1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2014-2016 Freescale Semiconductor, Inc.
4  * Copyright 2017-2018 NXP Semiconductor
5  *
6  * calculate the organization and timing parameter
7  * from ddr3 spd, please refer to the spec
8  * JEDEC standard No.21-C 4_01_02_12R23A.pdf
9  *
10  *
11  */
12 
13 #include <common.h>
14 #include <fsl_ddr_sdram.h>
15 
16 #include <fsl_ddr.h>
17 
18 /*
19  * Calculate the Density of each Physical Rank.
20  * Returned size is in bytes.
21  *
22  * Total DIMM size =
23  * sdram capacity(bit) / 8 * primary bus width / sdram width
24  *                     * Logical Ranks per DIMM
25  *
26  * where: sdram capacity  = spd byte4[3:0]
27  *        primary bus width = spd byte13[2:0]
28  *        sdram width = spd byte12[2:0]
29  *        Logical Ranks per DIMM = spd byte12[5:3] for SDP, DDP, QDP
30  *                                 spd byte12{5:3] * spd byte6[6:4] for 3DS
31  *
32  * To simplify each rank size = total DIMM size / Number of Package Ranks
33  * where Number of Package Ranks = spd byte12[5:3]
34  *
35  * SPD byte4 - sdram density and banks
36  *	bit[3:0]	size(bit)	size(byte)
37  *	0000		256Mb		32MB
38  *	0001		512Mb		64MB
39  *	0010		1Gb		128MB
40  *	0011		2Gb		256MB
41  *	0100		4Gb		512MB
42  *	0101		8Gb		1GB
43  *	0110		16Gb		2GB
44  *      0111		32Gb		4GB
45  *
46  * SPD byte13 - module memory bus width
47  *	bit[2:0]	primary bus width
48  *	000		8bits
49  *	001		16bits
50  *	010		32bits
51  *	011		64bits
52  *
53  * SPD byte12 - module organization
54  *	bit[2:0]	sdram device width
55  *	000		4bits
56  *	001		8bits
57  *	010		16bits
58  *	011		32bits
59  *
60  * SPD byte12 - module organization
61  *	bit[5:3]	number of package ranks per DIMM
62  *	000		1
63  *	001		2
64  *	010		3
65  *	011		4
66  *
67  * SPD byte6 - SDRAM package type
68  *	bit[6:4]	Die count
69  *	000		1
70  *	001		2
71  *	010		3
72  *	011		4
73  *	100		5
74  *	101		6
75  *	110		7
76  *	111		8
77  *
78  * SPD byte6 - SRAM package type
79  *	bit[1:0]	Signal loading
80  *	00		Not specified
81  *	01		Multi load stack
82  *	10		Sigle load stack (3DS)
83  *	11		Reserved
84  */
85 static unsigned long long
86 compute_ranksize(const struct ddr4_spd_eeprom_s *spd)
87 {
88 	unsigned long long bsize;
89 
90 	int nbit_sdram_cap_bsize = 0;
91 	int nbit_primary_bus_width = 0;
92 	int nbit_sdram_width = 0;
93 	int die_count = 0;
94 	bool package_3ds;
95 
96 	if ((spd->density_banks & 0xf) <= 7)
97 		nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
98 	if ((spd->bus_width & 0x7) < 4)
99 		nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
100 	if ((spd->organization & 0x7) < 4)
101 		nbit_sdram_width = (spd->organization & 0x7) + 2;
102 	package_3ds = (spd->package_type & 0x3) == 0x2;
103 	if ((spd->package_type & 0x80) && !package_3ds) { /* other than 3DS */
104 		printf("Warning: not supported SDRAM package type\n");
105 		return 0;
106 	}
107 	if (package_3ds)
108 		die_count = (spd->package_type >> 4) & 0x7;
109 
110 	bsize = 1ULL << (nbit_sdram_cap_bsize - 3 +
111 			 nbit_primary_bus_width - nbit_sdram_width +
112 			 die_count);
113 
114 	debug("DDR: DDR rank density = 0x%16llx\n", bsize);
115 
116 	return bsize;
117 }
118 
119 #define spd_to_ps(mtb, ftb)	\
120 	(mtb * pdimm->mtb_ps + (ftb * pdimm->ftb_10th_ps) / 10)
121 /*
122  * ddr_compute_dimm_parameters for DDR4 SPD
123  *
124  * Compute DIMM parameters based upon the SPD information in spd.
125  * Writes the results to the dimm_params_t structure pointed by pdimm.
126  *
127  */
128 unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
129 					 const generic_spd_eeprom_t *spd,
130 					 dimm_params_t *pdimm,
131 					 unsigned int dimm_number)
132 {
133 	unsigned int retval;
134 	int i;
135 	const u8 udimm_rc_e_dq[18] = {
136 		0x0c, 0x2c, 0x15, 0x35, 0x15, 0x35, 0x0b, 0x2c, 0x15,
137 		0x35, 0x0b, 0x35, 0x0b, 0x2c, 0x0b, 0x35, 0x15, 0x36
138 	};
139 	int spd_error = 0;
140 	u8 *ptr;
141 	u8 val;
142 
143 	if (spd->mem_type) {
144 		if (spd->mem_type != SPD_MEMTYPE_DDR4) {
145 			printf("Ctrl %u DIMM %u: is not a DDR4 SPD.\n",
146 			       ctrl_num, dimm_number);
147 			return 1;
148 		}
149 	} else {
150 		memset(pdimm, 0, sizeof(dimm_params_t));
151 		return 1;
152 	}
153 
154 	retval = ddr4_spd_check(spd);
155 	if (retval) {
156 		printf("DIMM %u: failed checksum\n", dimm_number);
157 		return 2;
158 	}
159 
160 	/*
161 	 * The part name in ASCII in the SPD EEPROM is not null terminated.
162 	 * Guarantee null termination here by presetting all bytes to 0
163 	 * and copying the part name in ASCII from the SPD onto it
164 	 */
165 	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
166 	if ((spd->info_size_crc & 0xF) > 2)
167 		memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
168 
169 	/* DIMM organization parameters */
170 	pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
171 	pdimm->rank_density = compute_ranksize(spd);
172 	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
173 	pdimm->die_density = spd->density_banks & 0xf;
174 	pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
175 	if ((spd->bus_width >> 3) & 0x3)
176 		pdimm->ec_sdram_width = 8;
177 	else
178 		pdimm->ec_sdram_width = 0;
179 	pdimm->data_width = pdimm->primary_sdram_width
180 			  + pdimm->ec_sdram_width;
181 	pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
182 	pdimm->package_3ds = (spd->package_type & 0x3) == 0x2 ?
183 			     (spd->package_type >> 4) & 0x7 : 0;
184 
185 	/* These are the types defined by the JEDEC SPD spec */
186 	pdimm->mirrored_dimm = 0;
187 	pdimm->registered_dimm = 0;
188 	switch (spd->module_type & DDR4_SPD_MODULETYPE_MASK) {
189 	case DDR4_SPD_MODULETYPE_RDIMM:
190 		/* Registered/buffered DIMMs */
191 		pdimm->registered_dimm = 1;
192 		if (spd->mod_section.registered.reg_map & 0x1)
193 			pdimm->mirrored_dimm = 1;
194 		val = spd->mod_section.registered.ca_stren;
195 		pdimm->rcw[3] = val >> 4;
196 		pdimm->rcw[4] = ((val & 0x3) << 2) | ((val & 0xc) >> 2);
197 		val = spd->mod_section.registered.clk_stren;
198 		pdimm->rcw[5] = ((val & 0x3) << 2) | ((val & 0xc) >> 2);
199 		/* Not all in SPD. For convience only. Boards may overwrite. */
200 		pdimm->rcw[6] = 0xf;
201 		/*
202 		 * A17 only used for 16Gb and above devices.
203 		 * C[2:0] only used for 3DS.
204 		 */
205 		pdimm->rcw[8] = pdimm->die_density >= 0x6 ? 0x0 : 0x8 |
206 				(pdimm->package_3ds > 0x3 ? 0x0 :
207 				 (pdimm->package_3ds > 0x1 ? 0x1 :
208 				  (pdimm->package_3ds > 0 ? 0x2 : 0x3)));
209 		if (pdimm->package_3ds || pdimm->n_ranks != 4)
210 			pdimm->rcw[13] = 0xc;
211 		else
212 			pdimm->rcw[13] = 0xd;	/* Fix encoded by board */
213 
214 		break;
215 
216 	case DDR4_SPD_MODULETYPE_UDIMM:
217 	case DDR4_SPD_MODULETYPE_SO_DIMM:
218 		/* Unbuffered DIMMs */
219 		if (spd->mod_section.unbuffered.addr_mapping & 0x1)
220 			pdimm->mirrored_dimm = 1;
221 		if ((spd->mod_section.unbuffered.mod_height & 0xe0) == 0 &&
222 		    (spd->mod_section.unbuffered.ref_raw_card == 0x04)) {
223 			/* Fix SPD error found on DIMMs with raw card E0 */
224 			for (i = 0; i < 18; i++) {
225 				if (spd->mapping[i] == udimm_rc_e_dq[i])
226 					continue;
227 				spd_error = 1;
228 				debug("SPD byte %d: 0x%x, should be 0x%x\n",
229 				      60 + i, spd->mapping[i],
230 				      udimm_rc_e_dq[i]);
231 				ptr = (u8 *)&spd->mapping[i];
232 				*ptr = udimm_rc_e_dq[i];
233 			}
234 			if (spd_error)
235 				puts("SPD DQ mapping error fixed\n");
236 		}
237 		break;
238 
239 	default:
240 		printf("unknown module_type 0x%02X\n", spd->module_type);
241 		return 1;
242 	}
243 
244 	/* SDRAM device parameters */
245 	pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
246 	pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
247 	pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3;
248 	pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3;
249 
250 	/*
251 	 * The SPD spec has not the ECC bit,
252 	 * We consider the DIMM as ECC capability
253 	 * when the extension bus exist
254 	 */
255 	if (pdimm->ec_sdram_width)
256 		pdimm->edc_config = 0x02;
257 	else
258 		pdimm->edc_config = 0x00;
259 
260 	/*
261 	 * The SPD spec has not the burst length byte
262 	 * but DDR4 spec has nature BL8 and BC4,
263 	 * BL8 -bit3, BC4 -bit2
264 	 */
265 	pdimm->burst_lengths_bitmask = 0x0c;
266 
267 	/* MTB - medium timebase
268 	 * The MTB in the SPD spec is 125ps,
269 	 *
270 	 * FTB - fine timebase
271 	 * use 1/10th of ps as our unit to avoid floating point
272 	 * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
273 	 */
274 	if ((spd->timebases & 0xf) == 0x0) {
275 		pdimm->mtb_ps = 125;
276 		pdimm->ftb_10th_ps = 10;
277 
278 	} else {
279 		printf("Unknown Timebases\n");
280 	}
281 
282 	/* sdram minimum cycle time */
283 	pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min);
284 
285 	/* sdram max cycle time */
286 	pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max);
287 
288 	/*
289 	 * CAS latency supported
290 	 * bit0 - CL7
291 	 * bit4 - CL11
292 	 * bit8 - CL15
293 	 * bit12- CL19
294 	 * bit16- CL23
295 	 */
296 	pdimm->caslat_x  = (spd->caslat_b1 << 7)	|
297 			   (spd->caslat_b2 << 15)	|
298 			   (spd->caslat_b3 << 23);
299 
300 	BUG_ON(spd->caslat_b4 != 0);
301 
302 	/*
303 	 * min CAS latency time
304 	 */
305 	pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min);
306 
307 	/*
308 	 * min RAS to CAS delay time
309 	 */
310 	pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min);
311 
312 	/*
313 	 * Min Row Precharge Delay Time
314 	 */
315 	pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min);
316 
317 	/* min active to precharge delay time */
318 	pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) +
319 			  spd->tras_min_lsb) * pdimm->mtb_ps;
320 
321 	/* min active to actice/refresh delay time */
322 	pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) +
323 				   spd->trc_min_lsb), spd->fine_trc_min);
324 	/* Min Refresh Recovery Delay Time */
325 	pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) *
326 		       pdimm->mtb_ps;
327 	pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) *
328 		       pdimm->mtb_ps;
329 	pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) *
330 			pdimm->mtb_ps;
331 	/* min four active window delay time */
332 	pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) *
333 			pdimm->mtb_ps;
334 
335 	/* min row active to row active delay time, different bank group */
336 	pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min);
337 	/* min row active to row active delay time, same bank group */
338 	pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min);
339 	/* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */
340 	pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min);
341 
342 	if (pdimm->package_3ds) {
343 		if (pdimm->die_density <= 0x4) {
344 			pdimm->trfc_slr_ps = 260000;
345 		} else if (pdimm->die_density <= 0x5) {
346 			pdimm->trfc_slr_ps = 350000;
347 		} else {
348 			printf("WARN: Unsupported logical rank density 0x%x\n",
349 			       pdimm->die_density);
350 		}
351 	}
352 
353 	/*
354 	 * Average periodic refresh interval
355 	 * tREFI = 7.8 us at normal temperature range
356 	 */
357 	pdimm->refresh_rate_ps = 7800000;
358 
359 	for (i = 0; i < 18; i++)
360 		pdimm->dq_mapping[i] = spd->mapping[i];
361 
362 	pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0;
363 
364 	return 0;
365 }
366