xref: /openbmc/u-boot/drivers/ddr/fsl/main.c (revision 3dc23f7852158fafde9eb736060f9e8131997f19)
1 /*
2  * Copyright 2008-2014 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * Version 2 as published by the Free Software Foundation.
7  */
8 
9 /*
10  * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
11  * Based on code from spd_sdram.c
12  * Author: James Yang [at freescale.com]
13  */
14 
15 #include <common.h>
16 #include <i2c.h>
17 #include <fsl_ddr_sdram.h>
18 #include <fsl_ddr.h>
19 
20 /*
21  * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
22  * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
23  * all Power SoCs. But it could be different for ARM SoCs. For example,
24  * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
25  * 0x00_8000_0000 ~ 0x00_ffff_ffff
26  * 0x80_8000_0000 ~ 0xff_ffff_ffff
27  */
28 #ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
29 #define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
30 #endif
31 
32 #ifdef CONFIG_PPC
33 #include <asm/fsl_law.h>
34 
35 void fsl_ddr_set_lawbar(
36 		const common_timing_params_t *memctl_common_params,
37 		unsigned int memctl_interleaved,
38 		unsigned int ctrl_num);
39 #endif
40 
41 void fsl_ddr_set_intl3r(const unsigned int granule_size);
42 #if defined(SPD_EEPROM_ADDRESS) || \
43     defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
44     defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
45 #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
46 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
47 	[0][0] = SPD_EEPROM_ADDRESS,
48 };
49 #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
50 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
51 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
52 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
53 };
54 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
55 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
56 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
57 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
58 };
59 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
60 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
61 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
62 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
63 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
64 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
65 };
66 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
67 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
68 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
69 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
70 	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
71 };
72 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
73 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
74 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
75 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
76 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
77 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
78 	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
79 	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
80 };
81 
82 #endif
83 
84 #define SPD_SPA0_ADDRESS	0x36
85 #define SPD_SPA1_ADDRESS	0x37
86 
87 static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
88 {
89 	int ret;
90 #ifdef CONFIG_SYS_FSL_DDR4
91 	uint8_t dummy = 0;
92 #endif
93 
94 	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
95 
96 #ifdef CONFIG_SYS_FSL_DDR4
97 	/*
98 	 * DDR4 SPD has 384 to 512 bytes
99 	 * To access the lower 256 bytes, we need to set EE page address to 0
100 	 * To access the upper 256 bytes, we need to set EE page address to 1
101 	 * See Jedec standar No. 21-C for detail
102 	 */
103 	i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
104 	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
105 	if (!ret) {
106 		i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
107 		ret = i2c_read(i2c_address, 0, 1,
108 			       (uchar *)((ulong)spd + 256),
109 			       min(256, sizeof(generic_spd_eeprom_t) - 256));
110 	}
111 #else
112 	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
113 				sizeof(generic_spd_eeprom_t));
114 #endif
115 
116 	if (ret) {
117 		if (i2c_address ==
118 #ifdef SPD_EEPROM_ADDRESS
119 				SPD_EEPROM_ADDRESS
120 #elif defined(SPD_EEPROM_ADDRESS1)
121 				SPD_EEPROM_ADDRESS1
122 #endif
123 				) {
124 			printf("DDR: failed to read SPD from address %u\n",
125 				i2c_address);
126 		} else {
127 			debug("DDR: failed to read SPD from address %u\n",
128 				i2c_address);
129 		}
130 		memset(spd, 0, sizeof(generic_spd_eeprom_t));
131 	}
132 }
133 
134 __attribute__((weak, alias("__get_spd")))
135 void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
136 
137 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
138 		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
139 {
140 	unsigned int i;
141 	unsigned int i2c_address = 0;
142 
143 	if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
144 		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
145 		return;
146 	}
147 
148 	for (i = 0; i < dimm_slots_per_ctrl; i++) {
149 		i2c_address = spd_i2c_addr[ctrl_num][i];
150 		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
151 	}
152 }
153 #else
154 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
155 		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
156 {
157 }
158 #endif /* SPD_EEPROM_ADDRESSx */
159 
160 /*
161  * ASSUMPTIONS:
162  *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
163  *    - Same memory data bus width on all controllers
164  *
165  * NOTES:
166  *
167  * The memory controller and associated documentation use confusing
168  * terminology when referring to the orgranization of DRAM.
169  *
170  * Here is a terminology translation table:
171  *
172  * memory controller/documention  |industry   |this code  |signals
173  * -------------------------------|-----------|-----------|-----------------
174  * physical bank/bank		  |rank       |rank	  |chip select (CS)
175  * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
176  * page/row			  |row	      |page	  |row address
177  * ???				  |column     |column	  |column address
178  *
179  * The naming confusion is further exacerbated by the descriptions of the
180  * memory controller interleaving feature, where accesses are interleaved
181  * _BETWEEN_ two seperate memory controllers.  This is configured only in
182  * CS0_CONFIG[INTLV_CTL] of each memory controller.
183  *
184  * memory controller documentation | number of chip selects
185  *				   | per memory controller supported
186  * --------------------------------|-----------------------------------------
187  * cache line interleaving	   | 1 (CS0 only)
188  * page interleaving		   | 1 (CS0 only)
189  * bank interleaving		   | 1 (CS0 only)
190  * superbank interleraving	   | depends on bank (chip select)
191  *				   |   interleraving [rank interleaving]
192  *				   |   mode used on every memory controller
193  *
194  * Even further confusing is the existence of the interleaving feature
195  * _WITHIN_ each memory controller.  The feature is referred to in
196  * documentation as chip select interleaving or bank interleaving,
197  * although it is configured in the DDR_SDRAM_CFG field.
198  *
199  * Name of field		| documentation name	| this code
200  * -----------------------------|-----------------------|------------------
201  * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
202  *				|  interleaving
203  */
204 
205 const char *step_string_tbl[] = {
206 	"STEP_GET_SPD",
207 	"STEP_COMPUTE_DIMM_PARMS",
208 	"STEP_COMPUTE_COMMON_PARMS",
209 	"STEP_GATHER_OPTS",
210 	"STEP_ASSIGN_ADDRESSES",
211 	"STEP_COMPUTE_REGS",
212 	"STEP_PROGRAM_REGS",
213 	"STEP_ALL"
214 };
215 
216 const char * step_to_string(unsigned int step) {
217 
218 	unsigned int s = __ilog2(step);
219 
220 	if ((1 << s) != step)
221 		return step_string_tbl[7];
222 
223 	if (s >= ARRAY_SIZE(step_string_tbl)) {
224 		printf("Error for the step in %s\n", __func__);
225 		s = 0;
226 	}
227 
228 	return step_string_tbl[s];
229 }
230 
231 static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
232 			  unsigned int dbw_cap_adj[])
233 {
234 	unsigned int i, j;
235 	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
236 	unsigned long long rank_density, ctlr_density = 0;
237 	unsigned int first_ctrl = pinfo->first_ctrl;
238 	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
239 
240 	/*
241 	 * If a reduced data width is requested, but the SPD
242 	 * specifies a physically wider device, adjust the
243 	 * computed dimm capacities accordingly before
244 	 * assigning addresses.
245 	 */
246 	for (i = first_ctrl; i <= last_ctrl; i++) {
247 		unsigned int found = 0;
248 
249 		switch (pinfo->memctl_opts[i].data_bus_width) {
250 		case 2:
251 			/* 16-bit */
252 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
253 				unsigned int dw;
254 				if (!pinfo->dimm_params[i][j].n_ranks)
255 					continue;
256 				dw = pinfo->dimm_params[i][j].primary_sdram_width;
257 				if ((dw == 72 || dw == 64)) {
258 					dbw_cap_adj[i] = 2;
259 					break;
260 				} else if ((dw == 40 || dw == 32)) {
261 					dbw_cap_adj[i] = 1;
262 					break;
263 				}
264 			}
265 			break;
266 
267 		case 1:
268 			/* 32-bit */
269 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
270 				unsigned int dw;
271 				dw = pinfo->dimm_params[i][j].data_width;
272 				if (pinfo->dimm_params[i][j].n_ranks
273 				    && (dw == 72 || dw == 64)) {
274 					/*
275 					 * FIXME: can't really do it
276 					 * like this because this just
277 					 * further reduces the memory
278 					 */
279 					found = 1;
280 					break;
281 				}
282 			}
283 			if (found) {
284 				dbw_cap_adj[i] = 1;
285 			}
286 			break;
287 
288 		case 0:
289 			/* 64-bit */
290 			break;
291 
292 		default:
293 			printf("unexpected data bus width "
294 				"specified controller %u\n", i);
295 			return 1;
296 		}
297 		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
298 	}
299 
300 	current_mem_base = pinfo->mem_base;
301 	total_mem = 0;
302 	if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
303 		rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
304 					dbw_cap_adj[first_ctrl];
305 		switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
306 					FSL_DDR_CS0_CS1_CS2_CS3) {
307 		case FSL_DDR_CS0_CS1_CS2_CS3:
308 			ctlr_density = 4 * rank_density;
309 			break;
310 		case FSL_DDR_CS0_CS1:
311 		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
312 			ctlr_density = 2 * rank_density;
313 			break;
314 		case FSL_DDR_CS2_CS3:
315 		default:
316 			ctlr_density = rank_density;
317 			break;
318 		}
319 		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
320 			rank_density, ctlr_density);
321 		for (i = first_ctrl; i <= last_ctrl; i++) {
322 			if (pinfo->memctl_opts[i].memctl_interleaving) {
323 				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
324 				case FSL_DDR_256B_INTERLEAVING:
325 				case FSL_DDR_CACHE_LINE_INTERLEAVING:
326 				case FSL_DDR_PAGE_INTERLEAVING:
327 				case FSL_DDR_BANK_INTERLEAVING:
328 				case FSL_DDR_SUPERBANK_INTERLEAVING:
329 					total_ctlr_mem = 2 * ctlr_density;
330 					break;
331 				case FSL_DDR_3WAY_1KB_INTERLEAVING:
332 				case FSL_DDR_3WAY_4KB_INTERLEAVING:
333 				case FSL_DDR_3WAY_8KB_INTERLEAVING:
334 					total_ctlr_mem = 3 * ctlr_density;
335 					break;
336 				case FSL_DDR_4WAY_1KB_INTERLEAVING:
337 				case FSL_DDR_4WAY_4KB_INTERLEAVING:
338 				case FSL_DDR_4WAY_8KB_INTERLEAVING:
339 					total_ctlr_mem = 4 * ctlr_density;
340 					break;
341 				default:
342 					panic("Unknown interleaving mode");
343 				}
344 				pinfo->common_timing_params[i].base_address =
345 							current_mem_base;
346 				pinfo->common_timing_params[i].total_mem =
347 							total_ctlr_mem;
348 				total_mem = current_mem_base + total_ctlr_mem;
349 				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
350 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
351 			} else {
352 				/* when 3rd controller not interleaved */
353 				current_mem_base = total_mem;
354 				total_ctlr_mem = 0;
355 				pinfo->common_timing_params[i].base_address =
356 							current_mem_base;
357 				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
358 					unsigned long long cap =
359 						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
360 					pinfo->dimm_params[i][j].base_address =
361 						current_mem_base;
362 					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
363 					current_mem_base += cap;
364 					total_ctlr_mem += cap;
365 				}
366 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
367 				pinfo->common_timing_params[i].total_mem =
368 							total_ctlr_mem;
369 				total_mem += total_ctlr_mem;
370 			}
371 		}
372 	} else {
373 		/*
374 		 * Simple linear assignment if memory
375 		 * controllers are not interleaved.
376 		 */
377 		for (i = first_ctrl; i <= last_ctrl; i++) {
378 			total_ctlr_mem = 0;
379 			pinfo->common_timing_params[i].base_address =
380 						current_mem_base;
381 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
382 				/* Compute DIMM base addresses. */
383 				unsigned long long cap =
384 					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
385 				pinfo->dimm_params[i][j].base_address =
386 					current_mem_base;
387 				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
388 				current_mem_base += cap;
389 				total_ctlr_mem += cap;
390 			}
391 			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
392 			pinfo->common_timing_params[i].total_mem =
393 							total_ctlr_mem;
394 			total_mem += total_ctlr_mem;
395 		}
396 	}
397 	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
398 
399 	return total_mem;
400 }
401 
402 /* Use weak function to allow board file to override the address assignment */
403 __attribute__((weak, alias("__step_assign_addresses")))
404 unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
405 			  unsigned int dbw_cap_adj[]);
406 
407 unsigned long long
408 fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
409 				       unsigned int size_only)
410 {
411 	unsigned int i, j;
412 	unsigned long long total_mem = 0;
413 	int assert_reset = 0;
414 	unsigned int first_ctrl =  pinfo->first_ctrl;
415 	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
416 	__maybe_unused int retval;
417 	__maybe_unused bool goodspd = false;
418 	__maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
419 
420 	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
421 	common_timing_params_t *timing_params = pinfo->common_timing_params;
422 	if (pinfo->board_need_mem_reset)
423 		assert_reset = pinfo->board_need_mem_reset();
424 
425 	/* data bus width capacity adjust shift amount */
426 	unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
427 
428 	for (i = first_ctrl; i <= last_ctrl; i++)
429 		dbw_capacity_adjust[i] = 0;
430 
431 	debug("starting at step %u (%s)\n",
432 	      start_step, step_to_string(start_step));
433 
434 	switch (start_step) {
435 	case STEP_GET_SPD:
436 #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
437 		/* STEP 1:  Gather all DIMM SPD data */
438 		for (i = first_ctrl; i <= last_ctrl; i++) {
439 			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
440 					dimm_slots_per_ctrl);
441 		}
442 
443 	case STEP_COMPUTE_DIMM_PARMS:
444 		/* STEP 2:  Compute DIMM parameters from SPD data */
445 
446 		for (i = first_ctrl; i <= last_ctrl; i++) {
447 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
448 				generic_spd_eeprom_t *spd =
449 					&(pinfo->spd_installed_dimms[i][j]);
450 				dimm_params_t *pdimm =
451 					&(pinfo->dimm_params[i][j]);
452 				retval = compute_dimm_parameters(spd, pdimm, i);
453 #ifdef CONFIG_SYS_DDR_RAW_TIMING
454 				if (!i && !j && retval) {
455 					printf("SPD error on controller %d! "
456 					"Trying fallback to raw timing "
457 					"calculation\n", i);
458 					retval = fsl_ddr_get_dimm_params(pdimm,
459 									 i, j);
460 				}
461 #else
462 				if (retval == 2) {
463 					printf("Error: compute_dimm_parameters"
464 					" non-zero returned FATAL value "
465 					"for memctl=%u dimm=%u\n", i, j);
466 					return 0;
467 				}
468 #endif
469 				if (retval) {
470 					debug("Warning: compute_dimm_parameters"
471 					" non-zero return value for memctl=%u "
472 					"dimm=%u\n", i, j);
473 				} else {
474 					goodspd = true;
475 				}
476 			}
477 		}
478 		if (!goodspd) {
479 			/*
480 			 * No valid SPD found
481 			 * Throw an error if this is for main memory, i.e.
482 			 * first_ctrl == 0. Otherwise, siliently return 0
483 			 * as the memory size.
484 			 */
485 			if (first_ctrl == 0)
486 				printf("Error: No valid SPD detected.\n");
487 
488 			return 0;
489 		}
490 #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
491 	case STEP_COMPUTE_DIMM_PARMS:
492 		for (i = first_ctrl; i <= last_ctrl; i++) {
493 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
494 				dimm_params_t *pdimm =
495 					&(pinfo->dimm_params[i][j]);
496 				fsl_ddr_get_dimm_params(pdimm, i, j);
497 			}
498 		}
499 		debug("Filling dimm parameters from board specific file\n");
500 #endif
501 	case STEP_COMPUTE_COMMON_PARMS:
502 		/*
503 		 * STEP 3: Compute a common set of timing parameters
504 		 * suitable for all of the DIMMs on each memory controller
505 		 */
506 		for (i = first_ctrl; i <= last_ctrl; i++) {
507 			debug("Computing lowest common DIMM"
508 				" parameters for memctl=%u\n", i);
509 			compute_lowest_common_dimm_parameters(
510 				pinfo->dimm_params[i],
511 				&timing_params[i],
512 				CONFIG_DIMM_SLOTS_PER_CTLR);
513 		}
514 
515 	case STEP_GATHER_OPTS:
516 		/* STEP 4:  Gather configuration requirements from user */
517 		for (i = first_ctrl; i <= last_ctrl; i++) {
518 			debug("Reloading memory controller "
519 				"configuration options for memctl=%u\n", i);
520 			/*
521 			 * This "reloads" the memory controller options
522 			 * to defaults.  If the user "edits" an option,
523 			 * next_step points to the step after this,
524 			 * which is currently STEP_ASSIGN_ADDRESSES.
525 			 */
526 			populate_memctl_options(
527 					timing_params[i].all_dimms_registered,
528 					&pinfo->memctl_opts[i],
529 					pinfo->dimm_params[i], i);
530 			/*
531 			 * For RDIMMs, JEDEC spec requires clocks to be stable
532 			 * before reset signal is deasserted. For the boards
533 			 * using fixed parameters, this function should be
534 			 * be called from board init file.
535 			 */
536 			if (timing_params[i].all_dimms_registered)
537 				assert_reset = 1;
538 		}
539 		if (assert_reset && !size_only) {
540 			if (pinfo->board_mem_reset) {
541 				debug("Asserting mem reset\n");
542 				pinfo->board_mem_reset();
543 			} else {
544 				debug("Asserting mem reset missing\n");
545 			}
546 		}
547 
548 	case STEP_ASSIGN_ADDRESSES:
549 		/* STEP 5:  Assign addresses to chip selects */
550 		check_interleaving_options(pinfo);
551 		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
552 		debug("Total mem %llu assigned\n", total_mem);
553 
554 	case STEP_COMPUTE_REGS:
555 		/* STEP 6:  compute controller register values */
556 		debug("FSL Memory ctrl register computation\n");
557 		for (i = first_ctrl; i <= last_ctrl; i++) {
558 			if (timing_params[i].ndimms_present == 0) {
559 				memset(&ddr_reg[i], 0,
560 					sizeof(fsl_ddr_cfg_regs_t));
561 				continue;
562 			}
563 
564 			compute_fsl_memctl_config_regs(
565 					&pinfo->memctl_opts[i],
566 					&ddr_reg[i], &timing_params[i],
567 					pinfo->dimm_params[i],
568 					dbw_capacity_adjust[i],
569 					size_only);
570 		}
571 
572 	default:
573 		break;
574 	}
575 
576 	{
577 		/*
578 		 * Compute the amount of memory available just by
579 		 * looking for the highest valid CSn_BNDS value.
580 		 * This allows us to also experiment with using
581 		 * only CS0 when using dual-rank DIMMs.
582 		 */
583 		unsigned int max_end = 0;
584 
585 		for (i = first_ctrl; i <= last_ctrl; i++) {
586 			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
587 				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
588 				if (reg->cs[j].config & 0x80000000) {
589 					unsigned int end;
590 					/*
591 					 * 0xfffffff is a special value we put
592 					 * for unused bnds
593 					 */
594 					if (reg->cs[j].bnds == 0xffffffff)
595 						continue;
596 					end = reg->cs[j].bnds & 0xffff;
597 					if (end > max_end) {
598 						max_end = end;
599 					}
600 				}
601 			}
602 		}
603 
604 		total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
605 			    0xFFFFFFULL) - pinfo->mem_base;
606 	}
607 
608 	return total_mem;
609 }
610 
611 phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
612 {
613 	unsigned int i, first_ctrl, last_ctrl;
614 #ifdef CONFIG_PPC
615 	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
616 #endif
617 	unsigned long long total_memory;
618 	int deassert_reset = 0;
619 
620 	first_ctrl = pinfo->first_ctrl;
621 	last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
622 
623 	/* Compute it once normally. */
624 #ifdef CONFIG_FSL_DDR_INTERACTIVE
625 	if (tstc() && (getc() == 'd')) {	/* we got a key press of 'd' */
626 		total_memory = fsl_ddr_interactive(pinfo, 0);
627 	} else if (fsl_ddr_interactive_env_var_exists()) {
628 		total_memory = fsl_ddr_interactive(pinfo, 1);
629 	} else
630 #endif
631 		total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
632 
633 	/* setup 3-way interleaving before enabling DDRC */
634 	switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
635 	case FSL_DDR_3WAY_1KB_INTERLEAVING:
636 	case FSL_DDR_3WAY_4KB_INTERLEAVING:
637 	case FSL_DDR_3WAY_8KB_INTERLEAVING:
638 		fsl_ddr_set_intl3r(
639 			pinfo->memctl_opts[first_ctrl].
640 			memctl_interleaving_mode);
641 		break;
642 	default:
643 		break;
644 	}
645 
646 	/*
647 	 * Program configuration registers.
648 	 * JEDEC specs requires clocks to be stable before deasserting reset
649 	 * for RDIMMs. Clocks start after chip select is enabled and clock
650 	 * control register is set. During step 1, all controllers have their
651 	 * registers set but not enabled. Step 2 proceeds after deasserting
652 	 * reset through board FPGA or GPIO.
653 	 * For non-registered DIMMs, initialization can go through but it is
654 	 * also OK to follow the same flow.
655 	 */
656 	if (pinfo->board_need_mem_reset)
657 		deassert_reset = pinfo->board_need_mem_reset();
658 	for (i = first_ctrl; i <= last_ctrl; i++) {
659 		if (pinfo->common_timing_params[i].all_dimms_registered)
660 			deassert_reset = 1;
661 	}
662 	for (i = first_ctrl; i <= last_ctrl; i++) {
663 		debug("Programming controller %u\n", i);
664 		if (pinfo->common_timing_params[i].ndimms_present == 0) {
665 			debug("No dimms present on controller %u; "
666 					"skipping programming\n", i);
667 			continue;
668 		}
669 		/*
670 		 * The following call with step = 1 returns before enabling
671 		 * the controller. It has to finish with step = 2 later.
672 		 */
673 		fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
674 					deassert_reset ? 1 : 0);
675 	}
676 	if (deassert_reset) {
677 		/* Use board FPGA or GPIO to deassert reset signal */
678 		if (pinfo->board_mem_de_reset) {
679 			debug("Deasserting mem reset\n");
680 			pinfo->board_mem_de_reset();
681 		} else {
682 			debug("Deasserting mem reset missing\n");
683 		}
684 		for (i = first_ctrl; i <= last_ctrl; i++) {
685 			/* Call with step = 2 to continue initialization */
686 			fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
687 						i, 2);
688 		}
689 	}
690 
691 #ifdef CONFIG_PPC
692 	/* program LAWs */
693 	for (i = first_ctrl; i <= last_ctrl; i++) {
694 		if (pinfo->memctl_opts[i].memctl_interleaving) {
695 			switch (pinfo->memctl_opts[i].
696 				memctl_interleaving_mode) {
697 			case FSL_DDR_CACHE_LINE_INTERLEAVING:
698 			case FSL_DDR_PAGE_INTERLEAVING:
699 			case FSL_DDR_BANK_INTERLEAVING:
700 			case FSL_DDR_SUPERBANK_INTERLEAVING:
701 				if (i % 2)
702 					break;
703 				if (i == 0) {
704 					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
705 					fsl_ddr_set_lawbar(
706 						&pinfo->common_timing_params[i],
707 						law_memctl, i);
708 				}
709 #if CONFIG_NUM_DDR_CONTROLLERS > 3
710 				else if (i == 2) {
711 					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
712 					fsl_ddr_set_lawbar(
713 						&pinfo->common_timing_params[i],
714 						law_memctl, i);
715 				}
716 #endif
717 				break;
718 			case FSL_DDR_3WAY_1KB_INTERLEAVING:
719 			case FSL_DDR_3WAY_4KB_INTERLEAVING:
720 			case FSL_DDR_3WAY_8KB_INTERLEAVING:
721 				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
722 				if (i == 0) {
723 					fsl_ddr_set_lawbar(
724 						&pinfo->common_timing_params[i],
725 						law_memctl, i);
726 				}
727 				break;
728 			case FSL_DDR_4WAY_1KB_INTERLEAVING:
729 			case FSL_DDR_4WAY_4KB_INTERLEAVING:
730 			case FSL_DDR_4WAY_8KB_INTERLEAVING:
731 				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
732 				if (i == 0)
733 					fsl_ddr_set_lawbar(
734 						&pinfo->common_timing_params[i],
735 						law_memctl, i);
736 				/* place holder for future 4-way interleaving */
737 				break;
738 			default:
739 				break;
740 			}
741 		} else {
742 			switch (i) {
743 			case 0:
744 				law_memctl = LAW_TRGT_IF_DDR_1;
745 				break;
746 			case 1:
747 				law_memctl = LAW_TRGT_IF_DDR_2;
748 				break;
749 			case 2:
750 				law_memctl = LAW_TRGT_IF_DDR_3;
751 				break;
752 			case 3:
753 				law_memctl = LAW_TRGT_IF_DDR_4;
754 				break;
755 			default:
756 				break;
757 			}
758 			fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
759 					   law_memctl, i);
760 		}
761 	}
762 #endif
763 
764 	debug("total_memory by %s = %llu\n", __func__, total_memory);
765 
766 #if !defined(CONFIG_PHYS_64BIT)
767 	/* Check for 4G or more.  Bad. */
768 	if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) {
769 		puts("Detected ");
770 		print_size(total_memory, " of memory\n");
771 		printf("       This U-Boot only supports < 4G of DDR\n");
772 		printf("       You could rebuild it with CONFIG_PHYS_64BIT\n");
773 		printf("       "); /* re-align to match init_func_ram print */
774 		total_memory = CONFIG_MAX_MEM_MAPPED;
775 	}
776 #endif
777 
778 	return total_memory;
779 }
780 
781 /*
782  * fsl_ddr_sdram(void) -- this is the main function to be
783  * called by initdram() in the board file.
784  *
785  * It returns amount of memory configured in bytes.
786  */
787 phys_size_t fsl_ddr_sdram(void)
788 {
789 	fsl_ddr_info_t info;
790 
791 	/* Reset info structure. */
792 	memset(&info, 0, sizeof(fsl_ddr_info_t));
793 	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
794 	info.first_ctrl = 0;
795 	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
796 	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
797 	info.board_need_mem_reset = board_need_mem_reset;
798 	info.board_mem_reset = board_assert_mem_reset;
799 	info.board_mem_de_reset = board_deassert_mem_reset;
800 
801 	return __fsl_ddr_sdram(&info);
802 }
803 
804 #ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
805 phys_size_t fsl_other_ddr_sdram(unsigned long long base,
806 				unsigned int first_ctrl,
807 				unsigned int num_ctrls,
808 				unsigned int dimm_slots_per_ctrl,
809 				int (*board_need_reset)(void),
810 				void (*board_reset)(void),
811 				void (*board_de_reset)(void))
812 {
813 	fsl_ddr_info_t info;
814 
815 	/* Reset info structure. */
816 	memset(&info, 0, sizeof(fsl_ddr_info_t));
817 	info.mem_base = base;
818 	info.first_ctrl = first_ctrl;
819 	info.num_ctrls = num_ctrls;
820 	info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
821 	info.board_need_mem_reset = board_need_reset;
822 	info.board_mem_reset = board_reset;
823 	info.board_mem_de_reset = board_de_reset;
824 
825 	return __fsl_ddr_sdram(&info);
826 }
827 #endif
828 
829 /*
830  * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
831  * size of the total memory without setting ddr control registers.
832  */
833 phys_size_t
834 fsl_ddr_sdram_size(void)
835 {
836 	fsl_ddr_info_t  info;
837 	unsigned long long total_memory = 0;
838 
839 	memset(&info, 0 , sizeof(fsl_ddr_info_t));
840 	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
841 	info.first_ctrl = 0;
842 	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
843 	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
844 	info.board_need_mem_reset = NULL;
845 
846 	/* Compute it once normally. */
847 	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
848 
849 	return total_memory;
850 }
851