2C_IP_CLK / 1000; 90 prescaler = fclk / internal_clk; 91 prescaler = prescaler - 1; 92 93 if (speed > 100) { 94 unsigned long scl; 95 96 /* Fast mode */ 97 scl = internal_clk / speed; 98 *pscl = scl - (scl / 3) - I2C_FASTSPEED_SCLL_TRIM; 99 *psch = (scl / 3) - I2C_FASTSPEED_SCLH_TRIM; 100 } else { 101 /* Standard mode */ 102 *pscl = internal_clk / (speed * 2) - I2C_FASTSPEED_SCLL_TRIM; 103 *psch = internal_clk / (speed * 2) - I2C_FASTSPEED_SCLH_TRIM; 104 } 105 106 debug("%s: speed [kHz]: %d psc: 0x%x sscl: 0x%x ssch: 0x%x\n", 107 __func__, speed, prescaler, *pscl, *psch); 108 109 if (*pscl <= 0 || *psch <= 0 || prescaler <= 0) 110 return -EINVAL; 111 112 return prescaler; 113 } 114 115 /* 116 * Wait for the bus to be free by checking the Bus Busy (BB) 117 * bit to become clear 118 */ 119 static int wait_for_bb(struct i2c *i2c_base, int waitdelay) 120 { 121 int timeout = I2C_TIMEOUT; 122 u16 stat; 123 124 writew(0xFFFF, &i2c_base->stat); /* clear current interrupts...*/ 125 #if defined(CONFIG_OMAP34XX) 126 while ((stat = readw(&i2c_base->stat) & I2C_STAT_BB) && timeout--) { 127 #else 128 /* Read RAW status */ 129 while ((stat = readw(&i2c_base->irqstatus_raw) & 130 I2C_STAT_BB) && timeout--) { 131 #endif 132 writew(stat, &i2c_base->stat); 133 udelay(waitdelay); 134 } 135 136 if (timeout <= 0) { 137 printf("Timed out in wait_for_bb: status=%04x\n", 138 stat); 139 return 1; 140 } 141 writew(0xFFFF, &i2c_base->stat); /* clear delayed stuff*/ 142 return 0; 143 } 144 145 /* 146 * Wait for the I2C controller to complete current action 147 * and update status 148 */ 149 static u16 wait_for_event(struct i2c *i2c_base, int waitdelay) 150 { 151 u16 status; 152 int timeout = I2C_TIMEOUT; 153 154 do { 155 udelay(waitdelay); 156 #if defined(CONFIG_OMAP34XX) 157 status = readw(&i2c_base->stat); 158 #else 159 /* Read RAW status */ 160 status = readw(&i2c_base->irqstatus_raw); 161 #endif 162 } while (!(status & 163 (I2C_STAT_ROVR | I2C_STAT_XUDF | I2C_STAT_XRDY | 164 I2C_STAT_RRDY | I2C_STAT_ARDY | I2C_STAT_NACK | 165 I2C_STAT_AL)) && timeout--); 166 167 if (timeout <= 0) { 168 printf("Timed out in wait_for_event: status=%04x\n", 169 status); 170 /* 171 * If status is still 0 here, probably the bus pads have 172 * not been configured for I2C, and/or pull-ups are missing. 173 */ 174 printf("Check if pads/pull-ups of bus are properly configured\n"); 175 writew(0xFFFF, &i2c_base->stat); 176 status = 0; 177 } 178 179 return status; 180 } 181 182 static void flush_fifo(struct i2c *i2c_base) 183 { 184 u16 stat; 185 186 /* 187 * note: if you try and read data when its not there or ready 188 * you get a bus error 189 */ 190 while (1) { 191 stat = readw(&i2c_base->stat); 192 if (stat == I2C_STAT_RRDY) { 193 readb(&i2c_base->data); 194 writew(I2C_STAT_RRDY, &i2c_base->stat); 195 udelay(1000); 196 } else 197 break; 198 } 199 } 200 201 static int __omap24_i2c_setspeed(struct i2c *i2c_base, uint speed, 202 int *waitdelay) 203 { 204 int psc, fsscll = 0, fssclh = 0; 205 int hsscll = 0, hssclh = 0; 206 u32 scll = 0, sclh = 0; 207 208 if (speed >= OMAP_I2C_HIGH_SPEED) { 209 /* High speed */ 210 psc = I2C_IP_CLK / I2C_INTERNAL_SAMPLING_CLK; 211 psc -= 1; 212 if (psc < I2C_PSC_MIN) { 213 printf("Error : I2C unsupported prescaler %d\n", psc); 214 return -1; 215 } 216 217 /* For first phase of HS mode */ 218 fsscll = I2C_INTERNAL_SAMPLING_CLK / (2 * speed); 219 220 fssclh = fsscll; 221 222 fsscll -= I2C_HIGHSPEED_PHASE_ONE_SCLL_TRIM; 223 fssclh -= I2C_HIGHSPEED_PHASE_ONE_SCLH_TRIM; 224 if (((fsscll < 0) || (fssclh < 0)) || 225 ((fsscll > 255) || (fssclh > 255))) { 226 puts("Error : I2C initializing first phase clock\n"); 227 return -1; 228 } 229 230 /* For second phase of HS mode */ 231 hsscll = hssclh = I2C_INTERNAL_SAMPLING_CLK / (2 * speed); 232 233 hsscll -= I2C_HIGHSPEED_PHASE_TWO_SCLL_TRIM; 234 hssclh -= I2C_HIGHSPEED_PHASE_TWO_SCLH_TRIM; 235 if (((fsscll < 0) || (fssclh < 0)) || 236 ((fsscll > 255) || (fssclh > 255))) { 237 puts("Error : I2C initializing second phase clock\n"); 238 return -1; 239 } 240 241 scll = (unsigned int)hsscll << 8 | (unsigned int)fsscll; 242 sclh = (unsigned int)hssclh << 8 | (unsigned int)fssclh; 243 244 } else { 245 /* Standard and fast speed */ 246 psc = omap24_i2c_findpsc(&scll, &sclh, speed); 247 if (0 > psc) { 248 puts("Error : I2C initializing clock\n"); 249 return -1; 250 } 251 } 252 253 *waitdelay = (10000000 / speed) * 2; /* wait for 20 clkperiods */ 254 writew(0, &i2c_base->con); 255 writew(psc, &i2c_base->psc); 256 writew(scll, &i2c_base->scll); 257 writew(sclh, &i2c_base->sclh); 258 writew(I2C_CON_EN, &i2c_base->con); 259 writew(0xFFFF, &i2c_base->stat); /* clear all pending status */ 260 261 return 0; 262 } 263 264 static void omap24_i2c_deblock(struct i2c *i2c_base) 265 { 266 int i; 267 u16 systest; 268 u16 orgsystest; 269 270 /* set test mode ST_EN = 1 */ 271 orgsystest = readw(&i2c_base->systest); 272 systest = orgsystest; 273 /* enable testmode */ 274 systest |= I2C_SYSTEST_ST_EN; 275 writew(systest, &i2c_base->systest); 276 systest &= ~I2C_SYSTEST_TMODE_MASK; 277 systest |= 3 << I2C_SYSTEST_TMODE_SHIFT; 278 writew(systest, &i2c_base->systest); 279 280 /* set SCL, SDA = 1 */ 281 systest |= I2C_SYSTEST_SCL_O | I2C_SYSTEST_SDA_O; 282 writew(systest, &i2c_base->systest); 283 udelay(10); 284 285 /* toggle scl 9 clocks */ 286 for (i = 0; i < 9; i++) { 287 /* SCL = 0 */ 288 systest &= ~I2C_SYSTEST_SCL_O; 289 writew(systest, &i2c_base->systest); 290 udelay(10); 291 /* SCL = 1 */ 292 systest |= I2C_SYSTEST_SCL_O; 293 writew(systest, &i2c_base->systest); 294 udelay(10); 295 } 296 297 /* send stop */ 298 systest &= ~I2C_SYSTEST_SDA_O; 299 writew(systest, &i2c_base->systest); 300 udelay(10); 301 systest |= I2C_SYSTEST_SCL_O | I2C_SYSTEST_SDA_O; 302 writew(systest, &i2c_base->systest); 303 udelay(10); 304 305 /* restore original mode */ 306 writew(orgsystest, &i2c_base->systest); 307 } 308 309 static void __omap24_i2c_init(struct i2c *i2c_base, int speed, int slaveadd, 310 int *waitdelay) 311 { 312 int timeout = I2C_TIMEOUT; 313 int deblock = 1; 314 315 retry: 316 if (readw(&i2c_base->con) & I2C_CON_EN) { 317 writew(0, &i2c_base->con); 318 udelay(50000); 319 } 320 321 writew(0x2, &i2c_base->sysc); /* for ES2 after soft reset */ 322 udelay(1000); 323 324 writew(I2C_CON_EN, &i2c_base->con); 325 while (!(readw(&i2c_base->syss) & I2C_SYSS_RDONE) && timeout--) { 326 if (timeout <= 0) { 327 puts("ERROR: Timeout in soft-reset\n"); 328 return; 329 } 330 udelay(1000); 331 } 332 333 if (0 != __omap24_i2c_setspeed(i2c_base, speed, waitdelay)) { 334 printf("ERROR: failed to setup I2C bus-speed!\n"); 335 return; 336 } 337 338 /* own address */ 339 writew(slaveadd, &i2c_base->oa); 340 341 #if defined(CONFIG_OMAP34XX) 342 /* 343 * Have to enable interrupts for OMAP2/3, these IPs don't have 344 * an 'irqstatus_raw' register and we shall have to poll 'stat' 345 */ 346 writew(I2C_IE_XRDY_IE | I2C_IE_RRDY_IE | I2C_IE_ARDY_IE | 347 I2C_IE_NACK_IE | I2C_IE_AL_IE, &i2c_base->ie); 348 #endif 349 udelay(1000); 350 flush_fifo(i2c_base); 351 writew(0xFFFF, &i2c_base->stat); 352 353 /* Handle possible failed I2C state */ 354 if (wait_for_bb(i2c_base, *waitdelay)) 355 if (deblock == 1) { 356 omap24_i2c_deblock(i2c_base); 357 deblock = 0; 358 goto retry; 359 } 360 } 361 362 /* 363 * i2c_probe: Use write access. Allows to identify addresses that are 364 * write-only (like the config register of dual-port EEPROMs) 365 */ 366 static int __omap24_i2c_probe(struct i2c *i2c_base, int waitdelay, uchar chip) 367 { 368 u16 status; 369 int res = 1; /* default = fail */ 370 371 if (chip == readw(&i2c_base->oa)) 372 return res; 373 374 /* Wait until bus is free */ 375 if (wait_for_bb(i2c_base, waitdelay)) 376 return res; 377 378 /* No data transfer, slave addr only */ 379 writew(chip, &i2c_base->sa); 380 /* Stop bit needed here */ 381 writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_TRX | 382 I2C_CON_STP, &i2c_base->con); 383 384 status = wait_for_event(i2c_base, waitdelay); 385 386 if ((status & ~I2C_STAT_XRDY) == 0 || (status & I2C_STAT_AL)) { 387 /* 388 * With current high-level command implementation, notifying 389 * the user shall flood the console with 127 messages. If 390 * silent exit is desired upon unconfigured bus, remove the 391 * following 'if' section: 392 */ 393 if (status == I2C_STAT_XRDY) 394 printf("i2c_probe: pads on bus probably not configured (status=0x%x)\n", 395 status); 396 397 goto pr_exit; 398 } 399 400 /* Check for ACK (!NAK) */ 401 if (!(status & I2C_STAT_NACK)) { 402 res = 0; /* Device found */ 403 udelay(waitdelay);/* Required by AM335X in SPL */ 404 /* Abort transfer (force idle state) */ 405 writew(I2C_CON_MST | I2C_CON_TRX, &i2c_base->con); /* Reset */ 406 udelay(1000); 407 writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_TRX | 408 I2C_CON_STP, &i2c_base->con); /* STP */ 409 } 410 pr_exit: 411 flush_fifo(i2c_base); 412 writew(0xFFFF, &i2c_base->stat); 413 return res; 414 } 415 416 /* 417 * i2c_read: Function now uses a single I2C read transaction with bulk transfer 418 * of the requested number of bytes (note that the 'i2c md' command 419 * limits this to 16 bytes anyway). If CONFIG_I2C_REPEATED_START is 420 * defined in the board config header, this transaction shall be with 421 * Repeated Start (Sr) between the address and data phases; otherwise 422 * Stop-Start (P-S) shall be used (some I2C chips do require a P-S). 423 * The address (reg offset) may be 0, 1 or 2 bytes long. 424 * Function now reads correctly from chips that return more than one 425 * byte of data per addressed register (like TI temperature sensors), 426 * or that do not need a register address at all (such as some clock 427 * distributors). 428 */ 429 static int __omap24_i2c_read(struct i2c *i2c_base, int waitdelay, uchar chip, 430 uint addr, int alen, uchar *buffer, int len) 431 { 432 int i2c_error = 0; 433 u16 status; 434 435 if (alen < 0) { 436 puts("I2C read: addr len < 0\n"); 437 return 1; 438 } 439 if (len < 0) { 440 puts("I2C read: data len < 0\n"); 441 return 1; 442 } 443 if (buffer == NULL) { 444 puts("I2C read: NULL pointer passed\n"); 445 return 1; 446 } 447 448 if (alen > 2) { 449 printf("I2C read: addr len %d not supported\n", alen); 450 return 1; 451 } 452 453 if (addr + len > (1 << 16)) { 454 puts("I2C read: address out of range\n"); 455 return 1; 456 } 457 458 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW 459 /* 460 * EEPROM chips that implement "address overflow" are ones 461 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of 462 * address and the extra bits end up in the "chip address" 463 * bit slots. This makes a 24WC08 (1Kbyte) chip look like 464 * four 256 byte chips. 465 * 466 * Note that we consider the length of the address field to 467 * still be one byte because the extra address bits are 468 * hidden in the chip address. 469 */ 470 if (alen > 0) 471 chip |= ((addr >> (alen * 8)) & 472 CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW); 473 #endif 474 475 /* Wait until bus not busy */ 476 if (wait_for_bb(i2c_base, waitdelay)) 477 return 1; 478 479 /* Zero, one or two bytes reg address (offset) */ 480 writew(alen, &i2c_base->cnt); 481 /* Set slave address */ 482 writew(chip, &i2c_base->sa); 483 484 if (alen) { 485 /* Must write reg offset first */ 486 #ifdef CONFIG_I2C_REPEATED_START 487 /* No stop bit, use Repeated Start (Sr) */ 488 writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | 489 I2C_CON_TRX, &i2c_base->con); 490 #else 491 /* Stop - Start (P-S) */ 492 writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_STP | 493 I2C_CON_TRX, &i2c_base->con); 494 #endif 495 /* Send register offset */ 496 while (1) { 497 status = wait_for_event(i2c_base, waitdelay); 498 /* Try to identify bus that is not padconf'd for I2C */ 499 if (status == I2C_STAT_XRDY) { 500 i2c_error = 2; 501 printf("i2c_read (addr phase): pads on bus probably not configured (status=0x%x)\n", 502 status); 503 goto rd_exit; 504 } 505 if (status == 0 || (status & I2C_STAT_NACK)) { 506 i2c_error = 1; 507 printf("i2c_read: error waiting for addr ACK (status=0x%x)\n", 508 status); 509 goto rd_exit; 510 } 511 if (alen) { 512 if (status & I2C_STAT_XRDY) { 513 alen--; 514 /* Do we have to use byte access? */ 515 writeb((addr >> (8 * alen)) & 0xff, 516 &i2c_base->data); 517 writew(I2C_STAT_XRDY, &i2c_base->stat); 518 } 519 } 520 if (status & I2C_STAT_ARDY) { 521 writew(I2C_STAT_ARDY, &i2c_base->stat); 522 break; 523 } 524 } 525 } 526 /* Set slave address */ 527 writew(chip, &i2c_base->sa); 528 /* Read len bytes from slave */ 529 writew(len, &i2c_base->cnt); 530 /* Need stop bit here */ 531 writew(I2C_CON_EN | I2C_CON_MST | 532 I2C_CON_STT | I2C_CON_STP, 533 &i2c_base->con); 534 535 /* Receive data */ 536 while (1) { 537 status = wait_for_event(i2c_base, waitdelay); 538 /* 539 * Try to identify bus that is not padconf'd for I2C. This 540 * state could be left over from previous transactions if 541 * the address phase is skipped due to alen=0. 542 */ 543 if (status == I2C_STAT_XRDY) { 544 i2c_error = 2; 545 printf("i2c_read (data phase): pads on bus probably not configured (status=0x%x)\n", 546 status); 547 goto rd_exit; 548 } 549 if (status == 0 || (status & I2C_STAT_NACK)) { 550 i2c_error = 1; 551 goto rd_exit; 552 } 553 if (status & I2C_STAT_RRDY) { 554 *buffer++ = readb(&i2c_base->data); 555 writew(I2C_STAT_RRDY, &i2c_base->stat); 556 } 557 if (status & I2C_STAT_ARDY) { 558 writew(I2C_STAT_ARDY, &i2c_base->stat); 559 break; 560 } 561 } 562 563 rd_exit: 564 flush_fifo(i2c_base); 565 writew(0xFFFF, &i2c_base->stat); 566 return i2c_error; 567 } 568 569 /* i2c_write: Address (reg offset) may be 0, 1 or 2 bytes long. */ 570 static int __omap24_i2c_write(struct i2c *i2c_base, int waitdelay, uchar chip, 571 uint addr, int alen, uchar *buffer, int len) 572 { 573 int i; 574 u16 status; 575 int i2c_error = 0; 576 int timeout = I2C_TIMEOUT; 577 578 if (alen < 0) { 579 puts("I2C write: addr len < 0\n"); 580 return 1; 581 } 582 583 if (len < 0) { 584 puts("I2C write: data len < 0\n"); 585 return 1; 586 } 587 588 if (buffer == NULL) { 589 puts("I2C write: NULL pointer passed\n"); 590 return 1; 591 } 592 593 if (alen > 2) { 594 printf("I2C write: addr len %d not supported\n", alen); 595 return 1; 596 } 597 598 if (addr + len > (1 << 16)) { 599 printf("I2C write: address 0x%x + 0x%x out of range\n", 600 addr, len); 601 return 1; 602 } 603 604 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW 605 /* 606 * EEPROM chips that implement "address overflow" are ones 607 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of 608 * address and the extra bits end up in the "chip address" 609 * bit slots. This makes a 24WC08 (1Kbyte) chip look like 610 * four 256 byte chips. 611 * 612 * Note that we consider the length of the address field to 613 * still be one byte because the extra address bits are 614 * hidden in the chip address. 615 */ 616 if (alen > 0) 617 chip |= ((addr >> (alen * 8)) & 618 CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW); 619 #endif 620 621 /* Wait until bus not busy */ 622 if (wait_for_bb(i2c_base, waitdelay)) 623 return 1; 624 625 /* Start address phase - will write regoffset + len bytes data */ 626 writew(alen + len, &i2c_base->cnt); 627 /* Set slave address */ 628 writew(chip, &i2c_base->sa); 629 /* Stop bit needed here */ 630 writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_TRX | 631 I2C_CON_STP, &i2c_base->con); 632 633 while (alen) { 634 /* Must write reg offset (one or two bytes) */ 635 status = wait_for_event(i2c_base, waitdelay); 636 /* Try to identify bus that is not padconf'd for I2C */ 637 if (status == I2C_STAT_XRDY) { 638 i2c_error = 2; 639 printf("i2c_write: pads on bus probably not configured (status=0x%x)\n", 640 status); 641 goto wr_exit; 642 } 643 if (status == 0 || (status & I2C_STAT_NACK)) { 644 i2c_error = 1; 645 printf("i2c_write: error waiting for addr ACK (status=0x%x)\n", 646 status); 647 goto wr_exit; 648 } 649 if (status & I2C_STAT_XRDY) { 650 alen--; 651 writeb((addr >> (8 * alen)) & 0xff, &i2c_base->data); 652 writew(I2C_STAT_XRDY, &i2c_base->stat); 653 } else { 654 i2c_error = 1; 655 printf("i2c_write: bus not ready for addr Tx (status=0x%x)\n", 656 status); 657 goto wr_exit; 658 } 659 } 660 /* Address phase is over, now write data */ 661 for (i = 0; i < len; i++) { 662 status = wait_for_event(i2c_base, waitdelay); 663 if (status == 0 || (status & I2C_STAT_NACK)) { 664 i2c_error = 1; 665 printf("i2c_write: error waiting for data ACK (status=0x%x)\n", 666 status); 667 goto wr_exit; 668 } 669 if (status & I2C_STAT_XRDY) { 670 writeb(buffer[i], &i2c_base->data); 671 writew(I2C_STAT_XRDY, &i2c_base->stat); 672 } else { 673 i2c_error = 1; 674 printf("i2c_write: bus not ready for data Tx (i=%d)\n", 675 i); 676 goto wr_exit; 677 } 678 } 679 /* 680 * poll ARDY bit for making sure that last byte really has been 681 * transferred on the bus. 682 */ 683 do { 684 status = wait_for_event(i2c_base, waitdelay); 685 } while (!(status & I2C_STAT_ARDY) && timeout--); 686 if (timeout <= 0) 687 printf("i2c_write: timed out writig last byte!\n"); 688 689 wr_exit: 690 flush_fifo(i2c_base); 691 writew(0xFFFF, &i2c_base->stat); 692 return i2c_error; 693 } 694 695 #ifndef CONFIG_DM_I2C 696 /* 697 * The legacy I2C functions. These need to get removed once 698 * all users of this driver are converted to DM. 699 */ 700 static struct i2c *omap24_get_base(struct i2c_adapter *adap) 701 { 702 switch (adap->hwadapnr) { 703 case 0: 704 return (struct i2c *)I2C_BASE1; 705 break; 706 case 1: 707 return (struct i2c *)I2C_BASE2; 708 break; 709 #if (I2C_BUS_MAX > 2) 710 case 2: 711 return (struct i2c *)I2C_BASE3; 712 break; 713 #if (I2C_BUS_MAX > 3) 714 case 3: 715 return (struct i2c *)I2C_BASE4; 716 break; 717 #if (I2C_BUS_MAX > 4) 718 case 4: 719 return (struct i2c *)I2C_BASE5; 720 break; 721 #endif 722 #endif 723 #endif 724 default: 725 printf("wrong hwadapnr: %d\n", adap->hwadapnr); 726 break; 727 } 728 return NULL; 729 } 730 731 732 static int omap24_i2c_read(struct i2c_adapter *adap, uchar chip, uint addr, 733 int alen, uchar *buffer, int len) 734 { 735 struct i2c *i2c_base = omap24_get_base(adap); 736 737 return __omap24_i2c_read(i2c_base, adap->waitdelay, chip, addr, 738 alen, buffer, len); 739 } 740 741 742 static int omap24_i2c_write(struct i2c_adapter *adap, uchar chip, uint addr, 743 int alen, uchar *buffer, int len) 744 { 745 struct i2c *i2c_base = omap24_get_base(adap); 746 747 return __omap24_i2c_write(i2c_base, adap->waitdelay, chip, addr, 748 alen, buffer, len); 749 } 750 751 static uint omap24_i2c_setspeed(struct i2c_adapter *adap, uint speed) 752 { 753 struct i2c *i2c_base = omap24_get_base(adap); 754 int ret; 755 756 ret = __omap24_i2c_setspeed(i2c_base, speed, &adap->waitdelay); 757 if (ret) { 758 error("%s: set i2c speed failed\n", __func__); 759 return ret; 760 } 761 762 adap->speed = speed; 763 764 return 0; 765 } 766 767 static void omap24_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd) 768 { 769 struct i2c *i2c_base = omap24_get_base(adap); 770 771 return __omap24_i2c_init(i2c_base, speed, slaveadd, &adap->waitdelay); 772 } 773 774 static int omap24_i2c_probe(struct i2c_adapter *adap, uchar chip) 775 { 776 struct i2c *i2c_base = omap24_get_base(adap); 777 778 return __omap24_i2c_probe(i2c_base, adap->waitdelay, chip); 779 } 780 781 #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED1) 782 #define CONFIG_SYS_OMAP24_I2C_SPEED1 CONFIG_SYS_OMAP24_I2C_SPEED 783 #endif 784 #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE1) 785 #define CONFIG_SYS_OMAP24_I2C_SLAVE1 CONFIG_SYS_OMAP24_I2C_SLAVE 786 #endif 787 788 U_BOOT_I2C_ADAP_COMPLETE(omap24_0, omap24_i2c_init, omap24_i2c_probe, 789 omap24_i2c_read, omap24_i2c_write, omap24_i2c_setspeed, 790 CONFIG_SYS_OMAP24_I2C_SPEED, 791 CONFIG_SYS_OMAP24_I2C_SLAVE, 792 0) 793 U_BOOT_I2C_ADAP_COMPLETE(omap24_1, omap24_i2c_init, omap24_i2c_probe, 794 omap24_i2c_read, omap24_i2c_write, omap24_i2c_setspeed, 795 CONFIG_SYS_OMAP24_I2C_SPEED1, 796 CONFIG_SYS_OMAP24_I2C_SLAVE1, 797 1) 798 #if (I2C_BUS_MAX > 2) 799 #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED2) 800 #define CONFIG_SYS_OMAP24_I2C_SPEED2 CONFIG_SYS_OMAP24_I2C_SPEED 801 #endif 802 #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE2) 803 #define CONFIG_SYS_OMAP24_I2C_SLAVE2 CONFIG_SYS_OMAP24_I2C_SLAVE 804 #endif 805 806 U_BOOT_I2C_ADAP_COMPLETE(omap24_2, omap24_i2c_init, omap24_i2c_probe, 807 omap24_i2c_read, omap24_i2c_write, NULL, 808 CONFIG_SYS_OMAP24_I2C_SPEED2, 809 CONFIG_SYS_OMAP24_I2C_SLAVE2, 810 2) 811 #if (I2C_BUS_MAX > 3) 812 #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED3) 813 #define CONFIG_SYS_OMAP24_I2C_SPEED3 CONFIG_SYS_OMAP24_I2C_SPEED 814 #endif 815 #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE3) 816 #define CONFIG_SYS_OMAP24_I2C_SLAVE3 CONFIG_SYS_OMAP24_I2C_SLAVE 817 #endif 818 819 U_BOOT_I2C_ADAP_COMPLETE(omap24_3, omap24_i2c_init, omap24_i2c_probe, 820 omap24_i2c_read, omap24_i2c_write, NULL, 821 CONFIG_SYS_OMAP24_I2C_SPEED3, 822 CONFIG_SYS_OMAP24_I2C_SLAVE3, 823 3) 824 #if (I2C_BUS_MAX > 4) 825 #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED4) 826 #define CONFIG_SYS_OMAP24_I2C_SPEED4 CONFIG_SYS_OMAP24_I2C_SPEED 827 #endif 828 #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE4) 829 #define CONFIG_SYS_OMAP24_I2C_SLAVE4 CONFIG_SYS_OMAP24_I2C_SLAVE 830 #endif 831 832 U_BOOT_I2C_ADAP_COMPLETE(omap24_4, omap24_i2c_init, omap24_i2c_probe, 833 omap24_i2c_read, omap24_i2c_write, NULL, 834 CONFIG_SYS_OMAP24_I2C_SPEED4, 835 CONFIG_SYS_OMAP24_I2C_SLAVE4, 836 4) 837 #endif 838 #endif 839 #endif 840 841 #else /* CONFIG_DM_I2C */ 842 843 static int omap_i2c_xfer(struct udevice *bus, struct i2c_msg *msg, int nmsgs) 844 { 845 struct omap_i2c *priv = dev_get_priv(bus); 846 int ret; 847 848 debug("i2c_xfer: %d messages\n", nmsgs); 849 for (; nmsgs > 0; nmsgs--, msg++) { 850 debug("i2c_xfer: chip=0x%x, len=0x%x\n", msg->addr, msg->len); 851 if (msg->flags & I2C_M_RD) { 852 ret = __omap24_i2c_read(priv->regs, priv->waitdelay, 853 msg->addr, 0, 0, msg->buf, 854 msg->len); 855 } else { 856 ret = __omap24_i2c_write(priv->regs, priv->waitdelay, 857 msg->addr, 0, 0, msg->buf, 858 msg->len); 859 } 860 if (ret) { 861 debug("i2c_write: error sending\n"); 862 return -EREMOTEIO; 863 } 864 } 865 866 return 0; 867 } 868 869 static int omap_i2c_set_bus_speed(struct udevice *bus, unsigned int speed) 870 { 871 struct omap_i2c *priv = dev_get_priv(bus); 872 873 priv->speed = speed; 874 875 return __omap24_i2c_setspeed(priv->regs, speed, &priv->waitdelay); 876 } 877 878 static int omap_i2c_probe_chip(struct udevice *bus, uint chip_addr, 879 uint chip_flags) 880 { 881 struct omap_i2c *priv = dev_get_priv(bus); 882 883 return __omap24_i2c_probe(priv->regs, priv->waitdelay, chip_addr); 884 } 885 886 static int omap_i2c_probe(struct udevice *bus) 887 { 888 struct omap_i2c *priv = dev_get_priv(bus); 889 890 __omap24_i2c_init(priv->regs, priv->speed, 0, &priv->waitdelay); 891 892 return 0; 893 } 894 895 static int omap_i2c_ofdata_to_platdata(struct udevice *bus) 896 { 897 struct omap_i2c *priv = dev_get_priv(bus); 898 899 priv->regs = map_physmem(dev_get_addr(bus), sizeof(void *), 900 MAP_NOCACHE); 901 priv->speed = CONFIG_SYS_OMAP24_I2C_SPEED; 902 903 return 0; 904 } 905 906 static const struct dm_i2c_ops omap_i2c_ops = { 907 .xfer = omap_i2c_xfer, 908 .probe_chip = omap_i2c_probe_chip, 909 .set_bus_speed = omap_i2c_set_bus_speed, 910 }; 911 912 static const struct udevice_id omap_i2c_ids[] = { 913 { .compatible = "ti,omap3-i2c" }, 914 { .compatible = "ti,omap4-i2c" }, 915 { } 916 }; 917 918 U_BOOT_DRIVER(i2c_omap) = { 919 .name = "i2c_omap", 920 .id = UCLASS_I2C, 921 .of_match = omap_i2c_ids, 922 .ofdata_to_platdata = omap_i2c_ofdata_to_platdata, 923 .probe = omap_i2c_probe, 924 .priv_auto_alloc_size = sizeof(struct omap_i2c), 925 .ops = &omap_i2c_ops, 926 .flags = DM_FLAG_PRE_RELOC, 927 }; 928 929 #endif /* CONFIG_DM_I2C */ 930