xref: /openbmc/u-boot/drivers/dma/keystone_nav.c (revision ef4547176d0fa4d43d060a58c0c902add7fe0aed)
1 /*
2  * Multicore Navigator driver for TI Keystone 2 devices.
3  *
4  * (C) Copyright 2012-2014
5  *     Texas Instruments Incorporated, <www.ti.com>
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9 #include <common.h>
10 #include <asm/io.h>
11 #include <asm/ti-common/keystone_nav.h>
12 
13 struct qm_config qm_memmap = {
14 	.stat_cfg	= CONFIG_KSNAV_QM_QUEUE_STATUS_BASE,
15 	.queue		= (void *)CONFIG_KSNAV_QM_MANAGER_QUEUES_BASE,
16 	.mngr_vbusm	= CONFIG_KSNAV_QM_BASE_ADDRESS,
17 	.i_lram		= CONFIG_KSNAV_QM_LINK_RAM_BASE,
18 	.proxy		= (void *)CONFIG_KSNAV_QM_MANAGER_Q_PROXY_BASE,
19 	.status_ram	= CONFIG_KSNAV_QM_STATUS_RAM_BASE,
20 	.mngr_cfg	= (void *)CONFIG_KSNAV_QM_CONF_BASE,
21 	.intd_cfg	= CONFIG_KSNAV_QM_INTD_CONF_BASE,
22 	.desc_mem	= (void *)CONFIG_KSNAV_QM_DESC_SETUP_BASE,
23 	.region_num	= CONFIG_KSNAV_QM_REGION_NUM,
24 	.pdsp_cmd	= CONFIG_KSNAV_QM_PDSP1_CMD_BASE,
25 	.pdsp_ctl	= CONFIG_KSNAV_QM_PDSP1_CTRL_BASE,
26 	.pdsp_iram	= CONFIG_KSNAV_QM_PDSP1_IRAM_BASE,
27 	.qpool_num	= CONFIG_KSNAV_QM_QPOOL_NUM,
28 };
29 
30 /*
31  * We are going to use only one type of descriptors - host packet
32  * descriptors. We staticaly allocate memory for them here
33  */
34 struct qm_host_desc desc_pool[HDESC_NUM] __aligned(sizeof(struct qm_host_desc));
35 
36 static struct qm_config *qm_cfg;
37 
38 inline int num_of_desc_to_reg(int num_descr)
39 {
40 	int j, num;
41 
42 	for (j = 0, num = 32; j < 15; j++, num *= 2) {
43 		if (num_descr <= num)
44 			return j;
45 	}
46 
47 	return 15;
48 }
49 
50 int _qm_init(struct qm_config *cfg)
51 {
52 	u32 j;
53 
54 	qm_cfg = cfg;
55 
56 	qm_cfg->mngr_cfg->link_ram_base0	= qm_cfg->i_lram;
57 	qm_cfg->mngr_cfg->link_ram_size0	= HDESC_NUM * 8;
58 	qm_cfg->mngr_cfg->link_ram_base1	= 0;
59 	qm_cfg->mngr_cfg->link_ram_size1	= 0;
60 	qm_cfg->mngr_cfg->link_ram_base2	= 0;
61 
62 	qm_cfg->desc_mem[0].base_addr = (u32)desc_pool;
63 	qm_cfg->desc_mem[0].start_idx = 0;
64 	qm_cfg->desc_mem[0].desc_reg_size =
65 		(((sizeof(struct qm_host_desc) >> 4) - 1) << 16) |
66 		num_of_desc_to_reg(HDESC_NUM);
67 
68 	memset(desc_pool, 0, sizeof(desc_pool));
69 	for (j = 0; j < HDESC_NUM; j++)
70 		qm_push(&desc_pool[j], qm_cfg->qpool_num);
71 
72 	return QM_OK;
73 }
74 
75 int qm_init(void)
76 {
77 	return _qm_init(&qm_memmap);
78 }
79 
80 void qm_close(void)
81 {
82 	u32	j;
83 
84 	if (qm_cfg == NULL)
85 		return;
86 
87 	queue_close(qm_cfg->qpool_num);
88 
89 	qm_cfg->mngr_cfg->link_ram_base0	= 0;
90 	qm_cfg->mngr_cfg->link_ram_size0	= 0;
91 	qm_cfg->mngr_cfg->link_ram_base1	= 0;
92 	qm_cfg->mngr_cfg->link_ram_size1	= 0;
93 	qm_cfg->mngr_cfg->link_ram_base2	= 0;
94 
95 	for (j = 0; j < qm_cfg->region_num; j++) {
96 		qm_cfg->desc_mem[j].base_addr = 0;
97 		qm_cfg->desc_mem[j].start_idx = 0;
98 		qm_cfg->desc_mem[j].desc_reg_size = 0;
99 	}
100 
101 	qm_cfg = NULL;
102 }
103 
104 void qm_push(struct qm_host_desc *hd, u32 qnum)
105 {
106 	u32 regd;
107 
108 	if (!qm_cfg)
109 		return;
110 
111 	cpu_to_bus((u32 *)hd, sizeof(struct qm_host_desc)/4);
112 	regd = (u32)hd | ((sizeof(struct qm_host_desc) >> 4) - 1);
113 	writel(regd, &qm_cfg->queue[qnum].ptr_size_thresh);
114 }
115 
116 void qm_buff_push(struct qm_host_desc *hd, u32 qnum,
117 		    void *buff_ptr, u32 buff_len)
118 {
119 	hd->orig_buff_len = buff_len;
120 	hd->buff_len = buff_len;
121 	hd->orig_buff_ptr = (u32)buff_ptr;
122 	hd->buff_ptr = (u32)buff_ptr;
123 	qm_push(hd, qnum);
124 }
125 
126 struct qm_host_desc *qm_pop(u32 qnum)
127 {
128 	u32 uhd;
129 
130 	if (!qm_cfg)
131 		return NULL;
132 
133 	uhd = readl(&qm_cfg->queue[qnum].ptr_size_thresh) & ~0xf;
134 	if (uhd)
135 		cpu_to_bus((u32 *)uhd, sizeof(struct qm_host_desc)/4);
136 
137 	return (struct qm_host_desc *)uhd;
138 }
139 
140 struct qm_host_desc *qm_pop_from_free_pool(void)
141 {
142 	if (!qm_cfg)
143 		return NULL;
144 
145 	return qm_pop(qm_cfg->qpool_num);
146 }
147 
148 void queue_close(u32 qnum)
149 {
150 	struct qm_host_desc *hd;
151 
152 	while ((hd = qm_pop(qnum)))
153 		;
154 }
155 
156 /**
157  * DMA API
158  */
159 struct pktdma_cfg netcp_pktdma = {
160 	.global		= (void *)CONFIG_KSNAV_NETCP_PDMA_CTRL_BASE,
161 	.tx_ch		= (void *)CONFIG_KSNAV_NETCP_PDMA_TX_BASE,
162 	.tx_ch_num	= CONFIG_KSNAV_NETCP_PDMA_TX_CH_NUM,
163 	.rx_ch		= (void *)CONFIG_KSNAV_NETCP_PDMA_RX_BASE,
164 	.rx_ch_num	= CONFIG_KSNAV_NETCP_PDMA_RX_CH_NUM,
165 	.tx_sched	= (u32 *)CONFIG_KSNAV_NETCP_PDMA_SCHED_BASE,
166 	.rx_flows	= (void *)CONFIG_KSNAV_NETCP_PDMA_RX_FLOW_BASE,
167 	.rx_flow_num	= CONFIG_KSNAV_NETCP_PDMA_RX_FLOW_NUM,
168 	.rx_free_q	= CONFIG_KSNAV_NETCP_PDMA_RX_FREE_QUEUE,
169 	.rx_rcv_q	= CONFIG_KSNAV_NETCP_PDMA_RX_RCV_QUEUE,
170 	.tx_snd_q	= CONFIG_KSNAV_NETCP_PDMA_TX_SND_QUEUE,
171 };
172 
173 struct pktdma_cfg *netcp;
174 
175 static int netcp_rx_disable(void)
176 {
177 	u32 j, v, k;
178 
179 	for (j = 0; j < netcp->rx_ch_num; j++) {
180 		v = readl(&netcp->rx_ch[j].cfg_a);
181 		if (!(v & CPDMA_CHAN_A_ENABLE))
182 			continue;
183 
184 		writel(v | CPDMA_CHAN_A_TDOWN, &netcp->rx_ch[j].cfg_a);
185 		for (k = 0; k < TDOWN_TIMEOUT_COUNT; k++) {
186 			udelay(100);
187 			v = readl(&netcp->rx_ch[j].cfg_a);
188 			if (!(v & CPDMA_CHAN_A_ENABLE))
189 				continue;
190 		}
191 		/* TODO: teardown error on if TDOWN_TIMEOUT_COUNT is reached */
192 	}
193 
194 	/* Clear all of the flow registers */
195 	for (j = 0; j < netcp->rx_flow_num; j++) {
196 		writel(0, &netcp->rx_flows[j].control);
197 		writel(0, &netcp->rx_flows[j].tags);
198 		writel(0, &netcp->rx_flows[j].tag_sel);
199 		writel(0, &netcp->rx_flows[j].fdq_sel[0]);
200 		writel(0, &netcp->rx_flows[j].fdq_sel[1]);
201 		writel(0, &netcp->rx_flows[j].thresh[0]);
202 		writel(0, &netcp->rx_flows[j].thresh[1]);
203 		writel(0, &netcp->rx_flows[j].thresh[2]);
204 	}
205 
206 	return QM_OK;
207 }
208 
209 static int netcp_tx_disable(void)
210 {
211 	u32 j, v, k;
212 
213 	for (j = 0; j < netcp->tx_ch_num; j++) {
214 		v = readl(&netcp->tx_ch[j].cfg_a);
215 		if (!(v & CPDMA_CHAN_A_ENABLE))
216 			continue;
217 
218 		writel(v | CPDMA_CHAN_A_TDOWN, &netcp->tx_ch[j].cfg_a);
219 		for (k = 0; k < TDOWN_TIMEOUT_COUNT; k++) {
220 			udelay(100);
221 			v = readl(&netcp->tx_ch[j].cfg_a);
222 			if (!(v & CPDMA_CHAN_A_ENABLE))
223 				continue;
224 		}
225 		/* TODO: teardown error on if TDOWN_TIMEOUT_COUNT is reached */
226 	}
227 
228 	return QM_OK;
229 }
230 
231 static int _netcp_init(struct pktdma_cfg *netcp_cfg,
232 		       struct rx_buff_desc *rx_buffers)
233 {
234 	u32 j, v;
235 	struct qm_host_desc *hd;
236 	u8 *rx_ptr;
237 
238 	if (netcp_cfg == NULL || rx_buffers == NULL ||
239 	    rx_buffers->buff_ptr == NULL || qm_cfg == NULL)
240 		return QM_ERR;
241 
242 	netcp = netcp_cfg;
243 	netcp->rx_flow = rx_buffers->rx_flow;
244 
245 	/* init rx queue */
246 	rx_ptr = rx_buffers->buff_ptr;
247 
248 	for (j = 0; j < rx_buffers->num_buffs; j++) {
249 		hd = qm_pop(qm_cfg->qpool_num);
250 		if (hd == NULL)
251 			return QM_ERR;
252 
253 		qm_buff_push(hd, netcp->rx_free_q,
254 			     rx_ptr, rx_buffers->buff_len);
255 
256 		rx_ptr += rx_buffers->buff_len;
257 	}
258 
259 	netcp_rx_disable();
260 
261 	/* configure rx channels */
262 	v = CPDMA_REG_VAL_MAKE_RX_FLOW_A(1, 1, 0, 0, 0, 0, 0, netcp->rx_rcv_q);
263 	writel(v, &netcp->rx_flows[netcp->rx_flow].control);
264 	writel(0, &netcp->rx_flows[netcp->rx_flow].tags);
265 	writel(0, &netcp->rx_flows[netcp->rx_flow].tag_sel);
266 
267 	v = CPDMA_REG_VAL_MAKE_RX_FLOW_D(0, netcp->rx_free_q, 0,
268 					 netcp->rx_free_q);
269 
270 	writel(v, &netcp->rx_flows[netcp->rx_flow].fdq_sel[0]);
271 	writel(v, &netcp->rx_flows[netcp->rx_flow].fdq_sel[1]);
272 	writel(0, &netcp->rx_flows[netcp->rx_flow].thresh[0]);
273 	writel(0, &netcp->rx_flows[netcp->rx_flow].thresh[1]);
274 	writel(0, &netcp->rx_flows[netcp->rx_flow].thresh[2]);
275 
276 	for (j = 0; j < netcp->rx_ch_num; j++)
277 		writel(CPDMA_CHAN_A_ENABLE, &netcp->rx_ch[j].cfg_a);
278 
279 	/* configure tx channels */
280 	/* Disable loopback in the tx direction */
281 	writel(0, &netcp->global->emulation_control);
282 
283 	/* Set QM base address, only for K2x devices */
284 	writel(CONFIG_KSNAV_QM_BASE_ADDRESS, &netcp->global->qm_base_addr[0]);
285 
286 	/* Enable all channels. The current state isn't important */
287 	for (j = 0; j < netcp->tx_ch_num; j++)  {
288 		writel(0, &netcp->tx_ch[j].cfg_b);
289 		writel(CPDMA_CHAN_A_ENABLE, &netcp->tx_ch[j].cfg_a);
290 	}
291 
292 	return QM_OK;
293 }
294 
295 int netcp_init(struct rx_buff_desc *rx_buffers)
296 {
297 	return _netcp_init(&netcp_pktdma, rx_buffers);
298 }
299 
300 int netcp_close(void)
301 {
302 	if (!netcp)
303 		return QM_ERR;
304 
305 	netcp_tx_disable();
306 	netcp_rx_disable();
307 
308 	queue_close(netcp->rx_free_q);
309 	queue_close(netcp->rx_rcv_q);
310 	queue_close(netcp->tx_snd_q);
311 
312 	return QM_OK;
313 }
314 
315 int netcp_send(u32 *pkt, int num_bytes, u32 swinfo2)
316 {
317 	struct qm_host_desc *hd;
318 
319 	hd = qm_pop(qm_cfg->qpool_num);
320 	if (hd == NULL)
321 		return QM_ERR;
322 
323 	hd->desc_info	= num_bytes;
324 	hd->swinfo[2]	= swinfo2;
325 	hd->packet_info = qm_cfg->qpool_num;
326 
327 	qm_buff_push(hd, netcp->tx_snd_q, pkt, num_bytes);
328 
329 	return QM_OK;
330 }
331 
332 void *netcp_recv(u32 **pkt, int *num_bytes)
333 {
334 	struct qm_host_desc *hd;
335 
336 	hd = qm_pop(netcp->rx_rcv_q);
337 	if (!hd)
338 		return NULL;
339 
340 	*pkt = (u32 *)hd->buff_ptr;
341 	*num_bytes = hd->desc_info & 0x3fffff;
342 
343 	return hd;
344 }
345 
346 void netcp_release_rxhd(void *hd)
347 {
348 	struct qm_host_desc *_hd = (struct qm_host_desc *)hd;
349 
350 	_hd->buff_len = _hd->orig_buff_len;
351 	_hd->buff_ptr = _hd->orig_buff_ptr;
352 
353 	qm_push(_hd, netcp->rx_free_q);
354 }
355