xref: /openbmc/u-boot/drivers/ddr/fsl/main.c (revision 4614b891)
1 /*
2  * Copyright 2008-2014 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * Version 2 as published by the Free Software Foundation.
7  */
8 
9 /*
10  * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
11  * Based on code from spd_sdram.c
12  * Author: James Yang [at freescale.com]
13  */
14 
15 #include <common.h>
16 #include <i2c.h>
17 #include <fsl_ddr_sdram.h>
18 #include <fsl_ddr.h>
19 
20 /*
21  * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
22  * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
23  * all Power SoCs. But it could be different for ARM SoCs. For example,
24  * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
25  * 0x00_8000_0000 ~ 0x00_ffff_ffff
26  * 0x80_8000_0000 ~ 0xff_ffff_ffff
27  */
28 #ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
29 #define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
30 #endif
31 
32 #ifdef CONFIG_PPC
33 #include <asm/fsl_law.h>
34 
35 void fsl_ddr_set_lawbar(
36 		const common_timing_params_t *memctl_common_params,
37 		unsigned int memctl_interleaved,
38 		unsigned int ctrl_num);
39 #endif
40 
41 void fsl_ddr_set_intl3r(const unsigned int granule_size);
42 #if defined(SPD_EEPROM_ADDRESS) || \
43     defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
44     defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
45 #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
46 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
47 	[0][0] = SPD_EEPROM_ADDRESS,
48 };
49 #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
50 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
51 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
52 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
53 };
54 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
55 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
56 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
57 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
58 };
59 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
60 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
61 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
62 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
63 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
64 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
65 };
66 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
67 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
68 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
69 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
70 	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
71 };
72 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
73 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
74 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
75 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
76 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
77 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
78 	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
79 	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
80 };
81 
82 #endif
83 
84 #define SPD_SPA0_ADDRESS	0x36
85 #define SPD_SPA1_ADDRESS	0x37
86 
87 static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
88 {
89 	int ret;
90 #ifdef CONFIG_SYS_FSL_DDR4
91 	uint8_t dummy = 0;
92 #endif
93 
94 	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
95 
96 #ifdef CONFIG_SYS_FSL_DDR4
97 	/*
98 	 * DDR4 SPD has 384 to 512 bytes
99 	 * To access the lower 256 bytes, we need to set EE page address to 0
100 	 * To access the upper 256 bytes, we need to set EE page address to 1
101 	 * See Jedec standar No. 21-C for detail
102 	 */
103 	i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
104 	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
105 	if (!ret) {
106 		i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
107 		ret = i2c_read(i2c_address, 0, 1,
108 			       (uchar *)((ulong)spd + 256),
109 			       min(256,
110 				   (int)sizeof(generic_spd_eeprom_t) - 256));
111 	}
112 #else
113 	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
114 				sizeof(generic_spd_eeprom_t));
115 #endif
116 
117 	if (ret) {
118 		if (i2c_address ==
119 #ifdef SPD_EEPROM_ADDRESS
120 				SPD_EEPROM_ADDRESS
121 #elif defined(SPD_EEPROM_ADDRESS1)
122 				SPD_EEPROM_ADDRESS1
123 #endif
124 				) {
125 			printf("DDR: failed to read SPD from address %u\n",
126 				i2c_address);
127 		} else {
128 			debug("DDR: failed to read SPD from address %u\n",
129 				i2c_address);
130 		}
131 		memset(spd, 0, sizeof(generic_spd_eeprom_t));
132 	}
133 }
134 
135 __attribute__((weak, alias("__get_spd")))
136 void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
137 
138 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
139 		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
140 {
141 	unsigned int i;
142 	unsigned int i2c_address = 0;
143 
144 	if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
145 		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
146 		return;
147 	}
148 
149 	for (i = 0; i < dimm_slots_per_ctrl; i++) {
150 		i2c_address = spd_i2c_addr[ctrl_num][i];
151 		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
152 	}
153 }
154 #else
155 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
156 		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
157 {
158 }
159 #endif /* SPD_EEPROM_ADDRESSx */
160 
161 /*
162  * ASSUMPTIONS:
163  *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
164  *    - Same memory data bus width on all controllers
165  *
166  * NOTES:
167  *
168  * The memory controller and associated documentation use confusing
169  * terminology when referring to the orgranization of DRAM.
170  *
171  * Here is a terminology translation table:
172  *
173  * memory controller/documention  |industry   |this code  |signals
174  * -------------------------------|-----------|-----------|-----------------
175  * physical bank/bank		  |rank       |rank	  |chip select (CS)
176  * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
177  * page/row			  |row	      |page	  |row address
178  * ???				  |column     |column	  |column address
179  *
180  * The naming confusion is further exacerbated by the descriptions of the
181  * memory controller interleaving feature, where accesses are interleaved
182  * _BETWEEN_ two seperate memory controllers.  This is configured only in
183  * CS0_CONFIG[INTLV_CTL] of each memory controller.
184  *
185  * memory controller documentation | number of chip selects
186  *				   | per memory controller supported
187  * --------------------------------|-----------------------------------------
188  * cache line interleaving	   | 1 (CS0 only)
189  * page interleaving		   | 1 (CS0 only)
190  * bank interleaving		   | 1 (CS0 only)
191  * superbank interleraving	   | depends on bank (chip select)
192  *				   |   interleraving [rank interleaving]
193  *				   |   mode used on every memory controller
194  *
195  * Even further confusing is the existence of the interleaving feature
196  * _WITHIN_ each memory controller.  The feature is referred to in
197  * documentation as chip select interleaving or bank interleaving,
198  * although it is configured in the DDR_SDRAM_CFG field.
199  *
200  * Name of field		| documentation name	| this code
201  * -----------------------------|-----------------------|------------------
202  * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
203  *				|  interleaving
204  */
205 
206 const char *step_string_tbl[] = {
207 	"STEP_GET_SPD",
208 	"STEP_COMPUTE_DIMM_PARMS",
209 	"STEP_COMPUTE_COMMON_PARMS",
210 	"STEP_GATHER_OPTS",
211 	"STEP_ASSIGN_ADDRESSES",
212 	"STEP_COMPUTE_REGS",
213 	"STEP_PROGRAM_REGS",
214 	"STEP_ALL"
215 };
216 
217 const char * step_to_string(unsigned int step) {
218 
219 	unsigned int s = __ilog2(step);
220 
221 	if ((1 << s) != step)
222 		return step_string_tbl[7];
223 
224 	if (s >= ARRAY_SIZE(step_string_tbl)) {
225 		printf("Error for the step in %s\n", __func__);
226 		s = 0;
227 	}
228 
229 	return step_string_tbl[s];
230 }
231 
232 static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
233 			  unsigned int dbw_cap_adj[])
234 {
235 	unsigned int i, j;
236 	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
237 	unsigned long long rank_density, ctlr_density = 0;
238 	unsigned int first_ctrl = pinfo->first_ctrl;
239 	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
240 
241 	/*
242 	 * If a reduced data width is requested, but the SPD
243 	 * specifies a physically wider device, adjust the
244 	 * computed dimm capacities accordingly before
245 	 * assigning addresses.
246 	 */
247 	for (i = first_ctrl; i <= last_ctrl; i++) {
248 		unsigned int found = 0;
249 
250 		switch (pinfo->memctl_opts[i].data_bus_width) {
251 		case 2:
252 			/* 16-bit */
253 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
254 				unsigned int dw;
255 				if (!pinfo->dimm_params[i][j].n_ranks)
256 					continue;
257 				dw = pinfo->dimm_params[i][j].primary_sdram_width;
258 				if ((dw == 72 || dw == 64)) {
259 					dbw_cap_adj[i] = 2;
260 					break;
261 				} else if ((dw == 40 || dw == 32)) {
262 					dbw_cap_adj[i] = 1;
263 					break;
264 				}
265 			}
266 			break;
267 
268 		case 1:
269 			/* 32-bit */
270 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
271 				unsigned int dw;
272 				dw = pinfo->dimm_params[i][j].data_width;
273 				if (pinfo->dimm_params[i][j].n_ranks
274 				    && (dw == 72 || dw == 64)) {
275 					/*
276 					 * FIXME: can't really do it
277 					 * like this because this just
278 					 * further reduces the memory
279 					 */
280 					found = 1;
281 					break;
282 				}
283 			}
284 			if (found) {
285 				dbw_cap_adj[i] = 1;
286 			}
287 			break;
288 
289 		case 0:
290 			/* 64-bit */
291 			break;
292 
293 		default:
294 			printf("unexpected data bus width "
295 				"specified controller %u\n", i);
296 			return 1;
297 		}
298 		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
299 	}
300 
301 	current_mem_base = pinfo->mem_base;
302 	total_mem = 0;
303 	if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
304 		rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
305 					dbw_cap_adj[first_ctrl];
306 		switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
307 					FSL_DDR_CS0_CS1_CS2_CS3) {
308 		case FSL_DDR_CS0_CS1_CS2_CS3:
309 			ctlr_density = 4 * rank_density;
310 			break;
311 		case FSL_DDR_CS0_CS1:
312 		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
313 			ctlr_density = 2 * rank_density;
314 			break;
315 		case FSL_DDR_CS2_CS3:
316 		default:
317 			ctlr_density = rank_density;
318 			break;
319 		}
320 		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
321 			rank_density, ctlr_density);
322 		for (i = first_ctrl; i <= last_ctrl; i++) {
323 			if (pinfo->memctl_opts[i].memctl_interleaving) {
324 				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
325 				case FSL_DDR_256B_INTERLEAVING:
326 				case FSL_DDR_CACHE_LINE_INTERLEAVING:
327 				case FSL_DDR_PAGE_INTERLEAVING:
328 				case FSL_DDR_BANK_INTERLEAVING:
329 				case FSL_DDR_SUPERBANK_INTERLEAVING:
330 					total_ctlr_mem = 2 * ctlr_density;
331 					break;
332 				case FSL_DDR_3WAY_1KB_INTERLEAVING:
333 				case FSL_DDR_3WAY_4KB_INTERLEAVING:
334 				case FSL_DDR_3WAY_8KB_INTERLEAVING:
335 					total_ctlr_mem = 3 * ctlr_density;
336 					break;
337 				case FSL_DDR_4WAY_1KB_INTERLEAVING:
338 				case FSL_DDR_4WAY_4KB_INTERLEAVING:
339 				case FSL_DDR_4WAY_8KB_INTERLEAVING:
340 					total_ctlr_mem = 4 * ctlr_density;
341 					break;
342 				default:
343 					panic("Unknown interleaving mode");
344 				}
345 				pinfo->common_timing_params[i].base_address =
346 							current_mem_base;
347 				pinfo->common_timing_params[i].total_mem =
348 							total_ctlr_mem;
349 				total_mem = current_mem_base + total_ctlr_mem;
350 				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
351 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
352 			} else {
353 				/* when 3rd controller not interleaved */
354 				current_mem_base = total_mem;
355 				total_ctlr_mem = 0;
356 				pinfo->common_timing_params[i].base_address =
357 							current_mem_base;
358 				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
359 					unsigned long long cap =
360 						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
361 					pinfo->dimm_params[i][j].base_address =
362 						current_mem_base;
363 					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
364 					current_mem_base += cap;
365 					total_ctlr_mem += cap;
366 				}
367 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
368 				pinfo->common_timing_params[i].total_mem =
369 							total_ctlr_mem;
370 				total_mem += total_ctlr_mem;
371 			}
372 		}
373 	} else {
374 		/*
375 		 * Simple linear assignment if memory
376 		 * controllers are not interleaved.
377 		 */
378 		for (i = first_ctrl; i <= last_ctrl; i++) {
379 			total_ctlr_mem = 0;
380 			pinfo->common_timing_params[i].base_address =
381 						current_mem_base;
382 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
383 				/* Compute DIMM base addresses. */
384 				unsigned long long cap =
385 					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
386 				pinfo->dimm_params[i][j].base_address =
387 					current_mem_base;
388 				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
389 				current_mem_base += cap;
390 				total_ctlr_mem += cap;
391 			}
392 			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
393 			pinfo->common_timing_params[i].total_mem =
394 							total_ctlr_mem;
395 			total_mem += total_ctlr_mem;
396 		}
397 	}
398 	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
399 
400 	return total_mem;
401 }
402 
403 /* Use weak function to allow board file to override the address assignment */
404 __attribute__((weak, alias("__step_assign_addresses")))
405 unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
406 			  unsigned int dbw_cap_adj[]);
407 
408 unsigned long long
409 fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
410 				       unsigned int size_only)
411 {
412 	unsigned int i, j;
413 	unsigned long long total_mem = 0;
414 	int assert_reset = 0;
415 	unsigned int first_ctrl =  pinfo->first_ctrl;
416 	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
417 	__maybe_unused int retval;
418 	__maybe_unused bool goodspd = false;
419 	__maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
420 
421 	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
422 	common_timing_params_t *timing_params = pinfo->common_timing_params;
423 	if (pinfo->board_need_mem_reset)
424 		assert_reset = pinfo->board_need_mem_reset();
425 
426 	/* data bus width capacity adjust shift amount */
427 	unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
428 
429 	for (i = first_ctrl; i <= last_ctrl; i++)
430 		dbw_capacity_adjust[i] = 0;
431 
432 	debug("starting at step %u (%s)\n",
433 	      start_step, step_to_string(start_step));
434 
435 	switch (start_step) {
436 	case STEP_GET_SPD:
437 #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
438 		/* STEP 1:  Gather all DIMM SPD data */
439 		for (i = first_ctrl; i <= last_ctrl; i++) {
440 			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
441 					dimm_slots_per_ctrl);
442 		}
443 
444 	case STEP_COMPUTE_DIMM_PARMS:
445 		/* STEP 2:  Compute DIMM parameters from SPD data */
446 
447 		for (i = first_ctrl; i <= last_ctrl; i++) {
448 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
449 				generic_spd_eeprom_t *spd =
450 					&(pinfo->spd_installed_dimms[i][j]);
451 				dimm_params_t *pdimm =
452 					&(pinfo->dimm_params[i][j]);
453 				retval = compute_dimm_parameters(spd, pdimm, i);
454 #ifdef CONFIG_SYS_DDR_RAW_TIMING
455 				if (!i && !j && retval) {
456 					printf("SPD error on controller %d! "
457 					"Trying fallback to raw timing "
458 					"calculation\n", i);
459 					retval = fsl_ddr_get_dimm_params(pdimm,
460 									 i, j);
461 				}
462 #else
463 				if (retval == 2) {
464 					printf("Error: compute_dimm_parameters"
465 					" non-zero returned FATAL value "
466 					"for memctl=%u dimm=%u\n", i, j);
467 					return 0;
468 				}
469 #endif
470 				if (retval) {
471 					debug("Warning: compute_dimm_parameters"
472 					" non-zero return value for memctl=%u "
473 					"dimm=%u\n", i, j);
474 				} else {
475 					goodspd = true;
476 				}
477 			}
478 		}
479 		if (!goodspd) {
480 			/*
481 			 * No valid SPD found
482 			 * Throw an error if this is for main memory, i.e.
483 			 * first_ctrl == 0. Otherwise, siliently return 0
484 			 * as the memory size.
485 			 */
486 			if (first_ctrl == 0)
487 				printf("Error: No valid SPD detected.\n");
488 
489 			return 0;
490 		}
491 #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
492 	case STEP_COMPUTE_DIMM_PARMS:
493 		for (i = first_ctrl; i <= last_ctrl; i++) {
494 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
495 				dimm_params_t *pdimm =
496 					&(pinfo->dimm_params[i][j]);
497 				fsl_ddr_get_dimm_params(pdimm, i, j);
498 			}
499 		}
500 		debug("Filling dimm parameters from board specific file\n");
501 #endif
502 	case STEP_COMPUTE_COMMON_PARMS:
503 		/*
504 		 * STEP 3: Compute a common set of timing parameters
505 		 * suitable for all of the DIMMs on each memory controller
506 		 */
507 		for (i = first_ctrl; i <= last_ctrl; i++) {
508 			debug("Computing lowest common DIMM"
509 				" parameters for memctl=%u\n", i);
510 			compute_lowest_common_dimm_parameters(
511 				pinfo->dimm_params[i],
512 				&timing_params[i],
513 				CONFIG_DIMM_SLOTS_PER_CTLR);
514 		}
515 
516 	case STEP_GATHER_OPTS:
517 		/* STEP 4:  Gather configuration requirements from user */
518 		for (i = first_ctrl; i <= last_ctrl; i++) {
519 			debug("Reloading memory controller "
520 				"configuration options for memctl=%u\n", i);
521 			/*
522 			 * This "reloads" the memory controller options
523 			 * to defaults.  If the user "edits" an option,
524 			 * next_step points to the step after this,
525 			 * which is currently STEP_ASSIGN_ADDRESSES.
526 			 */
527 			populate_memctl_options(
528 					timing_params[i].all_dimms_registered,
529 					&pinfo->memctl_opts[i],
530 					pinfo->dimm_params[i], i);
531 			/*
532 			 * For RDIMMs, JEDEC spec requires clocks to be stable
533 			 * before reset signal is deasserted. For the boards
534 			 * using fixed parameters, this function should be
535 			 * be called from board init file.
536 			 */
537 			if (timing_params[i].all_dimms_registered)
538 				assert_reset = 1;
539 		}
540 		if (assert_reset && !size_only) {
541 			if (pinfo->board_mem_reset) {
542 				debug("Asserting mem reset\n");
543 				pinfo->board_mem_reset();
544 			} else {
545 				debug("Asserting mem reset missing\n");
546 			}
547 		}
548 
549 	case STEP_ASSIGN_ADDRESSES:
550 		/* STEP 5:  Assign addresses to chip selects */
551 		check_interleaving_options(pinfo);
552 		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
553 		debug("Total mem %llu assigned\n", total_mem);
554 
555 	case STEP_COMPUTE_REGS:
556 		/* STEP 6:  compute controller register values */
557 		debug("FSL Memory ctrl register computation\n");
558 		for (i = first_ctrl; i <= last_ctrl; i++) {
559 			if (timing_params[i].ndimms_present == 0) {
560 				memset(&ddr_reg[i], 0,
561 					sizeof(fsl_ddr_cfg_regs_t));
562 				continue;
563 			}
564 
565 			compute_fsl_memctl_config_regs(
566 					&pinfo->memctl_opts[i],
567 					&ddr_reg[i], &timing_params[i],
568 					pinfo->dimm_params[i],
569 					dbw_capacity_adjust[i],
570 					size_only);
571 		}
572 
573 	default:
574 		break;
575 	}
576 
577 	{
578 		/*
579 		 * Compute the amount of memory available just by
580 		 * looking for the highest valid CSn_BNDS value.
581 		 * This allows us to also experiment with using
582 		 * only CS0 when using dual-rank DIMMs.
583 		 */
584 		unsigned int max_end = 0;
585 
586 		for (i = first_ctrl; i <= last_ctrl; i++) {
587 			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
588 				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
589 				if (reg->cs[j].config & 0x80000000) {
590 					unsigned int end;
591 					/*
592 					 * 0xfffffff is a special value we put
593 					 * for unused bnds
594 					 */
595 					if (reg->cs[j].bnds == 0xffffffff)
596 						continue;
597 					end = reg->cs[j].bnds & 0xffff;
598 					if (end > max_end) {
599 						max_end = end;
600 					}
601 				}
602 			}
603 		}
604 
605 		total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
606 			    0xFFFFFFULL) - pinfo->mem_base;
607 	}
608 
609 	return total_mem;
610 }
611 
612 phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
613 {
614 	unsigned int i, first_ctrl, last_ctrl;
615 #ifdef CONFIG_PPC
616 	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
617 #endif
618 	unsigned long long total_memory;
619 	int deassert_reset = 0;
620 
621 	first_ctrl = pinfo->first_ctrl;
622 	last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
623 
624 	/* Compute it once normally. */
625 #ifdef CONFIG_FSL_DDR_INTERACTIVE
626 	if (tstc() && (getc() == 'd')) {	/* we got a key press of 'd' */
627 		total_memory = fsl_ddr_interactive(pinfo, 0);
628 	} else if (fsl_ddr_interactive_env_var_exists()) {
629 		total_memory = fsl_ddr_interactive(pinfo, 1);
630 	} else
631 #endif
632 		total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
633 
634 	/* setup 3-way interleaving before enabling DDRC */
635 	switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
636 	case FSL_DDR_3WAY_1KB_INTERLEAVING:
637 	case FSL_DDR_3WAY_4KB_INTERLEAVING:
638 	case FSL_DDR_3WAY_8KB_INTERLEAVING:
639 		fsl_ddr_set_intl3r(
640 			pinfo->memctl_opts[first_ctrl].
641 			memctl_interleaving_mode);
642 		break;
643 	default:
644 		break;
645 	}
646 
647 	/*
648 	 * Program configuration registers.
649 	 * JEDEC specs requires clocks to be stable before deasserting reset
650 	 * for RDIMMs. Clocks start after chip select is enabled and clock
651 	 * control register is set. During step 1, all controllers have their
652 	 * registers set but not enabled. Step 2 proceeds after deasserting
653 	 * reset through board FPGA or GPIO.
654 	 * For non-registered DIMMs, initialization can go through but it is
655 	 * also OK to follow the same flow.
656 	 */
657 	if (pinfo->board_need_mem_reset)
658 		deassert_reset = pinfo->board_need_mem_reset();
659 	for (i = first_ctrl; i <= last_ctrl; i++) {
660 		if (pinfo->common_timing_params[i].all_dimms_registered)
661 			deassert_reset = 1;
662 	}
663 	for (i = first_ctrl; i <= last_ctrl; i++) {
664 		debug("Programming controller %u\n", i);
665 		if (pinfo->common_timing_params[i].ndimms_present == 0) {
666 			debug("No dimms present on controller %u; "
667 					"skipping programming\n", i);
668 			continue;
669 		}
670 		/*
671 		 * The following call with step = 1 returns before enabling
672 		 * the controller. It has to finish with step = 2 later.
673 		 */
674 		fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
675 					deassert_reset ? 1 : 0);
676 	}
677 	if (deassert_reset) {
678 		/* Use board FPGA or GPIO to deassert reset signal */
679 		if (pinfo->board_mem_de_reset) {
680 			debug("Deasserting mem reset\n");
681 			pinfo->board_mem_de_reset();
682 		} else {
683 			debug("Deasserting mem reset missing\n");
684 		}
685 		for (i = first_ctrl; i <= last_ctrl; i++) {
686 			/* Call with step = 2 to continue initialization */
687 			fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
688 						i, 2);
689 		}
690 	}
691 
692 #ifdef CONFIG_PPC
693 	/* program LAWs */
694 	for (i = first_ctrl; i <= last_ctrl; i++) {
695 		if (pinfo->memctl_opts[i].memctl_interleaving) {
696 			switch (pinfo->memctl_opts[i].
697 				memctl_interleaving_mode) {
698 			case FSL_DDR_CACHE_LINE_INTERLEAVING:
699 			case FSL_DDR_PAGE_INTERLEAVING:
700 			case FSL_DDR_BANK_INTERLEAVING:
701 			case FSL_DDR_SUPERBANK_INTERLEAVING:
702 				if (i % 2)
703 					break;
704 				if (i == 0) {
705 					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
706 					fsl_ddr_set_lawbar(
707 						&pinfo->common_timing_params[i],
708 						law_memctl, i);
709 				}
710 #if CONFIG_NUM_DDR_CONTROLLERS > 3
711 				else if (i == 2) {
712 					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
713 					fsl_ddr_set_lawbar(
714 						&pinfo->common_timing_params[i],
715 						law_memctl, i);
716 				}
717 #endif
718 				break;
719 			case FSL_DDR_3WAY_1KB_INTERLEAVING:
720 			case FSL_DDR_3WAY_4KB_INTERLEAVING:
721 			case FSL_DDR_3WAY_8KB_INTERLEAVING:
722 				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
723 				if (i == 0) {
724 					fsl_ddr_set_lawbar(
725 						&pinfo->common_timing_params[i],
726 						law_memctl, i);
727 				}
728 				break;
729 			case FSL_DDR_4WAY_1KB_INTERLEAVING:
730 			case FSL_DDR_4WAY_4KB_INTERLEAVING:
731 			case FSL_DDR_4WAY_8KB_INTERLEAVING:
732 				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
733 				if (i == 0)
734 					fsl_ddr_set_lawbar(
735 						&pinfo->common_timing_params[i],
736 						law_memctl, i);
737 				/* place holder for future 4-way interleaving */
738 				break;
739 			default:
740 				break;
741 			}
742 		} else {
743 			switch (i) {
744 			case 0:
745 				law_memctl = LAW_TRGT_IF_DDR_1;
746 				break;
747 			case 1:
748 				law_memctl = LAW_TRGT_IF_DDR_2;
749 				break;
750 			case 2:
751 				law_memctl = LAW_TRGT_IF_DDR_3;
752 				break;
753 			case 3:
754 				law_memctl = LAW_TRGT_IF_DDR_4;
755 				break;
756 			default:
757 				break;
758 			}
759 			fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
760 					   law_memctl, i);
761 		}
762 	}
763 #endif
764 
765 	debug("total_memory by %s = %llu\n", __func__, total_memory);
766 
767 #if !defined(CONFIG_PHYS_64BIT)
768 	/* Check for 4G or more.  Bad. */
769 	if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) {
770 		puts("Detected ");
771 		print_size(total_memory, " of memory\n");
772 		printf("       This U-Boot only supports < 4G of DDR\n");
773 		printf("       You could rebuild it with CONFIG_PHYS_64BIT\n");
774 		printf("       "); /* re-align to match init_func_ram print */
775 		total_memory = CONFIG_MAX_MEM_MAPPED;
776 	}
777 #endif
778 
779 	return total_memory;
780 }
781 
782 /*
783  * fsl_ddr_sdram(void) -- this is the main function to be
784  * called by initdram() in the board file.
785  *
786  * It returns amount of memory configured in bytes.
787  */
788 phys_size_t fsl_ddr_sdram(void)
789 {
790 	fsl_ddr_info_t info;
791 
792 	/* Reset info structure. */
793 	memset(&info, 0, sizeof(fsl_ddr_info_t));
794 	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
795 	info.first_ctrl = 0;
796 	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
797 	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
798 	info.board_need_mem_reset = board_need_mem_reset;
799 	info.board_mem_reset = board_assert_mem_reset;
800 	info.board_mem_de_reset = board_deassert_mem_reset;
801 
802 	return __fsl_ddr_sdram(&info);
803 }
804 
805 #ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
806 phys_size_t fsl_other_ddr_sdram(unsigned long long base,
807 				unsigned int first_ctrl,
808 				unsigned int num_ctrls,
809 				unsigned int dimm_slots_per_ctrl,
810 				int (*board_need_reset)(void),
811 				void (*board_reset)(void),
812 				void (*board_de_reset)(void))
813 {
814 	fsl_ddr_info_t info;
815 
816 	/* Reset info structure. */
817 	memset(&info, 0, sizeof(fsl_ddr_info_t));
818 	info.mem_base = base;
819 	info.first_ctrl = first_ctrl;
820 	info.num_ctrls = num_ctrls;
821 	info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
822 	info.board_need_mem_reset = board_need_reset;
823 	info.board_mem_reset = board_reset;
824 	info.board_mem_de_reset = board_de_reset;
825 
826 	return __fsl_ddr_sdram(&info);
827 }
828 #endif
829 
830 /*
831  * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
832  * size of the total memory without setting ddr control registers.
833  */
834 phys_size_t
835 fsl_ddr_sdram_size(void)
836 {
837 	fsl_ddr_info_t  info;
838 	unsigned long long total_memory = 0;
839 
840 	memset(&info, 0 , sizeof(fsl_ddr_info_t));
841 	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
842 	info.first_ctrl = 0;
843 	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
844 	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
845 	info.board_need_mem_reset = NULL;
846 
847 	/* Compute it once normally. */
848 	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
849 
850 	return total_memory;
851 }
852