1 /* 2 * Copyright 2008-2014 Freescale Semiconductor, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * Version 2 as published by the Free Software Foundation. 7 */ 8 9 #include <common.h> 10 #include <fsl_ddr_sdram.h> 11 12 #include <fsl_ddr.h> 13 14 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4) 15 static unsigned int 16 compute_cas_latency(const dimm_params_t *dimm_params, 17 common_timing_params_t *outpdimm, 18 unsigned int number_of_dimms) 19 { 20 unsigned int i; 21 unsigned int common_caslat; 22 unsigned int caslat_actual; 23 unsigned int retry = 16; 24 unsigned int tmp; 25 const unsigned int mclk_ps = get_memory_clk_period_ps(); 26 #ifdef CONFIG_SYS_FSL_DDR3 27 const unsigned int taamax = 20000; 28 #else 29 const unsigned int taamax = 18000; 30 #endif 31 32 /* compute the common CAS latency supported between slots */ 33 tmp = dimm_params[0].caslat_x; 34 for (i = 1; i < number_of_dimms; i++) { 35 if (dimm_params[i].n_ranks) 36 tmp &= dimm_params[i].caslat_x; 37 } 38 common_caslat = tmp; 39 40 /* validate if the memory clk is in the range of dimms */ 41 if (mclk_ps < outpdimm->tckmin_x_ps) { 42 printf("DDR clock (MCLK cycle %u ps) is faster than " 43 "the slowest DIMM(s) (tCKmin %u ps) can support.\n", 44 mclk_ps, outpdimm->tckmin_x_ps); 45 } 46 #ifdef CONFIG_SYS_FSL_DDR4 47 if (mclk_ps > outpdimm->tckmax_ps) { 48 printf("DDR clock (MCLK cycle %u ps) is slower than DIMM(s) (tCKmax %u ps) can support.\n", 49 mclk_ps, outpdimm->tckmax_ps); 50 } 51 #endif 52 /* determine the acutal cas latency */ 53 caslat_actual = (outpdimm->taamin_ps + mclk_ps - 1) / mclk_ps; 54 /* check if the dimms support the CAS latency */ 55 while (!(common_caslat & (1 << caslat_actual)) && retry > 0) { 56 caslat_actual++; 57 retry--; 58 } 59 /* once the caculation of caslat_actual is completed 60 * we must verify that this CAS latency value does not 61 * exceed tAAmax, which is 20 ns for all DDR3 speed grades, 62 * 18ns for all DDR4 speed grades. 63 */ 64 if (caslat_actual * mclk_ps > taamax) { 65 printf("The choosen cas latency %d is too large\n", 66 caslat_actual); 67 } 68 outpdimm->lowest_common_spd_caslat = caslat_actual; 69 debug("lowest_common_spd_caslat is 0x%x\n", caslat_actual); 70 71 return 0; 72 } 73 #else /* for DDR1 and DDR2 */ 74 static unsigned int 75 compute_cas_latency(const dimm_params_t *dimm_params, 76 common_timing_params_t *outpdimm, 77 unsigned int number_of_dimms) 78 { 79 int i; 80 const unsigned int mclk_ps = get_memory_clk_period_ps(); 81 unsigned int lowest_good_caslat; 82 unsigned int not_ok; 83 unsigned int temp1, temp2; 84 85 debug("using mclk_ps = %u\n", mclk_ps); 86 if (mclk_ps > outpdimm->tckmax_ps) { 87 printf("Warning: DDR clock (%u ps) is slower than DIMM(s) (tCKmax %u ps)\n", 88 mclk_ps, outpdimm->tckmax_ps); 89 } 90 91 /* 92 * Compute a CAS latency suitable for all DIMMs 93 * 94 * Strategy for SPD-defined latencies: compute only 95 * CAS latency defined by all DIMMs. 96 */ 97 98 /* 99 * Step 1: find CAS latency common to all DIMMs using bitwise 100 * operation. 101 */ 102 temp1 = 0xFF; 103 for (i = 0; i < number_of_dimms; i++) { 104 if (dimm_params[i].n_ranks) { 105 temp2 = 0; 106 temp2 |= 1 << dimm_params[i].caslat_x; 107 temp2 |= 1 << dimm_params[i].caslat_x_minus_1; 108 temp2 |= 1 << dimm_params[i].caslat_x_minus_2; 109 /* 110 * If there was no entry for X-2 (X-1) in 111 * the SPD, then caslat_x_minus_2 112 * (caslat_x_minus_1) contains either 255 or 113 * 0xFFFFFFFF because that's what the glorious 114 * __ilog2 function returns for an input of 0. 115 * On 32-bit PowerPC, left shift counts with bit 116 * 26 set (that the value of 255 or 0xFFFFFFFF 117 * will have), cause the destination register to 118 * be 0. That is why this works. 119 */ 120 temp1 &= temp2; 121 } 122 } 123 124 /* 125 * Step 2: check each common CAS latency against tCK of each 126 * DIMM's SPD. 127 */ 128 lowest_good_caslat = 0; 129 temp2 = 0; 130 while (temp1) { 131 not_ok = 0; 132 temp2 = __ilog2(temp1); 133 debug("checking common caslat = %u\n", temp2); 134 135 /* Check if this CAS latency will work on all DIMMs at tCK. */ 136 for (i = 0; i < number_of_dimms; i++) { 137 if (!dimm_params[i].n_ranks) 138 continue; 139 140 if (dimm_params[i].caslat_x == temp2) { 141 if (mclk_ps >= dimm_params[i].tckmin_x_ps) { 142 debug("CL = %u ok on DIMM %u at tCK=%u ps with tCKmin_X_ps of %u\n", 143 temp2, i, mclk_ps, 144 dimm_params[i].tckmin_x_ps); 145 continue; 146 } else { 147 not_ok++; 148 } 149 } 150 151 if (dimm_params[i].caslat_x_minus_1 == temp2) { 152 unsigned int tckmin_x_minus_1_ps 153 = dimm_params[i].tckmin_x_minus_1_ps; 154 if (mclk_ps >= tckmin_x_minus_1_ps) { 155 debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_1_ps of %u\n", 156 temp2, i, mclk_ps, 157 tckmin_x_minus_1_ps); 158 continue; 159 } else { 160 not_ok++; 161 } 162 } 163 164 if (dimm_params[i].caslat_x_minus_2 == temp2) { 165 unsigned int tckmin_x_minus_2_ps 166 = dimm_params[i].tckmin_x_minus_2_ps; 167 if (mclk_ps >= tckmin_x_minus_2_ps) { 168 debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_2_ps of %u\n", 169 temp2, i, mclk_ps, 170 tckmin_x_minus_2_ps); 171 continue; 172 } else { 173 not_ok++; 174 } 175 } 176 } 177 178 if (!not_ok) 179 lowest_good_caslat = temp2; 180 181 temp1 &= ~(1 << temp2); 182 } 183 184 debug("lowest common SPD-defined CAS latency = %u\n", 185 lowest_good_caslat); 186 outpdimm->lowest_common_spd_caslat = lowest_good_caslat; 187 188 189 /* 190 * Compute a common 'de-rated' CAS latency. 191 * 192 * The strategy here is to find the *highest* dereated cas latency 193 * with the assumption that all of the DIMMs will support a dereated 194 * CAS latency higher than or equal to their lowest dereated value. 195 */ 196 temp1 = 0; 197 for (i = 0; i < number_of_dimms; i++) 198 temp1 = max(temp1, dimm_params[i].caslat_lowest_derated); 199 200 outpdimm->highest_common_derated_caslat = temp1; 201 debug("highest common dereated CAS latency = %u\n", temp1); 202 203 return 0; 204 } 205 #endif 206 207 /* 208 * compute_lowest_common_dimm_parameters() 209 * 210 * Determine the worst-case DIMM timing parameters from the set of DIMMs 211 * whose parameters have been computed into the array pointed to 212 * by dimm_params. 213 */ 214 unsigned int 215 compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params, 216 common_timing_params_t *outpdimm, 217 const unsigned int number_of_dimms) 218 { 219 unsigned int i, j; 220 221 unsigned int tckmin_x_ps = 0; 222 unsigned int tckmax_ps = 0xFFFFFFFF; 223 unsigned int trcd_ps = 0; 224 unsigned int trp_ps = 0; 225 unsigned int tras_ps = 0; 226 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4) 227 unsigned int taamin_ps = 0; 228 #endif 229 #ifdef CONFIG_SYS_FSL_DDR4 230 unsigned int twr_ps = 15000; 231 unsigned int trfc1_ps = 0; 232 unsigned int trfc2_ps = 0; 233 unsigned int trfc4_ps = 0; 234 unsigned int trrds_ps = 0; 235 unsigned int trrdl_ps = 0; 236 unsigned int tccdl_ps = 0; 237 #else 238 unsigned int twr_ps = 0; 239 unsigned int twtr_ps = 0; 240 unsigned int trfc_ps = 0; 241 unsigned int trrd_ps = 0; 242 unsigned int trtp_ps = 0; 243 #endif 244 unsigned int trc_ps = 0; 245 unsigned int refresh_rate_ps = 0; 246 unsigned int extended_op_srt = 1; 247 #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2) 248 unsigned int tis_ps = 0; 249 unsigned int tih_ps = 0; 250 unsigned int tds_ps = 0; 251 unsigned int tdh_ps = 0; 252 unsigned int tdqsq_max_ps = 0; 253 unsigned int tqhs_ps = 0; 254 #endif 255 unsigned int temp1, temp2; 256 unsigned int additive_latency = 0; 257 258 temp1 = 0; 259 for (i = 0; i < number_of_dimms; i++) { 260 /* 261 * If there are no ranks on this DIMM, 262 * it probably doesn't exist, so skip it. 263 */ 264 if (dimm_params[i].n_ranks == 0) { 265 temp1++; 266 continue; 267 } 268 if (dimm_params[i].n_ranks == 4 && i != 0) { 269 printf("Found Quad-rank DIMM in wrong bank, ignored." 270 " Software may not run as expected.\n"); 271 temp1++; 272 continue; 273 } 274 275 /* 276 * check if quad-rank DIMM is plugged if 277 * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined 278 * Only the board with proper design is capable 279 */ 280 #ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE 281 if (dimm_params[i].n_ranks == 4 && \ 282 CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) { 283 printf("Found Quad-rank DIMM, not able to support."); 284 temp1++; 285 continue; 286 } 287 #endif 288 /* 289 * Find minimum tckmax_ps to find fastest slow speed, 290 * i.e., this is the slowest the whole system can go. 291 */ 292 tckmax_ps = min(tckmax_ps, 293 (unsigned int)dimm_params[i].tckmax_ps); 294 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4) 295 taamin_ps = max(taamin_ps, 296 (unsigned int)dimm_params[i].taa_ps); 297 #endif 298 tckmin_x_ps = max(tckmin_x_ps, 299 (unsigned int)dimm_params[i].tckmin_x_ps); 300 trcd_ps = max(trcd_ps, (unsigned int)dimm_params[i].trcd_ps); 301 trp_ps = max(trp_ps, (unsigned int)dimm_params[i].trp_ps); 302 tras_ps = max(tras_ps, (unsigned int)dimm_params[i].tras_ps); 303 #ifdef CONFIG_SYS_FSL_DDR4 304 trfc1_ps = max(trfc1_ps, 305 (unsigned int)dimm_params[i].trfc1_ps); 306 trfc2_ps = max(trfc2_ps, 307 (unsigned int)dimm_params[i].trfc2_ps); 308 trfc4_ps = max(trfc4_ps, 309 (unsigned int)dimm_params[i].trfc4_ps); 310 trrds_ps = max(trrds_ps, 311 (unsigned int)dimm_params[i].trrds_ps); 312 trrdl_ps = max(trrdl_ps, 313 (unsigned int)dimm_params[i].trrdl_ps); 314 tccdl_ps = max(tccdl_ps, 315 (unsigned int)dimm_params[i].tccdl_ps); 316 #else 317 twr_ps = max(twr_ps, (unsigned int)dimm_params[i].twr_ps); 318 twtr_ps = max(twtr_ps, (unsigned int)dimm_params[i].twtr_ps); 319 trfc_ps = max(trfc_ps, (unsigned int)dimm_params[i].trfc_ps); 320 trrd_ps = max(trrd_ps, (unsigned int)dimm_params[i].trrd_ps); 321 trtp_ps = max(trtp_ps, (unsigned int)dimm_params[i].trtp_ps); 322 #endif 323 trc_ps = max(trc_ps, (unsigned int)dimm_params[i].trc_ps); 324 #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2) 325 tis_ps = max(tis_ps, (unsigned int)dimm_params[i].tis_ps); 326 tih_ps = max(tih_ps, (unsigned int)dimm_params[i].tih_ps); 327 tds_ps = max(tds_ps, (unsigned int)dimm_params[i].tds_ps); 328 tdh_ps = max(tdh_ps, (unsigned int)dimm_params[i].tdh_ps); 329 tqhs_ps = max(tqhs_ps, (unsigned int)dimm_params[i].tqhs_ps); 330 /* 331 * Find maximum tdqsq_max_ps to find slowest. 332 * 333 * FIXME: is finding the slowest value the correct 334 * strategy for this parameter? 335 */ 336 tdqsq_max_ps = max(tdqsq_max_ps, 337 (unsigned int)dimm_params[i].tdqsq_max_ps); 338 #endif 339 refresh_rate_ps = max(refresh_rate_ps, 340 (unsigned int)dimm_params[i].refresh_rate_ps); 341 /* extended_op_srt is either 0 or 1, 0 having priority */ 342 extended_op_srt = min(extended_op_srt, 343 (unsigned int)dimm_params[i].extended_op_srt); 344 } 345 346 outpdimm->ndimms_present = number_of_dimms - temp1; 347 348 if (temp1 == number_of_dimms) { 349 debug("no dimms this memory controller\n"); 350 return 0; 351 } 352 353 outpdimm->tckmin_x_ps = tckmin_x_ps; 354 outpdimm->tckmax_ps = tckmax_ps; 355 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4) 356 outpdimm->taamin_ps = taamin_ps; 357 #endif 358 outpdimm->trcd_ps = trcd_ps; 359 outpdimm->trp_ps = trp_ps; 360 outpdimm->tras_ps = tras_ps; 361 #ifdef CONFIG_SYS_FSL_DDR4 362 outpdimm->trfc1_ps = trfc1_ps; 363 outpdimm->trfc2_ps = trfc2_ps; 364 outpdimm->trfc4_ps = trfc4_ps; 365 outpdimm->trrds_ps = trrds_ps; 366 outpdimm->trrdl_ps = trrdl_ps; 367 outpdimm->tccdl_ps = tccdl_ps; 368 #else 369 outpdimm->twtr_ps = twtr_ps; 370 outpdimm->trfc_ps = trfc_ps; 371 outpdimm->trrd_ps = trrd_ps; 372 outpdimm->trtp_ps = trtp_ps; 373 #endif 374 outpdimm->twr_ps = twr_ps; 375 outpdimm->trc_ps = trc_ps; 376 outpdimm->refresh_rate_ps = refresh_rate_ps; 377 outpdimm->extended_op_srt = extended_op_srt; 378 #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2) 379 outpdimm->tis_ps = tis_ps; 380 outpdimm->tih_ps = tih_ps; 381 outpdimm->tds_ps = tds_ps; 382 outpdimm->tdh_ps = tdh_ps; 383 outpdimm->tdqsq_max_ps = tdqsq_max_ps; 384 outpdimm->tqhs_ps = tqhs_ps; 385 #endif 386 387 /* Determine common burst length for all DIMMs. */ 388 temp1 = 0xff; 389 for (i = 0; i < number_of_dimms; i++) { 390 if (dimm_params[i].n_ranks) { 391 temp1 &= dimm_params[i].burst_lengths_bitmask; 392 } 393 } 394 outpdimm->all_dimms_burst_lengths_bitmask = temp1; 395 396 /* Determine if all DIMMs registered buffered. */ 397 temp1 = temp2 = 0; 398 for (i = 0; i < number_of_dimms; i++) { 399 if (dimm_params[i].n_ranks) { 400 if (dimm_params[i].registered_dimm) { 401 temp1 = 1; 402 #ifndef CONFIG_SPL_BUILD 403 printf("Detected RDIMM %s\n", 404 dimm_params[i].mpart); 405 #endif 406 } else { 407 temp2 = 1; 408 #ifndef CONFIG_SPL_BUILD 409 printf("Detected UDIMM %s\n", 410 dimm_params[i].mpart); 411 #endif 412 } 413 } 414 } 415 416 outpdimm->all_dimms_registered = 0; 417 outpdimm->all_dimms_unbuffered = 0; 418 if (temp1 && !temp2) { 419 outpdimm->all_dimms_registered = 1; 420 } else if (!temp1 && temp2) { 421 outpdimm->all_dimms_unbuffered = 1; 422 } else { 423 printf("ERROR: Mix of registered buffered and unbuffered " 424 "DIMMs detected!\n"); 425 } 426 427 temp1 = 0; 428 if (outpdimm->all_dimms_registered) 429 for (j = 0; j < 16; j++) { 430 outpdimm->rcw[j] = dimm_params[0].rcw[j]; 431 for (i = 1; i < number_of_dimms; i++) { 432 if (!dimm_params[i].n_ranks) 433 continue; 434 if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) { 435 temp1 = 1; 436 break; 437 } 438 } 439 } 440 441 if (temp1 != 0) 442 printf("ERROR: Mix different RDIMM detected!\n"); 443 444 /* calculate cas latency for all DDR types */ 445 if (compute_cas_latency(dimm_params, outpdimm, number_of_dimms)) 446 return 1; 447 448 /* Determine if all DIMMs ECC capable. */ 449 temp1 = 1; 450 for (i = 0; i < number_of_dimms; i++) { 451 if (dimm_params[i].n_ranks && 452 !(dimm_params[i].edc_config & EDC_ECC)) { 453 temp1 = 0; 454 break; 455 } 456 } 457 if (temp1) { 458 debug("all DIMMs ECC capable\n"); 459 } else { 460 debug("Warning: not all DIMMs ECC capable, cant enable ECC\n"); 461 } 462 outpdimm->all_dimms_ecc_capable = temp1; 463 464 /* 465 * Compute additive latency. 466 * 467 * For DDR1, additive latency should be 0. 468 * 469 * For DDR2, with ODT enabled, use "a value" less than ACTTORW, 470 * which comes from Trcd, and also note that: 471 * add_lat + caslat must be >= 4 472 * 473 * For DDR3, we use the AL=0 474 * 475 * When to use additive latency for DDR2: 476 * 477 * I. Because you are using CL=3 and need to do ODT on writes and 478 * want functionality. 479 * 1. Are you going to use ODT? (Does your board not have 480 * additional termination circuitry for DQ, DQS, DQS_, 481 * DM, RDQS, RDQS_ for x4/x8 configs?) 482 * 2. If so, is your lowest supported CL going to be 3? 483 * 3. If so, then you must set AL=1 because 484 * 485 * WL >= 3 for ODT on writes 486 * RL = AL + CL 487 * WL = RL - 1 488 * -> 489 * WL = AL + CL - 1 490 * AL + CL - 1 >= 3 491 * AL + CL >= 4 492 * QED 493 * 494 * RL >= 3 for ODT on reads 495 * RL = AL + CL 496 * 497 * Since CL aren't usually less than 2, AL=0 is a minimum, 498 * so the WL-derived AL should be the -- FIXME? 499 * 500 * II. Because you are using auto-precharge globally and want to 501 * use additive latency (posted CAS) to get more bandwidth. 502 * 1. Are you going to use auto-precharge mode globally? 503 * 504 * Use addtivie latency and compute AL to be 1 cycle less than 505 * tRCD, i.e. the READ or WRITE command is in the cycle 506 * immediately following the ACTIVATE command.. 507 * 508 * III. Because you feel like it or want to do some sort of 509 * degraded-performance experiment. 510 * 1. Do you just want to use additive latency because you feel 511 * like it? 512 * 513 * Validation: AL is less than tRCD, and within the other 514 * read-to-precharge constraints. 515 */ 516 517 additive_latency = 0; 518 519 #if defined(CONFIG_SYS_FSL_DDR2) 520 if ((outpdimm->lowest_common_spd_caslat < 4) && 521 (picos_to_mclk(trcd_ps) > outpdimm->lowest_common_spd_caslat)) { 522 additive_latency = picos_to_mclk(trcd_ps) - 523 outpdimm->lowest_common_spd_caslat; 524 if (mclk_to_picos(additive_latency) > trcd_ps) { 525 additive_latency = picos_to_mclk(trcd_ps); 526 debug("setting additive_latency to %u because it was " 527 " greater than tRCD_ps\n", additive_latency); 528 } 529 } 530 #endif 531 532 /* 533 * Validate additive latency 534 * 535 * AL <= tRCD(min) 536 */ 537 if (mclk_to_picos(additive_latency) > trcd_ps) { 538 printf("Error: invalid additive latency exceeds tRCD(min).\n"); 539 return 1; 540 } 541 542 /* 543 * RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled 544 * WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled 545 * ADD_LAT (the register) must be set to a value less 546 * than ACTTORW if WL = 1, then AL must be set to 1 547 * RD_TO_PRE (the register) must be set to a minimum 548 * tRTP + AL if AL is nonzero 549 */ 550 551 /* 552 * Additive latency will be applied only if the memctl option to 553 * use it. 554 */ 555 outpdimm->additive_latency = additive_latency; 556 557 debug("tCKmin_ps = %u\n", outpdimm->tckmin_x_ps); 558 debug("trcd_ps = %u\n", outpdimm->trcd_ps); 559 debug("trp_ps = %u\n", outpdimm->trp_ps); 560 debug("tras_ps = %u\n", outpdimm->tras_ps); 561 #ifdef CONFIG_SYS_FSL_DDR4 562 debug("trfc1_ps = %u\n", trfc1_ps); 563 debug("trfc2_ps = %u\n", trfc2_ps); 564 debug("trfc4_ps = %u\n", trfc4_ps); 565 debug("trrds_ps = %u\n", trrds_ps); 566 debug("trrdl_ps = %u\n", trrdl_ps); 567 debug("tccdl_ps = %u\n", tccdl_ps); 568 #else 569 debug("twtr_ps = %u\n", outpdimm->twtr_ps); 570 debug("trfc_ps = %u\n", outpdimm->trfc_ps); 571 debug("trrd_ps = %u\n", outpdimm->trrd_ps); 572 #endif 573 debug("twr_ps = %u\n", outpdimm->twr_ps); 574 debug("trc_ps = %u\n", outpdimm->trc_ps); 575 576 return 0; 577 } 578