xref: /openbmc/u-boot/drivers/ddr/fsl/main.c (revision a9a274c1)
1 /*
2  * Copyright 2008-2014 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * Version 2 as published by the Free Software Foundation.
7  */
8 
9 /*
10  * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
11  * Based on code from spd_sdram.c
12  * Author: James Yang [at freescale.com]
13  */
14 
15 #include <common.h>
16 #include <i2c.h>
17 #include <fsl_ddr_sdram.h>
18 #include <fsl_ddr.h>
19 
20 /*
21  * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
22  * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
23  * all Power SoCs. But it could be different for ARM SoCs. For example,
24  * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
25  * 0x00_8000_0000 ~ 0x00_ffff_ffff
26  * 0x80_8000_0000 ~ 0xff_ffff_ffff
27  */
28 #ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
29 #define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
30 #endif
31 
32 #ifdef CONFIG_PPC
33 #include <asm/fsl_law.h>
34 
35 void fsl_ddr_set_lawbar(
36 		const common_timing_params_t *memctl_common_params,
37 		unsigned int memctl_interleaved,
38 		unsigned int ctrl_num);
39 #endif
40 
41 void fsl_ddr_set_intl3r(const unsigned int granule_size);
42 #if defined(SPD_EEPROM_ADDRESS) || \
43     defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
44     defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
45 #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
46 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
47 	[0][0] = SPD_EEPROM_ADDRESS,
48 };
49 #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
50 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
51 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
52 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
53 };
54 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
55 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
56 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
57 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
58 };
59 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
60 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
61 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
62 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
63 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
64 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
65 };
66 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
67 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
68 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
69 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
70 	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
71 };
72 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
73 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
74 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
75 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
76 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
77 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
78 	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
79 	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
80 };
81 
82 #endif
83 
84 #define SPD_SPA0_ADDRESS	0x36
85 #define SPD_SPA1_ADDRESS	0x37
86 
87 static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
88 {
89 	int ret;
90 #ifdef CONFIG_SYS_FSL_DDR4
91 	uint8_t dummy = 0;
92 #endif
93 
94 	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
95 
96 #ifdef CONFIG_SYS_FSL_DDR4
97 	/*
98 	 * DDR4 SPD has 384 to 512 bytes
99 	 * To access the lower 256 bytes, we need to set EE page address to 0
100 	 * To access the upper 256 bytes, we need to set EE page address to 1
101 	 * See Jedec standar No. 21-C for detail
102 	 */
103 	i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
104 	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
105 	if (!ret) {
106 		i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
107 		ret = i2c_read(i2c_address, 0, 1,
108 			       (uchar *)((ulong)spd + 256),
109 			       min(256, sizeof(generic_spd_eeprom_t) - 256));
110 	}
111 #else
112 	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
113 				sizeof(generic_spd_eeprom_t));
114 #endif
115 
116 	if (ret) {
117 		if (i2c_address ==
118 #ifdef SPD_EEPROM_ADDRESS
119 				SPD_EEPROM_ADDRESS
120 #elif defined(SPD_EEPROM_ADDRESS1)
121 				SPD_EEPROM_ADDRESS1
122 #endif
123 				) {
124 			printf("DDR: failed to read SPD from address %u\n",
125 				i2c_address);
126 		} else {
127 			debug("DDR: failed to read SPD from address %u\n",
128 				i2c_address);
129 		}
130 		memset(spd, 0, sizeof(generic_spd_eeprom_t));
131 	}
132 }
133 
134 __attribute__((weak, alias("__get_spd")))
135 void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
136 
137 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
138 		      unsigned int ctrl_num)
139 {
140 	unsigned int i;
141 	unsigned int i2c_address = 0;
142 
143 	if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
144 		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
145 		return;
146 	}
147 
148 	for (i = 0; i < CONFIG_DIMM_SLOTS_PER_CTLR; i++) {
149 		i2c_address = spd_i2c_addr[ctrl_num][i];
150 		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
151 	}
152 }
153 #else
154 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
155 		      unsigned int ctrl_num)
156 {
157 }
158 #endif /* SPD_EEPROM_ADDRESSx */
159 
160 /*
161  * ASSUMPTIONS:
162  *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
163  *    - Same memory data bus width on all controllers
164  *
165  * NOTES:
166  *
167  * The memory controller and associated documentation use confusing
168  * terminology when referring to the orgranization of DRAM.
169  *
170  * Here is a terminology translation table:
171  *
172  * memory controller/documention  |industry   |this code  |signals
173  * -------------------------------|-----------|-----------|-----------------
174  * physical bank/bank		  |rank       |rank	  |chip select (CS)
175  * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
176  * page/row			  |row	      |page	  |row address
177  * ???				  |column     |column	  |column address
178  *
179  * The naming confusion is further exacerbated by the descriptions of the
180  * memory controller interleaving feature, where accesses are interleaved
181  * _BETWEEN_ two seperate memory controllers.  This is configured only in
182  * CS0_CONFIG[INTLV_CTL] of each memory controller.
183  *
184  * memory controller documentation | number of chip selects
185  *				   | per memory controller supported
186  * --------------------------------|-----------------------------------------
187  * cache line interleaving	   | 1 (CS0 only)
188  * page interleaving		   | 1 (CS0 only)
189  * bank interleaving		   | 1 (CS0 only)
190  * superbank interleraving	   | depends on bank (chip select)
191  *				   |   interleraving [rank interleaving]
192  *				   |   mode used on every memory controller
193  *
194  * Even further confusing is the existence of the interleaving feature
195  * _WITHIN_ each memory controller.  The feature is referred to in
196  * documentation as chip select interleaving or bank interleaving,
197  * although it is configured in the DDR_SDRAM_CFG field.
198  *
199  * Name of field		| documentation name	| this code
200  * -----------------------------|-----------------------|------------------
201  * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
202  *				|  interleaving
203  */
204 
205 const char *step_string_tbl[] = {
206 	"STEP_GET_SPD",
207 	"STEP_COMPUTE_DIMM_PARMS",
208 	"STEP_COMPUTE_COMMON_PARMS",
209 	"STEP_GATHER_OPTS",
210 	"STEP_ASSIGN_ADDRESSES",
211 	"STEP_COMPUTE_REGS",
212 	"STEP_PROGRAM_REGS",
213 	"STEP_ALL"
214 };
215 
216 const char * step_to_string(unsigned int step) {
217 
218 	unsigned int s = __ilog2(step);
219 
220 	if ((1 << s) != step)
221 		return step_string_tbl[7];
222 
223 	if (s >= ARRAY_SIZE(step_string_tbl)) {
224 		printf("Error for the step in %s\n", __func__);
225 		s = 0;
226 	}
227 
228 	return step_string_tbl[s];
229 }
230 
231 static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
232 			  unsigned int dbw_cap_adj[])
233 {
234 	int i, j;
235 	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
236 	unsigned long long rank_density, ctlr_density = 0;
237 
238 	/*
239 	 * If a reduced data width is requested, but the SPD
240 	 * specifies a physically wider device, adjust the
241 	 * computed dimm capacities accordingly before
242 	 * assigning addresses.
243 	 */
244 	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
245 		unsigned int found = 0;
246 
247 		switch (pinfo->memctl_opts[i].data_bus_width) {
248 		case 2:
249 			/* 16-bit */
250 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
251 				unsigned int dw;
252 				if (!pinfo->dimm_params[i][j].n_ranks)
253 					continue;
254 				dw = pinfo->dimm_params[i][j].primary_sdram_width;
255 				if ((dw == 72 || dw == 64)) {
256 					dbw_cap_adj[i] = 2;
257 					break;
258 				} else if ((dw == 40 || dw == 32)) {
259 					dbw_cap_adj[i] = 1;
260 					break;
261 				}
262 			}
263 			break;
264 
265 		case 1:
266 			/* 32-bit */
267 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
268 				unsigned int dw;
269 				dw = pinfo->dimm_params[i][j].data_width;
270 				if (pinfo->dimm_params[i][j].n_ranks
271 				    && (dw == 72 || dw == 64)) {
272 					/*
273 					 * FIXME: can't really do it
274 					 * like this because this just
275 					 * further reduces the memory
276 					 */
277 					found = 1;
278 					break;
279 				}
280 			}
281 			if (found) {
282 				dbw_cap_adj[i] = 1;
283 			}
284 			break;
285 
286 		case 0:
287 			/* 64-bit */
288 			break;
289 
290 		default:
291 			printf("unexpected data bus width "
292 				"specified controller %u\n", i);
293 			return 1;
294 		}
295 		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
296 	}
297 
298 	current_mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
299 	total_mem = 0;
300 	if (pinfo->memctl_opts[0].memctl_interleaving) {
301 		rank_density = pinfo->dimm_params[0][0].rank_density >>
302 					dbw_cap_adj[0];
303 		switch (pinfo->memctl_opts[0].ba_intlv_ctl &
304 					FSL_DDR_CS0_CS1_CS2_CS3) {
305 		case FSL_DDR_CS0_CS1_CS2_CS3:
306 			ctlr_density = 4 * rank_density;
307 			break;
308 		case FSL_DDR_CS0_CS1:
309 		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
310 			ctlr_density = 2 * rank_density;
311 			break;
312 		case FSL_DDR_CS2_CS3:
313 		default:
314 			ctlr_density = rank_density;
315 			break;
316 		}
317 		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
318 			rank_density, ctlr_density);
319 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
320 			if (pinfo->memctl_opts[i].memctl_interleaving) {
321 				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
322 				case FSL_DDR_256B_INTERLEAVING:
323 				case FSL_DDR_CACHE_LINE_INTERLEAVING:
324 				case FSL_DDR_PAGE_INTERLEAVING:
325 				case FSL_DDR_BANK_INTERLEAVING:
326 				case FSL_DDR_SUPERBANK_INTERLEAVING:
327 					total_ctlr_mem = 2 * ctlr_density;
328 					break;
329 				case FSL_DDR_3WAY_1KB_INTERLEAVING:
330 				case FSL_DDR_3WAY_4KB_INTERLEAVING:
331 				case FSL_DDR_3WAY_8KB_INTERLEAVING:
332 					total_ctlr_mem = 3 * ctlr_density;
333 					break;
334 				case FSL_DDR_4WAY_1KB_INTERLEAVING:
335 				case FSL_DDR_4WAY_4KB_INTERLEAVING:
336 				case FSL_DDR_4WAY_8KB_INTERLEAVING:
337 					total_ctlr_mem = 4 * ctlr_density;
338 					break;
339 				default:
340 					panic("Unknown interleaving mode");
341 				}
342 				pinfo->common_timing_params[i].base_address =
343 							current_mem_base;
344 				pinfo->common_timing_params[i].total_mem =
345 							total_ctlr_mem;
346 				total_mem = current_mem_base + total_ctlr_mem;
347 				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
348 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
349 			} else {
350 				/* when 3rd controller not interleaved */
351 				current_mem_base = total_mem;
352 				total_ctlr_mem = 0;
353 				pinfo->common_timing_params[i].base_address =
354 							current_mem_base;
355 				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
356 					unsigned long long cap =
357 						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
358 					pinfo->dimm_params[i][j].base_address =
359 						current_mem_base;
360 					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
361 					current_mem_base += cap;
362 					total_ctlr_mem += cap;
363 				}
364 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
365 				pinfo->common_timing_params[i].total_mem =
366 							total_ctlr_mem;
367 				total_mem += total_ctlr_mem;
368 			}
369 		}
370 	} else {
371 		/*
372 		 * Simple linear assignment if memory
373 		 * controllers are not interleaved.
374 		 */
375 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
376 			total_ctlr_mem = 0;
377 			pinfo->common_timing_params[i].base_address =
378 						current_mem_base;
379 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
380 				/* Compute DIMM base addresses. */
381 				unsigned long long cap =
382 					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
383 				pinfo->dimm_params[i][j].base_address =
384 					current_mem_base;
385 				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
386 				current_mem_base += cap;
387 				total_ctlr_mem += cap;
388 			}
389 			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
390 			pinfo->common_timing_params[i].total_mem =
391 							total_ctlr_mem;
392 			total_mem += total_ctlr_mem;
393 		}
394 	}
395 	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
396 
397 	return total_mem;
398 }
399 
400 /* Use weak function to allow board file to override the address assignment */
401 __attribute__((weak, alias("__step_assign_addresses")))
402 unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
403 			  unsigned int dbw_cap_adj[]);
404 
405 unsigned long long
406 fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
407 				       unsigned int size_only)
408 {
409 	unsigned int i, j;
410 	unsigned long long total_mem = 0;
411 	int assert_reset;
412 
413 	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
414 	common_timing_params_t *timing_params = pinfo->common_timing_params;
415 	assert_reset = board_need_mem_reset();
416 
417 	/* data bus width capacity adjust shift amount */
418 	unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
419 
420 	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
421 		dbw_capacity_adjust[i] = 0;
422 	}
423 
424 	debug("starting at step %u (%s)\n",
425 	      start_step, step_to_string(start_step));
426 
427 	switch (start_step) {
428 	case STEP_GET_SPD:
429 #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
430 		/* STEP 1:  Gather all DIMM SPD data */
431 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
432 			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
433 		}
434 
435 	case STEP_COMPUTE_DIMM_PARMS:
436 		/* STEP 2:  Compute DIMM parameters from SPD data */
437 
438 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
439 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
440 				unsigned int retval;
441 				generic_spd_eeprom_t *spd =
442 					&(pinfo->spd_installed_dimms[i][j]);
443 				dimm_params_t *pdimm =
444 					&(pinfo->dimm_params[i][j]);
445 
446 				retval = compute_dimm_parameters(spd, pdimm, i);
447 #ifdef CONFIG_SYS_DDR_RAW_TIMING
448 				if (!i && !j && retval) {
449 					printf("SPD error on controller %d! "
450 					"Trying fallback to raw timing "
451 					"calculation\n", i);
452 					fsl_ddr_get_dimm_params(pdimm, i, j);
453 				}
454 #else
455 				if (retval == 2) {
456 					printf("Error: compute_dimm_parameters"
457 					" non-zero returned FATAL value "
458 					"for memctl=%u dimm=%u\n", i, j);
459 					return 0;
460 				}
461 #endif
462 				if (retval) {
463 					debug("Warning: compute_dimm_parameters"
464 					" non-zero return value for memctl=%u "
465 					"dimm=%u\n", i, j);
466 				}
467 			}
468 		}
469 
470 #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
471 	case STEP_COMPUTE_DIMM_PARMS:
472 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
473 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
474 				dimm_params_t *pdimm =
475 					&(pinfo->dimm_params[i][j]);
476 				fsl_ddr_get_dimm_params(pdimm, i, j);
477 			}
478 		}
479 		debug("Filling dimm parameters from board specific file\n");
480 #endif
481 	case STEP_COMPUTE_COMMON_PARMS:
482 		/*
483 		 * STEP 3: Compute a common set of timing parameters
484 		 * suitable for all of the DIMMs on each memory controller
485 		 */
486 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
487 			debug("Computing lowest common DIMM"
488 				" parameters for memctl=%u\n", i);
489 			compute_lowest_common_dimm_parameters(
490 				pinfo->dimm_params[i],
491 				&timing_params[i],
492 				CONFIG_DIMM_SLOTS_PER_CTLR);
493 		}
494 
495 	case STEP_GATHER_OPTS:
496 		/* STEP 4:  Gather configuration requirements from user */
497 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
498 			debug("Reloading memory controller "
499 				"configuration options for memctl=%u\n", i);
500 			/*
501 			 * This "reloads" the memory controller options
502 			 * to defaults.  If the user "edits" an option,
503 			 * next_step points to the step after this,
504 			 * which is currently STEP_ASSIGN_ADDRESSES.
505 			 */
506 			populate_memctl_options(
507 					timing_params[i].all_dimms_registered,
508 					&pinfo->memctl_opts[i],
509 					pinfo->dimm_params[i], i);
510 			/*
511 			 * For RDIMMs, JEDEC spec requires clocks to be stable
512 			 * before reset signal is deasserted. For the boards
513 			 * using fixed parameters, this function should be
514 			 * be called from board init file.
515 			 */
516 			if (timing_params[i].all_dimms_registered)
517 				assert_reset = 1;
518 		}
519 		if (assert_reset) {
520 			debug("Asserting mem reset\n");
521 			board_assert_mem_reset();
522 		}
523 
524 	case STEP_ASSIGN_ADDRESSES:
525 		/* STEP 5:  Assign addresses to chip selects */
526 		check_interleaving_options(pinfo);
527 		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
528 		debug("Total mem %llu assigned\n", total_mem);
529 
530 	case STEP_COMPUTE_REGS:
531 		/* STEP 6:  compute controller register values */
532 		debug("FSL Memory ctrl register computation\n");
533 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
534 			if (timing_params[i].ndimms_present == 0) {
535 				memset(&ddr_reg[i], 0,
536 					sizeof(fsl_ddr_cfg_regs_t));
537 				continue;
538 			}
539 
540 			compute_fsl_memctl_config_regs(
541 					&pinfo->memctl_opts[i],
542 					&ddr_reg[i], &timing_params[i],
543 					pinfo->dimm_params[i],
544 					dbw_capacity_adjust[i],
545 					size_only);
546 		}
547 
548 	default:
549 		break;
550 	}
551 
552 	{
553 		/*
554 		 * Compute the amount of memory available just by
555 		 * looking for the highest valid CSn_BNDS value.
556 		 * This allows us to also experiment with using
557 		 * only CS0 when using dual-rank DIMMs.
558 		 */
559 		unsigned int max_end = 0;
560 
561 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
562 			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
563 				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
564 				if (reg->cs[j].config & 0x80000000) {
565 					unsigned int end;
566 					/*
567 					 * 0xfffffff is a special value we put
568 					 * for unused bnds
569 					 */
570 					if (reg->cs[j].bnds == 0xffffffff)
571 						continue;
572 					end = reg->cs[j].bnds & 0xffff;
573 					if (end > max_end) {
574 						max_end = end;
575 					}
576 				}
577 			}
578 		}
579 
580 		total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
581 			    0xFFFFFFULL) - CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
582 	}
583 
584 	return total_mem;
585 }
586 
587 /*
588  * fsl_ddr_sdram() -- this is the main function to be called by
589  *	initdram() in the board file.
590  *
591  * It returns amount of memory configured in bytes.
592  */
593 phys_size_t fsl_ddr_sdram(void)
594 {
595 	unsigned int i;
596 #ifdef CONFIG_PPC
597 	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
598 #endif
599 	unsigned long long total_memory;
600 	fsl_ddr_info_t info;
601 	int deassert_reset;
602 
603 	/* Reset info structure. */
604 	memset(&info, 0, sizeof(fsl_ddr_info_t));
605 
606 	/* Compute it once normally. */
607 #ifdef CONFIG_FSL_DDR_INTERACTIVE
608 	if (tstc() && (getc() == 'd')) {	/* we got a key press of 'd' */
609 		total_memory = fsl_ddr_interactive(&info, 0);
610 	} else if (fsl_ddr_interactive_env_var_exists()) {
611 		total_memory = fsl_ddr_interactive(&info, 1);
612 	} else
613 #endif
614 		total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 0);
615 
616 	/* setup 3-way interleaving before enabling DDRC */
617 	if (info.memctl_opts[0].memctl_interleaving) {
618 		switch (info.memctl_opts[0].memctl_interleaving_mode) {
619 		case FSL_DDR_3WAY_1KB_INTERLEAVING:
620 		case FSL_DDR_3WAY_4KB_INTERLEAVING:
621 		case FSL_DDR_3WAY_8KB_INTERLEAVING:
622 			fsl_ddr_set_intl3r(
623 				info.memctl_opts[0].memctl_interleaving_mode);
624 			break;
625 		default:
626 			break;
627 		}
628 	}
629 
630 	/*
631 	 * Program configuration registers.
632 	 * JEDEC specs requires clocks to be stable before deasserting reset
633 	 * for RDIMMs. Clocks start after chip select is enabled and clock
634 	 * control register is set. During step 1, all controllers have their
635 	 * registers set but not enabled. Step 2 proceeds after deasserting
636 	 * reset through board FPGA or GPIO.
637 	 * For non-registered DIMMs, initialization can go through but it is
638 	 * also OK to follow the same flow.
639 	 */
640 	deassert_reset = board_need_mem_reset();
641 	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
642 		if (info.common_timing_params[i].all_dimms_registered)
643 			deassert_reset = 1;
644 	}
645 	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
646 		debug("Programming controller %u\n", i);
647 		if (info.common_timing_params[i].ndimms_present == 0) {
648 			debug("No dimms present on controller %u; "
649 					"skipping programming\n", i);
650 			continue;
651 		}
652 		/*
653 		 * The following call with step = 1 returns before enabling
654 		 * the controller. It has to finish with step = 2 later.
655 		 */
656 		fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i,
657 					deassert_reset ? 1 : 0);
658 	}
659 	if (deassert_reset) {
660 		/* Use board FPGA or GPIO to deassert reset signal */
661 		debug("Deasserting mem reset\n");
662 		board_deassert_mem_reset();
663 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
664 			/* Call with step = 2 to continue initialization */
665 			fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]),
666 						i, 2);
667 		}
668 	}
669 
670 #ifdef CONFIG_PPC
671 	/* program LAWs */
672 	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
673 		if (info.memctl_opts[i].memctl_interleaving) {
674 			switch (info.memctl_opts[i].memctl_interleaving_mode) {
675 			case FSL_DDR_CACHE_LINE_INTERLEAVING:
676 			case FSL_DDR_PAGE_INTERLEAVING:
677 			case FSL_DDR_BANK_INTERLEAVING:
678 			case FSL_DDR_SUPERBANK_INTERLEAVING:
679 				if (i == 0) {
680 					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
681 					fsl_ddr_set_lawbar(&info.common_timing_params[i],
682 						law_memctl, i);
683 				} else if (i == 2) {
684 					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
685 					fsl_ddr_set_lawbar(&info.common_timing_params[i],
686 						law_memctl, i);
687 				}
688 				break;
689 			case FSL_DDR_3WAY_1KB_INTERLEAVING:
690 			case FSL_DDR_3WAY_4KB_INTERLEAVING:
691 			case FSL_DDR_3WAY_8KB_INTERLEAVING:
692 				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
693 				if (i == 0) {
694 					fsl_ddr_set_lawbar(&info.common_timing_params[i],
695 						law_memctl, i);
696 				}
697 				break;
698 			case FSL_DDR_4WAY_1KB_INTERLEAVING:
699 			case FSL_DDR_4WAY_4KB_INTERLEAVING:
700 			case FSL_DDR_4WAY_8KB_INTERLEAVING:
701 				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
702 				if (i == 0)
703 					fsl_ddr_set_lawbar(&info.common_timing_params[i],
704 						law_memctl, i);
705 				/* place holder for future 4-way interleaving */
706 				break;
707 			default:
708 				break;
709 			}
710 		} else {
711 			switch (i) {
712 			case 0:
713 				law_memctl = LAW_TRGT_IF_DDR_1;
714 				break;
715 			case 1:
716 				law_memctl = LAW_TRGT_IF_DDR_2;
717 				break;
718 			case 2:
719 				law_memctl = LAW_TRGT_IF_DDR_3;
720 				break;
721 			case 3:
722 				law_memctl = LAW_TRGT_IF_DDR_4;
723 				break;
724 			default:
725 				break;
726 			}
727 			fsl_ddr_set_lawbar(&info.common_timing_params[i],
728 					law_memctl, i);
729 		}
730 	}
731 #endif
732 
733 	debug("total_memory by %s = %llu\n", __func__, total_memory);
734 
735 #if !defined(CONFIG_PHYS_64BIT)
736 	/* Check for 4G or more.  Bad. */
737 	if (total_memory >= (1ull << 32)) {
738 		puts("Detected ");
739 		print_size(total_memory, " of memory\n");
740 		printf("       This U-Boot only supports < 4G of DDR\n");
741 		printf("       You could rebuild it with CONFIG_PHYS_64BIT\n");
742 		printf("       "); /* re-align to match init_func_ram print */
743 		total_memory = CONFIG_MAX_MEM_MAPPED;
744 	}
745 #endif
746 
747 	return total_memory;
748 }
749 
750 /*
751  * fsl_ddr_sdram_size() - This function only returns the size of the total
752  * memory without setting ddr control registers.
753  */
754 phys_size_t
755 fsl_ddr_sdram_size(void)
756 {
757 	fsl_ddr_info_t  info;
758 	unsigned long long total_memory = 0;
759 
760 	memset(&info, 0 , sizeof(fsl_ddr_info_t));
761 
762 	/* Compute it once normally. */
763 	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
764 
765 	return total_memory;
766 }
767