1 /* 2 * Copyright 2014-2016 Freescale Semiconductor, Inc. 3 * Copyright 2017-2018 NXP Semiconductor 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 * 7 * calculate the organization and timing parameter 8 * from ddr3 spd, please refer to the spec 9 * JEDEC standard No.21-C 4_01_02_12R23A.pdf 10 * 11 * 12 */ 13 14 #include <common.h> 15 #include <fsl_ddr_sdram.h> 16 17 #include <fsl_ddr.h> 18 19 /* 20 * Calculate the Density of each Physical Rank. 21 * Returned size is in bytes. 22 * 23 * Total DIMM size = 24 * sdram capacity(bit) / 8 * primary bus width / sdram width 25 * * Logical Ranks per DIMM 26 * 27 * where: sdram capacity = spd byte4[3:0] 28 * primary bus width = spd byte13[2:0] 29 * sdram width = spd byte12[2:0] 30 * Logical Ranks per DIMM = spd byte12[5:3] for SDP, DDP, QDP 31 * spd byte12{5:3] * spd byte6[6:4] for 3DS 32 * 33 * To simplify each rank size = total DIMM size / Number of Package Ranks 34 * where Number of Package Ranks = spd byte12[5:3] 35 * 36 * SPD byte4 - sdram density and banks 37 * bit[3:0] size(bit) size(byte) 38 * 0000 256Mb 32MB 39 * 0001 512Mb 64MB 40 * 0010 1Gb 128MB 41 * 0011 2Gb 256MB 42 * 0100 4Gb 512MB 43 * 0101 8Gb 1GB 44 * 0110 16Gb 2GB 45 * 0111 32Gb 4GB 46 * 47 * SPD byte13 - module memory bus width 48 * bit[2:0] primary bus width 49 * 000 8bits 50 * 001 16bits 51 * 010 32bits 52 * 011 64bits 53 * 54 * SPD byte12 - module organization 55 * bit[2:0] sdram device width 56 * 000 4bits 57 * 001 8bits 58 * 010 16bits 59 * 011 32bits 60 * 61 * SPD byte12 - module organization 62 * bit[5:3] number of package ranks per DIMM 63 * 000 1 64 * 001 2 65 * 010 3 66 * 011 4 67 * 68 * SPD byte6 - SDRAM package type 69 * bit[6:4] Die count 70 * 000 1 71 * 001 2 72 * 010 3 73 * 011 4 74 * 100 5 75 * 101 6 76 * 110 7 77 * 111 8 78 * 79 * SPD byte6 - SRAM package type 80 * bit[1:0] Signal loading 81 * 00 Not specified 82 * 01 Multi load stack 83 * 10 Sigle load stack (3DS) 84 * 11 Reserved 85 */ 86 static unsigned long long 87 compute_ranksize(const struct ddr4_spd_eeprom_s *spd) 88 { 89 unsigned long long bsize; 90 91 int nbit_sdram_cap_bsize = 0; 92 int nbit_primary_bus_width = 0; 93 int nbit_sdram_width = 0; 94 int die_count = 0; 95 bool package_3ds; 96 97 if ((spd->density_banks & 0xf) <= 7) 98 nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28; 99 if ((spd->bus_width & 0x7) < 4) 100 nbit_primary_bus_width = (spd->bus_width & 0x7) + 3; 101 if ((spd->organization & 0x7) < 4) 102 nbit_sdram_width = (spd->organization & 0x7) + 2; 103 package_3ds = (spd->package_type & 0x3) == 0x2; 104 if ((spd->package_type & 0x80) && !package_3ds) { /* other than 3DS */ 105 printf("Warning: not supported SDRAM package type\n"); 106 return 0; 107 } 108 if (package_3ds) 109 die_count = (spd->package_type >> 4) & 0x7; 110 111 bsize = 1ULL << (nbit_sdram_cap_bsize - 3 + 112 nbit_primary_bus_width - nbit_sdram_width + 113 die_count); 114 115 debug("DDR: DDR rank density = 0x%16llx\n", bsize); 116 117 return bsize; 118 } 119 120 #define spd_to_ps(mtb, ftb) \ 121 (mtb * pdimm->mtb_ps + (ftb * pdimm->ftb_10th_ps) / 10) 122 /* 123 * ddr_compute_dimm_parameters for DDR4 SPD 124 * 125 * Compute DIMM parameters based upon the SPD information in spd. 126 * Writes the results to the dimm_params_t structure pointed by pdimm. 127 * 128 */ 129 unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num, 130 const generic_spd_eeprom_t *spd, 131 dimm_params_t *pdimm, 132 unsigned int dimm_number) 133 { 134 unsigned int retval; 135 int i; 136 const u8 udimm_rc_e_dq[18] = { 137 0x0c, 0x2c, 0x15, 0x35, 0x15, 0x35, 0x0b, 0x2c, 0x15, 138 0x35, 0x0b, 0x35, 0x0b, 0x2c, 0x0b, 0x35, 0x15, 0x36 139 }; 140 int spd_error = 0; 141 u8 *ptr; 142 u8 val; 143 144 if (spd->mem_type) { 145 if (spd->mem_type != SPD_MEMTYPE_DDR4) { 146 printf("Ctrl %u DIMM %u: is not a DDR4 SPD.\n", 147 ctrl_num, dimm_number); 148 return 1; 149 } 150 } else { 151 memset(pdimm, 0, sizeof(dimm_params_t)); 152 return 1; 153 } 154 155 retval = ddr4_spd_check(spd); 156 if (retval) { 157 printf("DIMM %u: failed checksum\n", dimm_number); 158 return 2; 159 } 160 161 /* 162 * The part name in ASCII in the SPD EEPROM is not null terminated. 163 * Guarantee null termination here by presetting all bytes to 0 164 * and copying the part name in ASCII from the SPD onto it 165 */ 166 memset(pdimm->mpart, 0, sizeof(pdimm->mpart)); 167 if ((spd->info_size_crc & 0xF) > 2) 168 memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1); 169 170 /* DIMM organization parameters */ 171 pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1; 172 pdimm->rank_density = compute_ranksize(spd); 173 pdimm->capacity = pdimm->n_ranks * pdimm->rank_density; 174 pdimm->die_density = spd->density_banks & 0xf; 175 pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7)); 176 if ((spd->bus_width >> 3) & 0x3) 177 pdimm->ec_sdram_width = 8; 178 else 179 pdimm->ec_sdram_width = 0; 180 pdimm->data_width = pdimm->primary_sdram_width 181 + pdimm->ec_sdram_width; 182 pdimm->device_width = 1 << ((spd->organization & 0x7) + 2); 183 pdimm->package_3ds = (spd->package_type & 0x3) == 0x2 ? 184 (spd->package_type >> 4) & 0x7 : 0; 185 186 /* These are the types defined by the JEDEC SPD spec */ 187 pdimm->mirrored_dimm = 0; 188 pdimm->registered_dimm = 0; 189 switch (spd->module_type & DDR4_SPD_MODULETYPE_MASK) { 190 case DDR4_SPD_MODULETYPE_RDIMM: 191 /* Registered/buffered DIMMs */ 192 pdimm->registered_dimm = 1; 193 if (spd->mod_section.registered.reg_map & 0x1) 194 pdimm->mirrored_dimm = 1; 195 val = spd->mod_section.registered.ca_stren; 196 pdimm->rcw[3] = val >> 4; 197 pdimm->rcw[4] = ((val & 0x3) << 2) | ((val & 0xc) >> 2); 198 val = spd->mod_section.registered.clk_stren; 199 pdimm->rcw[5] = ((val & 0x3) << 2) | ((val & 0xc) >> 2); 200 /* Not all in SPD. For convience only. Boards may overwrite. */ 201 pdimm->rcw[6] = 0xf; 202 /* 203 * A17 only used for 16Gb and above devices. 204 * C[2:0] only used for 3DS. 205 */ 206 pdimm->rcw[8] = pdimm->die_density >= 0x6 ? 0x0 : 0x8 | 207 (pdimm->package_3ds > 0x3 ? 0x0 : 208 (pdimm->package_3ds > 0x1 ? 0x1 : 209 (pdimm->package_3ds > 0 ? 0x2 : 0x3))); 210 if (pdimm->package_3ds || pdimm->n_ranks != 4) 211 pdimm->rcw[13] = 0xc; 212 else 213 pdimm->rcw[13] = 0xd; /* Fix encoded by board */ 214 215 break; 216 217 case DDR4_SPD_MODULETYPE_UDIMM: 218 case DDR4_SPD_MODULETYPE_SO_DIMM: 219 /* Unbuffered DIMMs */ 220 if (spd->mod_section.unbuffered.addr_mapping & 0x1) 221 pdimm->mirrored_dimm = 1; 222 if ((spd->mod_section.unbuffered.mod_height & 0xe0) == 0 && 223 (spd->mod_section.unbuffered.ref_raw_card == 0x04)) { 224 /* Fix SPD error found on DIMMs with raw card E0 */ 225 for (i = 0; i < 18; i++) { 226 if (spd->mapping[i] == udimm_rc_e_dq[i]) 227 continue; 228 spd_error = 1; 229 debug("SPD byte %d: 0x%x, should be 0x%x\n", 230 60 + i, spd->mapping[i], 231 udimm_rc_e_dq[i]); 232 ptr = (u8 *)&spd->mapping[i]; 233 *ptr = udimm_rc_e_dq[i]; 234 } 235 if (spd_error) 236 puts("SPD DQ mapping error fixed\n"); 237 } 238 break; 239 240 default: 241 printf("unknown module_type 0x%02X\n", spd->module_type); 242 return 1; 243 } 244 245 /* SDRAM device parameters */ 246 pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12; 247 pdimm->n_col_addr = (spd->addressing & 0x7) + 9; 248 pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3; 249 pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3; 250 251 /* 252 * The SPD spec has not the ECC bit, 253 * We consider the DIMM as ECC capability 254 * when the extension bus exist 255 */ 256 if (pdimm->ec_sdram_width) 257 pdimm->edc_config = 0x02; 258 else 259 pdimm->edc_config = 0x00; 260 261 /* 262 * The SPD spec has not the burst length byte 263 * but DDR4 spec has nature BL8 and BC4, 264 * BL8 -bit3, BC4 -bit2 265 */ 266 pdimm->burst_lengths_bitmask = 0x0c; 267 268 /* MTB - medium timebase 269 * The MTB in the SPD spec is 125ps, 270 * 271 * FTB - fine timebase 272 * use 1/10th of ps as our unit to avoid floating point 273 * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps 274 */ 275 if ((spd->timebases & 0xf) == 0x0) { 276 pdimm->mtb_ps = 125; 277 pdimm->ftb_10th_ps = 10; 278 279 } else { 280 printf("Unknown Timebases\n"); 281 } 282 283 /* sdram minimum cycle time */ 284 pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min); 285 286 /* sdram max cycle time */ 287 pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max); 288 289 /* 290 * CAS latency supported 291 * bit0 - CL7 292 * bit4 - CL11 293 * bit8 - CL15 294 * bit12- CL19 295 * bit16- CL23 296 */ 297 pdimm->caslat_x = (spd->caslat_b1 << 7) | 298 (spd->caslat_b2 << 15) | 299 (spd->caslat_b3 << 23); 300 301 BUG_ON(spd->caslat_b4 != 0); 302 303 /* 304 * min CAS latency time 305 */ 306 pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min); 307 308 /* 309 * min RAS to CAS delay time 310 */ 311 pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min); 312 313 /* 314 * Min Row Precharge Delay Time 315 */ 316 pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min); 317 318 /* min active to precharge delay time */ 319 pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) + 320 spd->tras_min_lsb) * pdimm->mtb_ps; 321 322 /* min active to actice/refresh delay time */ 323 pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) + 324 spd->trc_min_lsb), spd->fine_trc_min); 325 /* Min Refresh Recovery Delay Time */ 326 pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) * 327 pdimm->mtb_ps; 328 pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) * 329 pdimm->mtb_ps; 330 pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) * 331 pdimm->mtb_ps; 332 /* min four active window delay time */ 333 pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) * 334 pdimm->mtb_ps; 335 336 /* min row active to row active delay time, different bank group */ 337 pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min); 338 /* min row active to row active delay time, same bank group */ 339 pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min); 340 /* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */ 341 pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min); 342 343 if (pdimm->package_3ds) { 344 if (pdimm->die_density <= 0x4) { 345 pdimm->trfc_slr_ps = 260000; 346 } else if (pdimm->die_density <= 0x5) { 347 pdimm->trfc_slr_ps = 350000; 348 } else { 349 printf("WARN: Unsupported logical rank density 0x%x\n", 350 pdimm->die_density); 351 } 352 } 353 354 /* 355 * Average periodic refresh interval 356 * tREFI = 7.8 us at normal temperature range 357 */ 358 pdimm->refresh_rate_ps = 7800000; 359 360 for (i = 0; i < 18; i++) 361 pdimm->dq_mapping[i] = spd->mapping[i]; 362 363 pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0; 364 365 return 0; 366 } 367